
Chapter 16

Planar separator
By Sariel Har-Peled, March 30, 2022¬ Version: 0.1

“You see, dogs aren’t enough any more. People feel so damned lonely, they need company, they need something
bigger, stronger, to lean on, something that can really stand up to it all. Dogs aren’t enough, what we need is
elephants...”

The roots of heaven, Romain Gary

The planar separator theorem is a fundamental result about planar graphs [Ung51, LT79]. Infor-
mally, it states that one can remove 𝑂

(√
𝑛
)

vertices from a planar graph with 𝑛 vertices and break it into
“significantly” smaller parts. It is widely used in algorithms to facilitate efficient divide and conquer
schemes on planar graphs.

16.1. Planar separator from the circle packing theorem
Given a planar graph 𝐺 = (𝑉, 𝐸), it can be drawn in the plane as a kissing graph, see Theorem 16.8.2.
It turns out that the planar separator theorem is an easy consequence of this deep result.

Let D be the set of disks realizing 𝐺 as a kissing graph, and let 𝑃 be the set of centers of these disks.
Let d be the smallest radius disk containing 𝑛/8 of the points of 𝑃, where 𝑛 = |𝑃 | = |𝑉 | (this disk is
unique assuming general position assumption on 𝑃). To simplify the exposition, we assume that d is of
radius 1 and it is centered in the origin. Randomly pick a number 𝑥 ∈ [1, 2] and consider the circle 𝐶𝑥
of radius 𝑥 centered at the origin. Let 𝑆 be the set of all disks in D that intersect 𝐶𝑥. We claim that,
in expectation, 𝑆 is a good separator.

Lemma 16.1.1. The separator 𝑆 breaks 𝐺 into two subgraphs with at most (7/8)𝑛 vertices in each
connected component.

Proof: The circle 𝐶𝑥 breaks the graph into two components: (i) the disks with centers inside 𝐶𝑥, and
(ii) the disks with centers outside 𝐶𝑥.

Clearly, the corresponding vertices in 𝐺 are disconnected once we remove 𝑆. Furthermore, a disk of
radius 2 can be covered by 7 disks of radius 1, as depicted in Figure 16.1. As such, the disk of radius 2
at the origin can contain at most 7𝑛/8 points of 𝑃 inside it, as a disk of radius 1 can contain at most
𝑛/8 points of 𝑃. We conclude that there are at least 𝑛/8 disks of D with their centers outside 𝐶𝑥, and,
by construction, there are at least 𝑛/8 disks of D with centers inside 𝐶𝑥. As such, once 𝑆 is removed,
no connected component of the graph 𝐺 \ 𝑆 can be of size larger than (7/8)𝑛. �

Lemma 16.1.2. We have E
[
|𝑆 |

]
≤ 11

√
𝑛, where 𝑛 = |𝑉 |.

Proof: Let ℓ < 1 be a parameter to be specified shortly. We split D into two sets: D≤ℓ and D>ℓ of all
disks of diameter ≤ ℓ and > ℓ, respectively.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.
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(A) (B) (C)

Figure 16.1: How to cover a disk of radius 2 by 7 disks of radius 1.
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Consider the ring 𝑅 = disk(0, 𝑥 + ℓ) \ disk(0, 𝑥 − ℓ), and observe that any disk f of
D>ℓ that intersects 𝐶𝑥, must contain inside it a disk of radius ℓ/2 that is fully contained
in 𝑅. As such, f covers an area of size at least 𝛼 = 𝜋(ℓ/2)2 of this ring. The area of 𝑅
is 𝛽 = 𝜋

(
(𝑥 + ℓ)2 − (𝑥 − ℓ)2

)
= 4𝜋𝑥ℓ. As such, the number of disks of D>ℓ that intersect

𝐶𝑥 is ≤ 𝛽/𝛼 = 4𝜋𝑥ℓ/(𝜋ℓ2/4) = 16𝑥/ℓ. As E[𝑥] = 3/2, we have E[𝛽/𝛼] = 24/ℓ.
Consider a disk u𝑖 ∈ D≤ℓ of radius 𝑟𝑖 ≤ ℓ/2 centered at 𝑝𝑖. The circle 𝐶𝑥 intersects

u𝑖 if and only if 𝑥 ∈
[
‖𝑝𝑖‖ − 𝑟𝑖, ‖𝑝𝑖‖ + 𝑟𝑖

]
, and as 𝑥 is being picked uniformly from [1, 2], the probability

for that is at most 2𝑟𝑖/|2 − 1| = 2𝑟𝑖 ≤ ℓ. As such, since |D≤ℓ | ≤ 𝑛, we have that the expected number
of disks of D≤ℓ that intersect 𝐶𝑥 is at most 𝑛ℓ. Adding the two quantities together, we have that the
expected number of disks intersecting 𝐶𝑥 is bounded by 𝑛ℓ + 24/ℓ, which is ≤ 2

√
24𝑛, for ℓ = 1/

√
24𝑛. �

Now, putting Lemma 16.1.1 and Lemma 16.1.2 together implies the following.

Theorem 16.1.3. Let 𝐺 = (𝑉, 𝐸) be a planar graph with 𝑛 vertices. There exists a set 𝑆 of 11
√
𝑛

vertices of 𝐺, such that removing 𝑆 from 𝐺 breaks it into several connected components, each one of
them contains at most (7/8)𝑛 vertices.

16.2. Planar separator in linear time
The circle packing theorem is non-constructive and algorithmically one can only approximate the circle-
packing it defines. Fortunately, one can get the planar separator via a direct algorithm (if with somewhat
more work). In particular, we present here a linear time algorithm for computing the planar separator.

The input is a planar graph 𝐺 with 𝑛 vertices together with its embedding.

Sketch of algorithm. The algorithm starts by computing a BFS tree of 𝐺. If there is any (light)
BFS layer that is of size 𝑂 (

√
𝑛) and separates the graph, the algorithm just returns it as the separator.

Otherwise, it must be that all the good separating layers are “heavy”. Fortunately, all these heavy layers
must be sandwiched between two light layers that are at most 𝑂 (

√
𝑛) apart. The idea is to compute

a separator for the induced subgraph on these middle heavy layers. This new graph has only 𝑂 (
√
𝑛)

layers in its BFS tree T, and in particular, one can interpret this tree as a boundary of a polygon –
triangulate this polygon, and find a separating edge 𝑒 that breaks this polygon in a balanced way as far
as the number of triangles. Adding 𝑒 to the BFS tree T creates a cycle 𝐶 of length 𝑂 (

√︁
𝑛), and together

with the top/bottom light layers of the sandwich, it forms the desired separator in the original graph.
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(A) Input graph 𝐺. (B) BFS Tree T𝐺 . (C) Layers 𝐿𝛿 and 𝐿Δ.

T?

e

e?

T?

(D) The graph 𝐻: Outer layers
removed, and inner layers col-
lapsed to the source vertex 𝑠.

(E) 4𝐻: triangulation of 𝐻,
and its dual tree T★.

(F) Edge separator 𝑒★ and its
primal edge 𝑒 in the triangula-
tion.

C

(G) The cycle 𝐶 separator (H) The vertices forming the
separator in the original graph.

(I) The remaining graph af-
ter removing the separator ver-
tices.

Figure 16.2: An illustration of the algorithm for computing the separator in a graph.

3



16.2.1. The planar separator algorithm
The following algorithm is illustrated in Figure 16.2. The algorithm works as follows:
(A) Pick an arbitrary vertex 𝑠 ∈ 𝑉 (𝐺), and do a BFS in 𝐺 starting at 𝑠, and let 𝐿0, 𝐿1, 𝐿2, . . . , 𝐿𝑡 be

the layers of the BFS tree T𝐺 , with 𝐿0 = {𝑠}. Let 𝐿𝑡+1 = {} be a fake “top” layer.
(B) Let 𝑘, 𝐾 be the max/min indices, respectively, such that ∑𝑘−1

𝑖=0 |𝐿𝑖 | < (1/3)𝑛 and ∑𝑡
𝑖=𝐾+1 |𝐿𝑖 | <

(1/3)𝑛.
(C) If for any 𝑖, such that 𝑘 < 𝑖 < 𝐾, we have that |𝐿𝑖 | ≤ 2

√
𝑛, then return 𝐿𝑖 as the separator.

