HW 2 Due on Wednesday, April 14, 2021 at 10am CST

CS 498: Topics in Algorithms, Spring 2021 Version: 1.0

Same as previous homework.

The hardness of the following problems differs considerably between problems. I would suggest you
work on them together to get a fair division of labor (or form a union and find yourself?).

1 (100 pTs.) All the distances, small or large.

1.A. (30 p1s.) The input is n real numbers x4, xs, . .., z, not in sorted order, and a parameter k.
Consider the set of distances

D = {|z; — ;| | i <j, wherei,j € [n]}.

Describe an algorithm that outputs the k smallest numbers in D (assume that all the distances
are distinct and [D| = (3).) and runs in O(nk) time. (Note, that the same point might
participate in several distances being output.)

[You can assume k = O(nlogn) if it helps.)

1.B. By first sorting the numbers, describe an algorithm for this problem that runs in O(nlogn +
klogn) time.

1.C. (30 prs.) Assume that k& = O(n'/*/log®n). Provide an algorithm for the above problem
(i.e., again the input is not sorted) that works in O(nlogk) time.
(There is a linear time algorithm in this case, but it relies on a clever trick.)

1.D. (40 p1s.) Prove a lower bound, in the comparison model, showing that no algorithm can
solve this problem in time faster than (nlog k).

2 (100 pTs.) Improved randomness extraction.

We have shown that we can extract, on average, at least [lgm| — 1 independent, unbiased bits
from a number chosen uniformly at random from {0,...,m — 1}. It follows that if we have k
numbers chosen independently and uniformly at random from {0, ..., m — 1} then we can extract,
on average, at least k|lgm| — k independent, unbiased bits from them. Give a better procedure
that extracts, on average, at least k|lgm]| — 1 independent, unbiased bits from these numbers.

3 (100 pts.) Conditional entropy.
The conditional entropy H(Y|X) is defined by

1
PrlY =y|X =a|

H(Y|X) = Y Pr((X =) n (¥ = y)|Ig

If Z=(X,Y), prove that
H(Z) = H(X) + H(Y|X).

4 (100 pTs.) Linear time Union-Find,



4.A.

4.B.
4.C.
4.D.
4.E.

4.F.

(10 pTs.) With path compression and union by rank, during the lifetime of a Union-Find
data-structure, how many elements would have rank equal to [lgn — 5], where there are n
elements stored in the data-structure?

(10 pTs.) Same question, for rank |(lgn)/2].

)
(20 pTSs.) Prove that in a set of n elements, a sequence of n consecutive FIND operations
take O(n) time in total.

(10 pTs.) Write a non-recursive version of FIND with path compression.

(30 pTs.) Show that any sequence of m MAKESET, FIND, and UNION operations, where all
the UNION operations appear before any of the FIND operations, takes only O(m) time if
both path compression and union by rank are used.

(20 pTS.) What happens in the same situation if only the path compression is used?

(100 p1s.) Off-line Minimum

The off-line minimum problem asks us to maintain a dynamic set T' of elements from the domain
{1,2,...,n} under the operations INSERT and EXTRACT-MIN. We are given a sequence S of n
INSERT and m EXTRACT-MIN calls, where each key in {1,2,...,n} is inserted exactly once. We
wish to determine which key is returned by each EXTRACT-MIN call. Specifically, we wish to fill
in an array extracted|l...m|, where for i = 1,2,...,m, extracted[i] is the key returned by the
1th EXTRACT-MIN call. The problem is “off-line” in the sense that we are allowed to process the
entire sequence S before determining any of the returned keys.

5.A.

5.B.

(20 pTs.) In the following instance of the off-line minimum problem, each INSERT is repre-
sented by a number and each EXTRACT-MIN is represented by the letter E:

4,8,E,3,E,9,2,6,F,E,F,1,7,E,5.

Fill in the correct values in the extracted array.

(40 pTs.) To develop an algorithm for this problem, we break the sequence S into homoge-
neous subsequences. That is, we represent S by

L,E Iy, E I3, ..., 1, E, 1,1,

where each E represents a single EXTRACT-MIN call and each I; represents a (possibly empty)

sequence of INSERT calls. For each subsequence I;, we initially place the keys inserted by
these operations into a set K, which is empty if /; is empty. We then do the following.

OFF-LINE-MINIMUM(m,n)

1 fori<1ton

2 do determine j such that i € K;

3 ifj#m+1

4 then extracted|j] < i

5 let [ be the smallest value greater than j for which set K; exists
6 K; < K; U K, destroying K

7 return extracted

Argue that the array extracted returned by OFF-LINE-MINIMUM is correct.



5.C.

(40 pTS.)
Describe how to implement OFF-LINE-MINIMUM efficiently with a disjoint-set data structure.
Give a tight bound on the worst-case running time of your implementation.

(100 pTs.) Tarjan's Off-Line Least-Common-Ancestors Algorithm

The least common ancestor of two nodes u and v in a rooted tree T is the node w that is an
ancestor of both u and v and that has the greatest depth in T. In the off-line least-common-
ancestors problem, we are given a rooted tree T and an arbitrary set P = {{u,v}} of unordered
pairs of nodes in 7', and we wish to determine the least common ancestor of each pair in P.

To solve the off-line least-common-ancestors problem, the following procedure performs a tree walk
of T with the initial call LCA(root[T]). Each node is assumed to be colored WHITE prior to the

walk.
LCA(u)
1 MAKESET(u)
2 ancestor[FIND(u)] < u
3 for each child v of w in T’
4 do LCA(v)
5 UNION(u, v)
6 ancestor[FIND(u)] < u
7 color[u] <~ BLACK
8 for each node v such that {u,v} € P
9 do if color[v] = BLACK
10 then print “The least common ancestor of” u “and” v “is” ancestor[FIND(v)]
6.A. (20 pts.) Argue that line 10 is executed exactly once for each pair {u,v} € P.
6.B. (20 prs.) Argue that at the time of the call LCA(u), the number of sets in the disjoint-set
data structure is equal to the depth of u in T
6.C. (30 pts.) Prove that LCA correctly prints the least common ancestor of u and v for each
pair {u,v} € P.
6.D. (30 pTs.) Analyze the running time of LCA, assuming that we use the implementation of

the disjoint-set data structure with path compression and union by rank.