(D) 𝛿: maximum index such that 𝛿 < 𝑘 and |𝐿𝛿 | ≤ 2
√
𝑛.

Δ: minimum index such that Δ > 𝐾 and |𝐿Δ | ≤ 2
√
𝑛.

(E) 𝑈 =
⋃Δ−1
𝑖=𝛿+1 𝐿𝑖: Set of middle layer vertices.

(F) 𝐻: Graph resulting from deleting all the top layers 𝐿Δ, 𝐿Δ+1, . . . , 𝐿𝑡+1 from 𝐺, and collapsing all
the bottom layers 𝐵 = 𝐿0 ∪ 𝐿1 ∪ · · · 𝐿𝛿 into the vertex 𝑠.

(G) 4𝐻: graph resulting from triangulating 𝐻.
(H) T: BFS tree of 4𝐻 rooted at 𝑠.
(I) (4𝐻)★: Dual graph to 𝑄.
(J) T★: Spanning tree of (4𝐻)★ where two vertices are connected by an edge if they are adjacent in

(4𝐻)★, and the edge separating the respective triangles in the primal is not in T. Formally, the
edges of T★ are

(
𝐸 (4𝐻) \ 𝐸 (T)

)★
.

(K) 𝑒★: Edge separator of T★ computed using the algorithm of Lemma 16.2.3.
Removing the edge 𝑒★ breaks T★ into two trees with at most 2/3 fraction of the edges.

(L) 𝑒 =
(
𝑒★

)★
= 𝑥𝑦: An edge of 4𝐻 that is not in T.

(M) 𝑣: LCA in T of 𝑥 and 𝑦. Let 𝜋𝑥 and 𝜋𝑦 be the paths from 𝑥 and 𝑦 to 𝑣 in T, respectively.
(N) Return

(
𝑉

(
𝜋𝑥 ∪ 𝜋𝑦

)
− 𝑠

)
∪ 𝐿𝛿 ∪ 𝐿Δ as the separator.

16.2.1.1. More details

Step (F): The graph 𝐻 is planar since we took a connected components of 𝐺 and collapsed it into a vertex
(which preserve planarity, of course), and removed vertices/edges (which also preserve planarity).
It particular, with some care, one can compute the embedding of 𝐻 from the given embedding of
𝐺 in linear time.

Step (G): Since we have the embedding of 𝐻, it is straightforward to triangulate it in linear time to get 4𝐻.
Step (I): The graph (4𝐻)★ is the dual to a triangulation and it is as such 3-regular. This implies that T★

has maximum degree 3, and edge separator with each part being at most 2/3 fraction of the tree,
see Lemma 16.2.3.

Step (J): A spanning tree of a planar graph has only one outer face – which implies that once we “cut” the
plane along the edges of T, what remains is a polygon. The tree T★ is the spanning tree of the dual
of the triangulation of this polygon. Thinking about T as a boundary of a polygon is somewhat
bizarre, because it bounds the polygon from the inside (instead of the outside), but inside/outside
is all the same for planar graphs.

It is now easy to verify that the above algorithm has linear running time.

16.2.1.2. Correctness

Separator size. If a separator is returned by step (C) then it is a balanced separator of size
√
𝑛, and

we are done.

4



Otherwise, if 𝐾 − 𝑘 + 1 >
√
𝑛/2, then

��⋃𝐾
𝑖=𝑘 𝐿𝑖

�� > 2
√
𝑛
√
𝑛/2 = 𝑛, which is impossible. As such

|𝐾 − 𝑘 | <
√
𝑛/2. The same analysis implies that |Δ− 𝛿 | <

√
𝑛/2. This implies that depth of the BFS tree

T is ≤
√
𝑛/2, which in turn implies that |𝐶 | ≤ 1+

√
𝑛. The final separator size is |𝐶 | + |𝐿𝛿 | + |𝐿Δ | ≤ 5

√
𝑛+1.

Balanced separation. We have to consider only the scenario where the algorithm did not stop at step
(C). So, let 𝑁 ≤ 𝑛 be the number of vertices of 4𝐻, and let 𝜑 be the number of faces in 4𝐻. We have
𝜑 = 2𝑁 − 4, by Lemma 16.8.1. Since 𝑒 is an [1/3, 2/3] edge separator, it follows that 𝜑in, 𝜑out ≤ (2/3)𝜑,
where 𝜑in and 𝜑out are the number of triangles inside and outside 𝐶 in 4𝐻, respectively.

Let 𝑛in and 𝑛out be the number of vertices of 4𝐻 inside and outside 𝐶, respectively. By Lemma 16.2.4,
we have that

𝑛in =
𝜑in − |𝐶 |

2 + 1 ≤ 2𝜑
3 · 2 =

2𝑁 − 4
3 ≤ 2

3𝑁 ≤ 2
3𝑛.

The same argument applies to 𝑛out. We conclude that after removing the separator of step (N), every
connected component of the graph has at most (2/3)𝑛 vertices.

16.2.1.3. The result

Theorem 16.2.1. Given a planar graph 𝐺 in the plane with 𝑛 vertices together with its embedding in
the plane, one can compute, in linear time, a set 𝑆 ⊆ 𝑉 (𝐺) of size ≤ 5

√
𝑛 + 1, such that each of the

connected components of 𝐺 − 𝑆 contains at most (2/3)𝑛 vertices.

Remark 16.2.2. One can derive a similar algorithm for the case that the vertices and edges have weight.
There, the separation breaks the graph into components, each of weight at most (2/3)𝑊 , where 𝑊 is the
total weight. While the resulting separator has only 𝑂 (

√
𝑛) vertices also in this case, its weight might

be arbitrarily large.

16.2.2. Some helper lemmas used above
We used the following two easy lemmas – we provide the proofs for the sake of completeness.

Lemma 16.2.3. Let T be a tree with 𝑛 vertices, with maximum degree 𝑑 ≥ 2. Then, there exists an
edge whose removal break T into two trees, each with at most d(1 − 1/𝑑)𝑛e vertices. This edge can be
computed in linear time.

Proof: Let 𝑣1 be an arbitrary vertex of T, and root T at 𝑣1. For a vertex 𝑣 of T let 𝑛(𝑣) denote the
number of nodes in its subtree – this quantity can be precomputed, in linear time, for all the vertices in
the tree using DFS.

In the 𝑖th step, 𝑣𝑖+1 be the child of 𝑣𝑖 with maximum number of vertices in its subtree. If 𝑛(𝑣𝑖+1) ≤
d(1 − 1/𝑑)𝑛e, then the algorithm outputs the edge 𝑥𝑦 as the desired edge separator, where 𝑥 = 𝑣𝑖 and
𝑦 = 𝑣𝑖+1. Otherwise, the algorithm continues the walk down to 𝑣𝑖+1. Since the tree is finite, the algorithm
stops and output an edge.

Assume, for the sake of contradiction, that 𝑛(𝑦) < 𝑛/𝑑. But then, 𝑥 has at most 𝑑 (𝑥) − 1 ≤ 𝑑 − 1
children (in the rooted tree), each one of them has at most 𝑛(𝑦) nodes (since 𝑦 was the “heaviest” child).
As such, we have 𝑛(𝑥) ≤ 1 + (𝑑 − 1)𝑛(𝑦) < 1 + (𝑑 − 1)𝑛/𝑑 ≤ d(1 − 1/𝑑)𝑛e if 𝑑 does not divides 𝑛. If 𝑑
divides 𝑛 then 𝑛(𝑥) ≤ 1 + (𝑑 − 1)𝑛(𝑦) ≤ 1 + (𝑑 − 1) (𝑛/𝑑 − 1) = ((𝑑 − 1)/𝑑)𝑛 + 2 − 𝑑 ≤ d(1 − 1/𝑑)𝑛e .

Namely, the algorithm would have stopped at 𝑥, and not continue to 𝑦, a contradiction.
As such, 𝑛/𝑑 ≤ 𝑛(𝑦) ≤ d(1 − 1/𝑑)𝑛e. But this implies that 𝑥𝑦 is the desired edge separator. �
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Lemma 16.2.4. Let 𝐺 be a planar graph with an outer face 𝑓 , such that the boundary of 𝑓 is a cycle
𝐶 and no edge appears twice in 𝐶. Assume that 𝐺 has 𝜑 inner faces, and furthermore all these faces
are triangles. Then 𝐺 has (𝜑 − |𝐶 |)/2 + 1 internal vertices (i.e., vertices that do not appear in 𝐶).

Proof: Let 𝑛 be the number of vertices of 𝐺. Add an a vertex 𝑣 to 𝐺 in the outer face of 𝐺, and connect
it to all the vertices lying on the boundary of the outer face of 𝐺. The resulting graph is a triangulation
with 𝑛 + 1 vertices, and 2(𝑛 + 1) − 4 = 2𝑛 − 2 triangles, by Lemma 16.8.1. This counts |𝐶 | triangles that
were created by the addition of 𝑣. As such, 𝜑 = 2𝑛 − 2 − |𝐶 | =⇒ 𝑛 = 𝜑/2 + 1 + |𝐶 | /2. The number of
inner vertices is 𝑛 − |𝐶 | = (𝜑 − |𝐶 |)/2 + 1. �

16.3. Extensions
Here, we show various extensions of the above existential proof of the planar separator theorem, The
reader might want to only skim this part on first reading.

16.3.1. Weighted version
Lemma 16.3.1. Let 𝐺 = (𝑉, 𝐸) be a planar graph with 𝑛 vertices, and assume that the vertices have
non-negative weights assigned to them, with total weight 𝑊. There exists a set 𝑆 of 4

√
𝑛 vertices of 𝐺,

such that removing 𝑆 from 𝐺 breaks it into several connected components, each one of them contains a
set of vertices of total weight at most (9/10)𝑊.

Proof: The proof of Theorem 16.1.3 goes through, with the minor modification that that d is picked to
be the smallest disk, such that the total weight of the centers of the disks it covers is ≥ 𝑊/10. �

Note, that if there is a vertex in the graph with weight ≥ 𝑊/10, then the returned separator could
be this single vertex, which is a legal answer (as the weight of the remaining graph is sufficiently small).

16.3.2. Cycle separators
A planar graph 𝐺 is maximal if one can not add edges to it without violating its planarity. Any
drawing of a maximal planar graph is a triangulation; that is, every face is a triangle. But then, in the
realization of the graph as a kissing graph of disks, a face of the complement of the union of the disks
has three touching disks as its boundary.

v1

v2
v4

u

π′ π

v3

In particular, consider the separating cycle 𝐶𝑘 , and two disks f and f′ that
intersect it consecutively along 𝐶𝑥. Let 𝐼 be interval on 𝐶𝑥 between f ∩ 𝐶𝑥 and
f′ ∩ 𝐶𝑥. The interval 𝐼 belong to a single face of the complement of the union of
disks, and in particular, this face has both f and f′ on its boundary. As such, the
vertices of 𝐺 that corresponds to f and f′ are connected by an edge. That is, the
resulting separator is a cycle in 𝐺. Since 𝐶𝑥 intersects a disk along an interval (or
not at all), it follows that this cycle is simple. Thus, we get the following.

Theorem 16.3.2 ([Mil86]). Let 𝐺 = (𝑉, 𝐸) be a maximal planar graph with 𝑛 vertices. There exists
a set 𝑆 of 4

√
𝑛 vertices of 𝐺, such that removing 𝑆 from 𝐺 breaks it into several connected components,

each one of them contains at most (9/10)𝑛 vertices. Furthermore 𝑆 is a simple cycle in 𝐺.
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Cycle separator if the graph is not triangulated.

Lemma 16.3.3 ([Mil86]). Let 𝐺 = (𝑉, 𝐸) be a connected planar graph with 𝑛 vertices, where the 𝑖th
face has 𝑑𝑖 vertices on its boundary, and let 𝑁 =

∑
𝑖 𝑑

2
𝑖
. Then, there exists a set 𝑆 of 4

√
𝑁 vertices of 𝐺,

such that removing 𝑆 from 𝐺 breaks it into several connected components, each one of them contains at
most (9/10)𝑛 vertices. Furthermore 𝑆 is a cycle in 𝐺.

In particular, if the maximum face degree in 𝐺 is 𝑑, then the separator size is 𝑂
(√
𝑛𝑑

)
.

Proof: The idea to fill in the faces of 𝐺 so that they are all triangulated.
So, consider a cycle 𝐶 (not necessarily simple – an edge might be traversed twice) with 𝑘 vertices

that forms the boundary of a single face in the given embedding of 𝐺. Next, we build a graph having
𝐶1 = 𝐶 as its outer boundary, as follows – it has 𝑘 copies of 𝐶 one inside the other, where the 𝑖th copy
𝐶𝑖 is connected to the 𝑖 − 1 and 𝑖 + 1 copies, in the natural way, where a vertex is connect to its copies.
Drawn in the plane, this results in a grid like construction. We also triangulate the inner most copy
𝐶𝑘 in an arbitrary fashion, and every quadrilateral face is triangulated in an arbitrary fashion. The
resulting graph 𝐺𝐶 has 𝑘2 vertices, and has the property that the any path between any two vertices of
𝐶 in 𝐺𝐶 , the corresponding shortest path in 𝐶 is shorter (or of the same length). See Figure 16.3 for
an example.

C

Figure 16.3

We repeat this fill-in process for all the faces of 𝐺, and let 𝐺′ be the
resulting graph. 𝐺′ is still planar, and clearly the number of resulting
vertices in the new graph is 𝑁 =

∑
𝑖 𝑑

2
𝑖
. Observe that ∑

𝑖 𝑑𝑖 ≤ 6𝑛, as every
vertex 𝑣 incident on a face 𝑟, can be charged to an edge adjacent to both 𝑣
and 𝑓 . Clearly, if done in a consistent fashion, an edge would be charged
at most twice, and the maximum number of edges in a planar graph is
3𝑛 − 6 by Euler’s formula.

In particular, if the maximum value of 𝑑𝑖 is 𝑑, then maximum of 𝑁 =∑
𝑖 𝑑

2
𝑖

is 𝑂 (𝑛𝑑), as can be easily verified.
Now, we assign weight zero to all the newly introduced vertices in 𝐺′,

and assign weight one for the original vertices (that appear in 𝐺). The graph 𝐺′ is a fully triangulated
planar graph and it has 𝑁 vertices. By Lemma 16.3.1, there is separator providing the desired partition,
and the number of vertices on this separator is ≤ 4

√
𝑁. Since 𝐺′ is triangulated, the separator is a

simple cycle in 𝐺′. We now replace portions of it that uses the face grids by the appropriate paths along
the original boundary of the faces. Clearly, the resulting cycle in 𝐺 has the same number of vertices,
provide the same quality of separation (or better, since some vertices migrated to the separator), as
desired. �

Miller’s result is somewhat stronger than Lemma 16.3.3, as he assumes the graph is 2-connected,
and can ensure that in this case the separator is a simple cycle.

16.3.3. Ball systems that are 𝑘-ply
A set of balls B in R𝑑 is 𝑘-ply, if no point of R𝑑 is contained in more than 𝑘 balls of B.

Definition 16.3.4. The doubling constant of a metric space is the smallest number of balls of the same
radius needed to cover a ball of twice the radius (formally, we take the maximum such number over all
possible balls to be covered). The doubling constant of R𝑑 is 𝔠 ≤ 2𝑂 (𝑑) [Ver05].
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Theorem 16.3.5 ([MTTV97]). Let B be a set of 𝑛 balls that is 𝑘-ply in R𝑑. Then, there exists
a sphere S(𝑑) that intersects 4𝑘1/𝑑𝑛1−1/𝑑 balls of B. Furthermore, the number of balls of B that are
completely inside (resp. outside) S(𝑑) is ≥ 𝑛/(𝔠 + 1).

Proof: Let 𝑃 be the set of centers of the balls of B. As above, let b be the smallest ball containing
𝑛/(1 + 𝔠) points of 𝑃. As above, assume that b is centered at the origin and has radius 1. Let S(𝑑) be a
random sphere centered at the origin with radius 𝑥 picked randomly from the range [1, 2].

Now, arguing as above, there are at most (𝔠/(𝔠 + 1))𝑛 points of 𝑃 inside S(𝑑), and as such, at least
(1 − 𝔠/(𝔠 + 1)) = 𝑛/(𝔠 + 1) points of 𝑃 outside S(𝑑). As such S(𝑑) is a good separator for the balls.

As for the expected number of balls intersecting S(𝑑), let 𝑣𝑑𝑟𝑑 be the volume of a ball of radius 𝑟 in
R𝑑, where 𝑣𝑑 is a constant that depends on the dimension. As above, we clip the balls of B to the ball
of radius 2 centered at the origin, replacing every lens, by a an appropriate ball of the same volume.
Let 𝑟𝑖 denote the radius of the 𝑖th such ball f𝑖, for 𝑖 = 1, . . . , 𝑛. By the 𝑘-ply property, we have that∑︁

𝑖

𝑟𝑑𝑖 =
1
𝑣𝑑

(∑︁
𝑖

𝑣𝑑𝑟
𝑑
𝑖

)
≤ 𝑘

𝑣𝑑
Vol

(
ball(2)

)
≤ 𝑘2𝑑 ,

where ball(2) denotes a ball of radius 2 in R𝑑. As before, the probability of the 𝑖th ball to intersect S(𝑑)
is bounded by 2𝑟𝑖. Let 𝑆 be the set of balls of B that intersects S(𝑑). We have, by Hölder’s inequality,
that

E
[
|𝑆 |

]
=

∑︁
𝑖

P
[
f𝑖 ∩ S(𝑑) ≠ ∅

]
≤

∑︁
𝑖

2𝑟𝑖 = 2
∑︁
𝑖

1 · 𝑟𝑖 ≤ 2
(
𝑛∑︁
𝑖=1

1𝑑/(𝑑−1)
) (𝑑−1)/𝑑 ( 𝑛∑︁

𝑖=1
𝑟𝑑𝑖

)1/𝑑

≤ 2𝑛1−1/𝑑
(
𝑘2𝑑

)1/𝑑
≤ 4𝑛1−1/𝑑𝑘1/𝑑 ,

as desired. �

16.3.4. Separators for the 𝑘th nearest neighbor graph
Let 𝑃 be a set of 𝑛 points in R𝑑, and let 𝑘 be a parameter. The 𝑘th nearest neighbor graph
𝐺𝑘 = (𝑃, 𝐸) is the graph, where two points 𝑝, 𝑞 ∈ 𝑃 are connected by an edge 𝑝𝑞 ∈ 𝐸 , if 𝑞 is the 𝑖th
nearest neighbor of 𝑝 in 𝑃 (or 𝑝 is the 𝑖th nearest neighbor of 𝑞), for 𝑖 ≤ 𝑘.

Theorem 16.3.6 ([MTTV97]). Let 𝑃 be a set of 𝑛 points in R𝑑, and let 𝑘 be a parameter. The
𝑘th nearest neighbor graph 𝐺𝑘 = (𝑃, 𝐸) has a separator of size 𝑂 (𝑘1/𝑑𝑛1−1/𝑑), such that each connected
component has at most (𝔠/(𝔠 + 1))𝑛 vertices, where 𝔠 is the doubling constant of R𝑑, see Definition 16.3.4.

Proof: We follow the proof of Miller et al. [MTTV97]. A point 𝑞 ∈ 𝑃 is an 𝑖-client of 𝑝 ∈ 𝑃, if 𝑝 is the
𝑖th nearest neighbor of 𝑞, for 𝑖 ≤ 𝑘. If 𝑞 is a 𝑘-client of 𝑝, then create a ball of radius ‖𝑝 − 𝑞‖ centered
at 𝑞. Let B be the resulting set of 𝑛 balls. The key observation is that this set of balls is 𝑂 (𝑘)-ply –
which we reprove here using a standard argument.

We claim that every point 𝑝 ∈ 𝑃 can serve at most 𝑂 (𝑘) clients. To this end, cover the sphere of
directions around 𝑝 with cones with angular diameter at most 30°. It is easy to verify that at most
𝑐 = 2𝑂 (𝑑−1) such cones are needed.
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The key observation is now that for any two points 𝑞, 𝑠 ∈ 𝑃 that belong to

the same cone 𝜓 of 𝑝, it must be that ‖𝑞 − 𝑠‖ ≤ ‖𝑝 − 𝑠‖, assuming that 𝑞 is
closer to 𝑝 than 𝑠, as an easy geometric argument shows. That is, if 𝑞1, . . . , 𝑞𝑘
are the 𝑘 closest points to 𝑝 in 𝑃 ∩ 𝜓, then these are the only points of 𝑃 ∩ 𝜓
that might be 𝑘-clients of 𝑝. It follows that 𝑝 can have at most 𝑐𝑘 𝑘-clients, and as such its degree in
𝐺𝑘 is ≤ 𝑐𝑘 + 𝑘. That is, the maximum degree of a vertex in 𝐺𝑘 is 𝑂 (𝑘).

To see why this implies that the set of balls B is 𝑘-ply, consider any point 𝑝 ∈ R𝑑, insert it into 𝑃,
and observe that the degree of 𝑝 in the graph 𝐺𝑘+1 bounds the number of balls of B that cover it. By
the above, this is 𝑂 (𝑘), as desired.

By Theorem 16.3.5, there are 4𝑘1/𝑑𝑛1−1/𝑑 balls of B, such that their removal breaks the intersection
graph of B into connected components each of size at most (𝔠/(𝔠 + 1))𝑛. Clearly, the corresponding set
of points of 𝑃 is the desired separator of 𝐺𝑘 . �

16.3.5. Separator for 𝑟 vertices in a planar graph
Our purpose here is to show that in a triangulated planar graph, there is always a cycle of size 𝑂 (

√
𝑟)

that its removal separates (roughly) 𝑟 vertices from remainder of the graph. To this end, we need the
following.

Lemma 16.3.7. Let B be a set of 𝑛 balls in R𝑑 that are interior disjoint, and let 𝑟 > 0 be some
prespecified integer number. Let b be the smallest ball that contains 𝑟 centers of the balls of B. Then b
intersects at most (𝔠)2(𝑟 + 1) balls of B. Furthermore, 2b intersects at most (𝔠)3(𝑟 + 1) balls of B, where
𝔠 is the doubling constant of R𝑑, see Definition 16.3.4.

Proof: Assume b is of radius one and it is centered at the origin. Consider the ball 4b, and observe that
it can be covered by (𝔠)2 balls of radius one, and let B′ be this set of balls. As such, 4b contains at most
(𝔠)2𝑟 centers of balls of B. Any other ball of B that intersect b must be radius at least 3, as its center
is at distance at least 4 from the origin.

It is easy to verify that such a ball b′ must contain fully at least one ball of B′. Indeed, consider
the segment connecting the center of b′ with the origin, and consider the point on this segment on 𝜕4b.
Clearly, this point must be covered by one of the balls of B′, and this ball is fully contained in b′. �

Lemma 16.3.8. Let 𝐺 be a planar graph with 𝑛 vertices, and let 𝑟 > 0 be an integer number which is
sufficiently large. There exists a set of vertices 𝑆 of size ≤ 4ℓ2

√
𝑟, such that 𝐺 \ 𝑆 is disconnected into

two sets of vertices, 𝑋 and 𝑌 , such that 𝑟/2ℓ2 ≤ |𝑋 | ≤ 𝑟, where ℓ2 is a constant (see Definition 16.3.4).
Furthermore, if 𝐺 is triangulated then 𝑆 is a cycle in the graph.

Proof: Let B be the realization of 𝐺 as a kissing graph of interior disjoint disks. Let d be the smallest disk
containing 𝑟/ℓ2 centers of B, and assume that it is of radius one and centered at the origin. Lemma 16.3.7
implies that 2d intersects at most 𝑟 (ℓ2)2 disks of B, and let B′ be this set of balls. Now consider the
circle 𝐶𝑥 centered at the origin of radius 𝑥, where 𝑥 is picked randomly and uniformly from the range
[1, 2]. Let 𝑆 be the set of disks of B′ that intersects 𝐶𝑥.

Now, by the analysis of Lemma 16.1.2, the expected number of disks of B′, and thus of B that
intersects 𝐶𝑥 is ≤ 4

√︁
|B′| ≤ 4ℓ2

√
𝑟. This implies that the number of disks strictly inside 𝐶𝑥 is at least

𝑟/ℓ2 −4ℓ2
√
𝑟 ≥ 𝑟/2ℓ2, if 𝑟 ≥ 64(ℓ2)4. Similarly, it is easy to argue that 𝐶𝑥 contains at most 𝑟 disks of B.�
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Figure 16.4: Some definitions.

16.4. A short balanced cycle and the planar separator theorem
Here, we present a third proof of the planar separator theorem, which relies on the idea that there should
be a short cycle that separates the graph in a balanced way. Intuitively, the shortest such cycle, that
is a balanced separator, can not be made shorter, implying that there must be many vertices on both
sides of it.

We provide this additional proof because it is technically interesting and different than the previous
versions. It is probably less useful than the previous versions and reading it is optional.

16.4.1. The separator definition
Let 𝐺 be a triangulation with 𝑛 vertices. A simple cycle 𝐶 in the embedding of 𝐺 forms a disk, and the
vertices of 𝐺 are partitioned into three sets in(𝐶), 𝑉 (𝐶), and out(𝐶) – the vertices inside 𝐶, on 𝐶, and
outside 𝐶, respectively. Let 𝑛in(𝐶) = |in(𝐶) |, 𝑛(𝐶) = |𝑉 (𝐶) |, and 𝑛out(𝐶) = |out(𝐶) |.

Let 𝑘 = b
√

2𝑛c, and let C be the set of simple cycles 𝐶′ in 𝐺, such that:
(A) 𝑛(𝐶′) ≤ 2𝑘, and
(B) 𝑛out(𝐶′) ≤ 2𝑛/3.

Clearly, this family is not empty, as it contains all the boundary of the faces of the graph as members
(here, the cycles are reversed, and the interior of the face is their “outer” side). Let 𝐶 be the most
“balanced” separator in this family. Formally,

𝐶 = arg min
𝐶 ′∈C

(
𝑛in(𝐶′) − 𝑛out(𝐶′)

)
. (16.1)

The claim is that 𝐶 is the desired separator. That is, 𝑛in(𝐶), 𝑛out(𝐶) ≤ 2𝑛/3.

16.4.2. Correctness
Consider the planar graph 𝐻 induced by 𝐺 on the set of vertices in(𝐶) ∪ 𝑉 (𝐶). The graph 𝐻 is a
triangulated planar graph having 𝐶 as the boundary of its outer face.

For two vertices 𝑢, 𝑣 ∈ 𝑉 (𝐶), let 𝑐(𝑢, 𝑣) = d𝐶 (𝑢, 𝑣) and ℎ(𝑢, 𝑣) = d𝐻 (𝑢, 𝑣) be the number of edges in
the shortest path between 𝑢 and 𝑣 in 𝐶 and 𝐻, respectively.

In the following, for two vertices 𝑢, 𝑣 ∈ 𝑉 (𝐶), let 𝐶 [𝑢, 𝑣] be the path formed by tracing 𝐶 from 𝑢

to 𝑣, in a counterclockwise direction. Similarly, let 𝐶 (𝑣, 𝑢) be he path resulting from removing 𝐶 [𝑢, 𝑣]
from 𝐶. See Figure 16.4.

Lemma 16.4.1. If 𝑛in(𝐶) ≥ (2/3)𝑛 then, for all 𝑢, 𝑣 ∈ 𝑉 (𝐶), we have 𝑐(𝑢, 𝑣) = ℎ(𝑢, 𝑣).
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Proof: As 𝐶 ⊆ 𝐻, we readily have that 𝑐(𝑢, 𝑣) ≥ ℎ(𝑢, 𝑣). To prove that 𝑐(𝑢, 𝑣) ≤ ℎ(𝑢, 𝑣), we assume for
the sake of contradiction that there is pair 𝑢, 𝑣 ∈ 𝑉 (𝐶), such that

(i) 𝑐(𝑢, 𝑣) > ℎ(𝑢, 𝑣), and
(ii) ℎ(𝑢, 𝑣) is minimal among all such pairs.

Let 𝜋 be a path in 𝐻 between 𝑢 and 𝑣 with ℎ(𝑢, 𝑣) edges. If the interior of 𝜋 visits 𝐶, then there is a
vertex 𝑤 ∈ int(𝜋) ∩𝑉 (𝐶), and then

ℎ(𝑢, 𝑤) + ℎ(𝑤, 𝑣) = ℎ(𝑢, 𝑣) < 𝑐(𝑢, 𝑣) ≤ 𝑐(𝑢, 𝑤) + 𝑐(𝑤, 𝑣).

As such, either ℎ(𝑢, 𝑤) < 𝑐(𝑢, 𝑤) or ℎ(𝑤, 𝑣) < 𝑐(𝑤, 𝑣). But both options contradicts (ii) – the minimality
of 𝑢, 𝑣. As such, the interior of 𝜋 is disjoint from 𝐶.

The vertices 𝑢, 𝑣 of 𝜋 partitions 𝐶 into two paths, and gluing 𝜋 into the
two paths, results into two new cycles 𝐶1 and 𝐶2. Here in(𝐶1) ∪𝑉 (int(𝜋)) ∪
in(𝐶2) = in(𝐶), and assume that 𝑛in(𝐶1) ≥ 𝑛in(𝐶2). Since 𝜋 ⊆ 𝐶1, we have

𝑛 − 𝑛out(𝐶1) = 𝑛in(𝐶1) + 𝑛(𝐶1) > 𝑛in(𝐶1) + 𝑛(int(𝜋))

=
2𝑛in(𝐶1) + 2𝑛

(
int(𝜋)

)
2 ≥ 𝑛in(𝐶1) + 𝑛in(𝐶2) + 𝑛(int(𝜋))

2
=
𝑛in(𝐶)

2 ≥ 1
3𝑛,

It follows that 𝑛out(𝐶1) < (2/3)𝑛 – namely, condition (B) holds for 𝐶1.

C

π

C1

C2

u

v

Assume that 𝐶 (𝑣, 𝑢) is the portion of 𝐶 that does not appear in 𝐶1. By definition, we have that
𝑐(𝑢, 𝑣) − 1 = min

(
𝑛(𝐶 (𝑣, 𝑢)), 𝑛(𝐶 (𝑢, 𝑣))

)
. Thus, we have

2𝑘 ≥ 𝑛(𝐶) = 𝑛(𝐶1) −
(
𝑛(𝜎) − 2

)
+ 𝑛

(
𝐶 (𝑣, 𝑢)

)
≥ 𝑛(𝐶1) − (ℎ(𝑢, 𝑣) − 1) + (𝑐(𝑢, 𝑣) − 1) > 𝑛(𝐶1),

as 𝑐(𝑢, 𝑣) > ℎ(𝑢, 𝑣). Namely, condition (A) holds for 𝐶1, and 𝐶1 ∈ C. Since 𝐶 minimizes the imbalance
between the inside and the outside, see Eq. (16.1), we have

𝑛in(𝐶1) − 𝑛out(𝐶1) ≥ 𝑛in(𝐶) − 𝑛out(𝐶) ⇐⇒ 0 ≥ 𝑛in(𝐶1) − 𝑛in(𝐶) ≥ 𝑛out(𝐶1) − 𝑛out(𝐶).

We conclude that 𝑛out(𝐶) ≥ 𝑛out(𝐶1), which implies that 𝑛out(𝐶) = 𝑛out(𝐶1). That implies that 𝐶 (𝑣, 𝑢)
does not contain any vertex. Namely, 𝑣𝑢 ∈ 𝐸 (𝐶) and 𝑐(𝑢, 𝑣) = 1. But this implies that 1 = 𝑐(𝑢, 𝑣) >
ℎ(𝑢, 𝑣) =⇒ ℎ(𝑢, 𝑣) = 0, which is impossible. �

Lemma 16.4.2. If 𝑛in(𝐶) ≥ (2/3)𝑛 then |𝑉 (𝐶) | = 2𝑘.

Proof: Assume for the sake of argument that |𝑉 (𝐶) | < 2𝑘, and consider a triangular face 𝑓 = 4𝑢𝑣𝑧 of
𝐻 such that 𝑢𝑣 is an edge of 𝐶.

If 𝑧 ∈ 𝑉 (𝐶), then since (by assumption) 𝑛in(𝐶) > 0, it follows that 𝐶 ≠ 𝑢𝑣𝑧. It must be that either 𝑢𝑧
or 𝑣𝑧 are not edges of 𝐶. If 𝑢𝑧 ∈ 𝐸 (𝐻) \𝐸 (𝐶) then 1 = ℎ(𝑢, 𝑧) < 𝑐(𝑢, 𝑧), which contradicts Lemma 16.4.1
(alternatively apply the argument to 𝑣𝑧). As such 𝑧 is not in 𝑉 (𝐶) (i.e., it is an interior vertex to the
region bounded by 𝐶).

Next consider the exchange of removing the edge 𝑢𝑣 from 𝐶, and replacing it by the path 𝑢𝑧, 𝑧𝑣. Let
𝐶′ be the resulting cycle. Clearly, 𝑛out(𝐶′) = 𝑛out(𝐶), 𝑛in(𝐶′) = 𝑛in(𝐶) − 1, and |𝑉 (𝐶′) | ≤ 2𝑘. Namely,
𝐶′ ∈ C and 𝑛in(𝐶′) − 𝑛out(𝐶′) < 𝑛in(𝐶′) − 𝑛out(𝐶′), which is a contradiction to the choice of 𝐶, see
Eq. (16.1). �
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Figure 16.5

We need the following classical result.
Theorem 16.4.3 (Menger’s Theorem). Let 𝐺 be an undirected graph with two vertices 𝑠 and 𝑡. The
size of the minimum vertex cut between 𝑠 and 𝑡 (i.e., the minimum number of vertices one has to remove
from 𝐺 to disconnect 𝑠 from 𝑡) is equal to the maximum number of (interior) vertex-disjoint paths
between 𝑠 and 𝑡.
Lemma 16.4.4. If 𝑛in(𝐶) ≥ (2/3)𝑛 then |𝑉 (𝐻) | ≥ (𝑘 + 1)2/2.
Proof: Let 𝐶 = 〈𝑣0, 𝑣1, . . . , 𝑣2𝑘−1〉. Add a source vertex 𝑠 and connect it by 𝑘 + 1 edges to 𝑣0, . . . , 𝑣𝑘 .
Similarly, create a target vertex 𝑡 and connect 𝑣𝑘 , . . . , 𝑣2𝑘 to 𝑡. Let 𝑄 be the resulting graph. See
Figure 16.5.

Let 𝑆 ⊆ 𝑉 (𝑄) be a minimum vertex cut between 𝑠 and 𝑡 in 𝑄, and let 𝛼 = |𝑆 |. Observe that the
graph 𝑄 is a planar graph with all interior faces being triangles, and with 𝑠, 𝑡, 𝑣0, 𝑣𝑘 being on the outer
face. Furthermore, consider the drawing where 𝑠 (resp. 𝑡) is the leftmost (resp. rightmost) vertex in the
drawing. Observe that 𝑣0, 𝑣𝑘 ∈ 𝑆, as otherwise 𝑆 would not be an 𝑠–𝑡 vertex cut.

Consider the induced subgraph 𝑄𝑆. If 𝑄𝑆 is disconnected, then let 𝐶 be its connected component
that contains 𝑣0. We contract 𝐶 to a single vertex in 𝑄 (removing parallel and self loop that are created
by this process), and let 𝐽 be the resulting graph. Let 𝑥 be the vertex that corresponds to the contracted
𝐽 – it lies on the top part of the outer face of the drawing of 𝐽. All its internal faces of 𝐽 are triangles.
The path 𝑠𝑥𝑡 is in 𝐽. Consider the union of all triangular faces adjacent to 𝑥, that are between 𝑠𝑥 and
𝑥𝑡. This union is a simply connected region (otherwise there would be parallel edges), and its boundary
contains a simple path 𝜎 between 𝑠 and 𝑡 in 𝐽 (which is also a path in the graph 𝑄), see Figure 16.5.
This path can not contain a vertex of 𝑆 (since all its vertices are adjacent to vertices of 𝐶), which implies
that 𝑆 is not a vertex cut between 𝑠 and 𝑡, which is a contradiction.

As such, 𝑄𝑆 is connected, and it contains a path 𝜋 between 𝑣0 and 𝑣𝑘 , and by itself 𝜋 forms a cut
between 𝑠 and 𝑡 in 𝑄. As such, it must be that 𝑛(𝜋) = |𝑆 |, and the edge length of 𝜋 is 𝛼−1. In particular,
applying this argument to the shortest path between 𝑣0 and 𝑣𝑘 in 𝐻, we conclude that ℎ(𝑣0, 𝑣𝑘 ) = 𝛼− 1.
However, by Lemma 16.4.1, we have 𝛼 − 1 = ℎ(𝑣0, 𝑣𝑘 ) = 𝑐(𝑣0, 𝑣𝑘 ) = 𝑘. Thus, 𝛼 = |𝑆 | = 𝑘 + 1.

By Menger’s Theorem (T16.4.3), there are 𝑘 + 1 vertex disjoint paths between 𝑠 and 𝑡. The 𝑖th path
in this collection, 𝜋𝑖 corresponds to a path between 𝑣𝑖 and 𝑣2𝑘−𝑖 in 𝐻, for 𝑖 = 0, . . . , 𝑘. By Lemma 16.4.1,
we have that |𝑉 (𝜋𝑖) | − 1 ≥ ℎ(𝑣𝑖, 𝑣2𝑘−𝑖) = 𝑐(𝑣𝑖, 𝑣2𝑘−𝑖) = 2 min(𝑖, 𝑘 − 𝑖). As such, we have that

|𝑉 (𝐻) | ≥
𝑘∑︁
𝑖=0

|𝑉 (𝜋𝑖) | ≥
𝑘∑︁
𝑖=0

(
1 + 2 min(𝑖, 𝑘 − 𝑖)

)
≥ (𝑘 + 1)2

2 ,

by silly calculations­. �
­If 𝑘 = 2𝑡+1, then Δ =

∑𝑘
𝑖=0 min(𝑖, 𝑘−𝑖) = 2

∑𝑡
𝑖=0 𝑖 = 𝑡 (𝑡+1) = (𝑘2−1)/4, and 𝑆 = 𝑘 +1+2Δ = (𝑘2−1)/2+𝑘 +1 = (𝑘 +1)2/2.

If 𝑘 = 2𝑡, then Δ = 𝑡 + 2
∑𝑡−1

𝑖=0 𝑖 = 𝑡 + (𝑡 − 1)𝑡 = 𝑡2 = 𝑘2/4, and 𝑆 = 𝑘 + 1 + 2Δ = 𝑘2/2 + 𝑘 + 1 ≥ (𝑘 + 1)2/2.
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Theorem 16.4.5. Given a triangulated planar graph 𝐻 with 𝑛 vertices, the cycle 𝐶 (defined in Sec-
tion 16.4.1) is a separator in 𝐺 with ≤ 2

√
2𝑛 vertices, and having ≤ (2/3)𝑛 vertices of 𝐺 on each side

of it.
Proof: By (A) and (B) we have |𝑉 (𝐶) | ≤ 2𝑘 and 𝑛out(𝐶) ≤ 2𝑛/3, respectively, where 𝑘 = b

√
2𝑛c. As

such, if 𝑛in(𝐶) ≤ 2𝑛/3 then we are done. Otherwise, by Lemma 16.4.4, we have 𝑛 = |𝑉 (𝐺) | > |𝑉 (𝐻) | ≥
(𝑘 + 1)2/2 ≥ 𝑛, which is impossible. �

16.5. Cycle separator
Let 𝐺 = (𝑉, 𝐸, 𝐹) be a triangulated planar graph embedded on the plane, and let 𝑛 = |𝑉 |, and 𝜑 = |𝐹 |.
In this section, we describe the linear time construction for cycle separators of 𝐺.

Our construction is composed of three phases. First, we find a possibly long cycle separator 𝑆,
by finding a spanning tree T of 𝐺, and a balanced edge separator (𝑢𝑣)∗ in its dual tree. The unique
cycle in T ∪ {𝑢𝑣} is guaranteed to be a (possibly long) cycle separator (Section 16.5.1). This part of
the construction is similar to Lemma 2 of Lipton and Tarjan [LT79], and we include the details for
completeness. Next, we build a nested sequence of cycles 𝐶1 � 𝐶2 � . . . � 𝐶𝑘 (Section 16.5.2). The
specific construction of these cycles, which is guided by 𝑆, is perhaps the central insight of this paper
that results in our simple algorithms. Finally, we consider the collection of all cycles 𝐶1, . . . , 𝐶𝑘 and 𝑆

to construct a set of short cycles one of which is guaranteed to be a balanced separator (Section 16.5.3).

16.5.1. A possibly long cycle separator
We start by computing a balanced separator that unfortunately can be too long.

For a BFS tree T, we denote by 𝜋(T, 𝑢) the unique shortest path in T between the root of T and 𝑢.
Lemma 16.5.1 ([LT79]). Given a triangulated planar graph 𝐺, one can compute, in linear time, a
BFS tree T rooted at a vertex root, and an edge 𝑢𝑣 ∈ 𝐸 (𝐺), such that:
(A) the (shortest) paths 𝑝𝑢 = 𝜋(T, 𝑢) and 𝑝𝑣 = 𝜋(T, 𝑣) are edge disjoint,
(B) the cycle 𝑆 = 𝑝𝑢 ∪ 𝑝𝑣 ∪ 𝑢𝑣 is a 2/3-separator for 𝐺.

Proof: Our proof is a slight modification of the one provided by Lipton and Tarjan [LT79], and we
include it for the sake of completeness. Let 𝑟′ ∈ 𝑉 be any vertex, and let T = (𝑉T, 𝐸T) be a BFS tree
rooted at 𝑟′. Also, let 𝐷 = 𝐸 \ 𝐸T, and note that the dual set of edges 𝐷∗ is a spanning tree of the
dual 𝐺∗. Since 𝐺 is a triangulation, 𝐷∗ has maximum degree at most three. Thus, it contains an edge
(𝑢𝑣)∗ whose removal leaves two connected components, 𝐷∗

𝑖𝑛
and 𝐷∗

𝑜𝑢𝑡 , each with at most d(2/3)𝜑e (dual)
vertices, see Lemma 16.2.3, where 𝜑 = |𝐹 | is the number of faces of 𝐺. Let 𝐷∗

𝑜𝑢𝑡 be the component that
contains the dual of the outer face, and let 𝐷∗

𝑖𝑛
be the other one.

Let 𝑢𝑣 be the original edge that is dual of 𝑢𝑣∗, and 𝑆 the unique cycle in T ∪ {𝑢𝑣}. The sets of
faces inside and outside 𝑆 correspond to vertex sets of 𝐷∗

𝑖𝑛
and 𝐷∗

𝑜𝑢𝑡 , respectively. Thus, 𝑆 is a 2/3-cycle
separator.

Now, let root be the lowest common ancestor of 𝑢 and 𝑣 in T. The cycle 𝑆 is composed of 𝑝𝑢 = T [𝑟, 𝑢],
𝑝𝑣 = T [𝑟, 𝑣] and the edge 𝑢𝑣. Since T is a BFS tree, and root is an ancestor of 𝑢 and 𝑣, the paths 𝑝𝑢
and 𝑝𝑣 are shortest paths in 𝐺.

To get a BFS tree rooted at root, one simply recompute the BFS tree starting from root, where we
include the edges of 𝑝𝑢 and 𝑝𝑣 in the newly computed BFS tree T. �

For the rest of the algorithm, let 𝑆, root, 𝑢𝑣, 𝑝𝑢 and 𝑝𝑣 be given by Lemma 16.5.1. We emphasize
that the graph is unweighted, 𝑝𝑢 and 𝑝𝑣 are shortest paths, and 𝑢 and 𝑣 are neighbors.
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Figure 16.6: A graph and its BFS tree.
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Figure 16.7: The region 𝑃≤5 and the associated outer cycle 𝐶5.

16.5.2. A nested sequence of short cycles
Let root be the root node of the BFS tree T computed by Lemma 16.5.1. For 𝑥 ∈ 𝑉 (𝐺), let ℓ(𝑥) be
the distance in T of 𝑥 from the root root. The level of a (triangular) face 𝜂 = 𝑥𝑦𝑧 of 𝐺 is ℓ(𝜂) =

max(ℓ(𝑥), ℓ(𝑦), ℓ(𝑧)). In particular, a face 𝜂 = 𝑢𝑣𝑧 ∈ faces(𝐺) is 𝑖-close to root if ℓ(𝜂) ≤ 𝑖. The union
of all 𝑖-close faces, form a region 𝑃≤𝑖 in the plane®. This region is simple, but it is not necessarily simply
connected.

Let h = max(ℓ(𝑢), ℓ(𝑣)), and let 𝜓 ∈ {𝑢, 𝑣} be the vertex realizing h. We assume, for the sake of
simplicity of exposition, that 𝜓 is one of the vertices of the outer face¯.

For 𝑖 < h, let 𝜉𝑖 be the outer connected component of 𝜕𝑃≤𝑖. This is a closed curve in the plane,
with 𝜓 being outside it (as long as 𝑖 < h), and let 𝐶𝑖 be the corresponding cycle of edges in 𝐺 that
corresponds to 𝜉𝑖. The resulting set of cycles is 𝐶0, . . . , 𝐶h−1 (i.e., a cycle 𝐶𝑖 is empty if 𝑖 ≥ h).

Lemma 16.5.2. We have the following:
(A) For any 𝑖 < h, the vertices of 𝐶𝑖 are all at distance 𝑖 from root in T.

®Here, conceptually, we consider the embedding of the edges of 𝐺 to be explicitly known, so that 𝑃≤𝑖 is well defined.
The algorithm does not need this explicit description.

¯This can be ensured by applying inversion to the given embedding of 𝐺 – but it is not necessary for our algorithm.
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(B) For any 𝑖 < h, the cycle 𝐶𝑖 is simple.
(C) For any 𝑖 < 𝑗 < h, the cycles 𝐶𝑖 and 𝐶 𝑗 are vertex disjoint.
(D) For 𝑖 < h, the cycle 𝐶𝑖 intersects the cycle 𝑆.

Proof: (A) Consider a vertex 𝑥 in 𝐺 with ℓ(𝑥) < 𝑖. As T is a BFS tree, we have that all the neighbors 𝑦
of 𝑥 in 𝐺, have ℓ(𝑦) ≤ ℓ(𝑥) + 1 ≤ 𝑖. Namely, all the triangles adjacent to 𝑥 are 𝑖-close, and the vertex 𝑥
is internal to the region 𝑃≤𝑖, which implies that it can not appear in 𝐶𝑖.

(B) Since 𝜉𝑖 is the (closure) of the outer boundary of a connected set, the corre-
sponding cycle of edges 𝐶𝑖 is a cycle in the graph. The bad case here is that a vertex
𝑥 is repeated in 𝐶𝑖 more than once. But then, 𝑥 is a cut vertex for 𝑃≤𝑖 – removing
it disconnects 𝑃≤𝑖 – see Figure 16.8. Now, ℓ(𝑥) < 𝑖 as the BFS from root must have
passed through 𝑥 from one side of 𝑃≤𝑖 to the other side. Arguing as in (A), implies
that 𝑥 is internal to 𝑃≤𝑖, which is a contradiction.

x
P≤i

r

Figure 16.8
(C) is readily implied by (A).
(D) Indeed, 𝐶𝑖 must intersect the shortest path from root to 𝜓, and as this path is part of 𝑆, the

claim follows. �

Computing the cycles 𝐶𝑖, for all 𝑖, can be done in linear time (without the explicit embedding of
the edges of 𝐺). To this end, compute for all the (triangular) faces of 𝐺 their level, mark all the edges
between faces of level 𝑖 and 𝑖 + 1 as boundary edges forming 𝜕𝑃≤𝑖 – this yields a collection of cycles. To
identify the right cycle, consider the shortest 𝑝𝜓 path between root and 𝜓. The cycle with a vertex that
belongs to 𝜋, is the desired cycle 𝐶𝑖. Clearly, this can be done in linear time overall for all these cycles.

Lemma 16.5.3. Let Δ > 0 be an arbitrary parameter. If h = ℓ(𝜓) > Δ, then there exist an integer
𝑖0 ∈ ÈΔÉ, such that

���𝐶𝑖0 ��� > 0 and
∑
𝑗≥0

���𝐶𝑖0+ 𝑗Δ��� ≤ 𝑛/Δ, where
��𝐶
𝑘

�� denotes the number of vertices of 𝐶𝑘 .

Proof: Setting 𝑔(𝑖) = ∑
𝑗≥0

���𝐶𝑖+ 𝑗Δ���. By Lemma 16.5.2 (D), 𝑔(𝑖) > 0, for 𝑖 = 0, . . . ,Δ − 1. We have

Δ−1∑︁
𝑖=0

𝑔(𝑖) ≤
Δ−1∑︁
𝑖=0

∑︁
𝑗≥0

���𝐶𝑖+ 𝑗Δ��� = h−1∑︁
𝑘≥0

��𝐶𝑘 �� ≤ |𝑉 (𝐺) | ≤ 𝑛,

as the cycles 𝐶0, 𝐶1, . . . , 𝐶h−1 are disjoint. As such, there must be an index 𝑖 = 𝑖0 of the first summation
that does not exceed the average. �

16.5.3. Constructing cycle separators
Let Δ = Θ(

√
𝑛) be a parameter to be specified shortly. Let 𝑆 be a 2/3-cycle separator, and root, 𝑢, 𝑣,

𝑝𝑢, and 𝑝𝑣 as given by Lemma 16.5.1. If |𝑆 | ≤ 2Δ then this is the desired a short cycle separator. So,
assume that h ≥ |𝑆 |/2 > Δ.

For 𝑗 ≥ 0, let 𝛼 𝑗 = 𝑖0 + ( 𝑗 − 1)Δ be the index of the 𝑗th cycle in the small “ladder” of Lemma 16.5.3.
Since h > Δ and by Lemma 16.5.2 (D), the cycles 𝐶𝑖0 = 𝐶𝛼0 of the ladder intersects 𝑆. In particular, let
𝐷 𝑗 = 𝐶𝛼 𝑗

, for 𝑗 = 1, . . . , 𝑘 − 1, be the 𝑗th nested cycles of this light ladder that intersects 𝑆. Specifically,
let 𝑘 the minimum value such that 𝛼𝑘 ≥ h. Let 𝐷0 be the trivial cycle formed by the root vertex root.
Similarly, let 𝐷𝑘 be the trivial cycle of the 𝜓, such that its interior contains the whole graph.

For 𝑗 = 0, . . . , 𝑘, let 𝜑 𝑗 be the number of faces in the interior of 𝐷 𝑗 . If for some 𝑗 , we have that
b𝜑/3c ≤ 𝜑 𝑗 ≤ d(2/3)𝜑e, then 𝐷 𝑗 is the desired separator, as its length is at most 𝑛/Δ by Lemma 16.5.2,
where 𝜑 is the number of faces of 𝐺.
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Otherwise, there must be an index 𝑖, such that 𝜑𝑖 < 𝜑/3, and 𝜑𝑖+1 > (2/3)𝜑. Assume, for the sake
of simplicity of exposition that 0 < 𝑖 < 𝑘 − 1 (the cases that 𝑖 = 0 or 𝑖 = 𝑘 − 1 are degenerate and can be
handled in a similar fashion to what follows).
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Figure 16.9

Consider the “heavy” ring 𝑅 bounded by the two of the nested cycles 𝐷𝑖+1 and 𝐷𝑖, see Figure 16.9.

Observation 16.5.4. By Lemma 16.5.2, the cycles 𝐷𝑖 and 𝐷𝑖+1 intersects 𝑆 in two vertices exactly.
And 𝐷𝑖 is nested inside 𝐷𝑖+1.

Let 𝐼𝑖 and 𝑂𝑖 the portions of 𝐷𝑖 inside and outside 𝑆, respectively
(define 𝐼𝑖+1 and 𝑂𝑖+1 similarly). Let 𝑝𝑖 and 𝑞𝑖 (resp., 𝑝𝑖+1 and 𝑞𝑖+1) be the
end points of 𝐼𝑖 (resp., 𝐼𝑖+1), such that 𝑝𝑖 is adjacent to 𝑝𝑖+1 along 𝑆.

We can now partition 𝑅 into two cycles 𝑅1 and 𝑅2. The region 𝑅1
is bounded by the cycle formed by D1 = 𝑆[𝑞𝑖, 𝑞𝑖+1]◦𝐼𝑖+1◦𝑆[𝑝𝑖+1, 𝑝𝑖]◦𝐼𝑖.
The region 𝑅2 is bounded by the cycle formed by D2 =

𝑆[𝑞𝑖, 𝑞𝑖+1]◦𝑂𝑖+1◦𝑆[𝑝𝑖+1, 𝑝𝑖]◦𝑂𝑖, see Figure 16.10.
We have that |D1 | ≤ |𝐷𝑖 | + |𝐷𝑖+1 | + 2Δ ≤ 𝑛/Δ + 2Δ, by Lemma 16.5.3.

In particular, if 𝜑(𝑅1) ≥ 𝜑/3, then D1 is the desired cycle separator, since
𝜑(𝑅1) ≤ 𝜑(𝑆) ≤ d(2/3)𝜑e.
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Figure 16.10

Similarly, if 𝜑(𝑅2) ≥ 𝜑/3, then D2 is the desired cycle separator, since 𝜑(𝑅2) ≤ 𝜑− 𝜑(𝑆) ≤ d(2/3)𝜑e .
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Figure 16.11

Lemma 16.5.5. Assume that 𝜑(𝑅1) < 𝜑/3 and 𝜑(𝑅2) < 𝜑/3. Consider the region 𝑍, formed by the
union of the interior of 𝐷𝑖, together with the interior of 𝑅1. Its boundary, is the cycle 𝐾 formed by
𝑂𝑖◦𝑆[𝑞𝑖, 𝑞𝑖+1]◦𝐼𝑖+1◦𝑆[𝑝𝑖+1, 𝑝𝑖], see Figure 16.11. The cycle 𝐾 is a 2/3-cycle separator with 𝑛/Δ + 2Δ
edges.

Proof: We have the following: (i) 𝜑𝑖 < 𝜑/3, (ii) 𝜑𝑖+𝜑(𝑅1)+𝜑(𝑅2) = 𝜑𝑖+1 > (2/3)𝜑, (iii) 𝜑(𝑅1) < 𝜑/3, and
(iv) 𝜑(𝑅2) < 𝜑/3. Assume that 𝜑𝑖 + 𝜑(𝑅1) < 𝜑/3. But then 𝜑𝑖+1 = 𝜑𝑖 + 𝜑(𝑅1) + 𝜑(𝑅2) < (2/3)𝜑, which is
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impossible. The region 𝑍 bounded by 𝐾 contains 𝜑𝑖+𝜑(𝑅1) faces, and we have 𝜑/3 < 𝜑𝑖+𝜑(𝑅1) < (2/3)𝜑,
which implies the separator property.

As for the length of 𝐾, observe that |𝐾 | ≤ |𝐷𝑖 | + |𝐷𝑖+1 | + |𝑆[𝑝𝑖, 𝑝𝑖+1] | + |𝑆[𝑞𝑖, 𝑞𝑖+1] | ≤ 𝑛/Δ + 2Δ, by
Lemma 16.5.3. �

Theorem 16.5.6. Given an embedded triangulated planar graph 𝐺 with 𝑛 vertices and 𝜑 faces, one
can compute in linear time a simple cycle 𝐾 that is a 2/3-separator of 𝐺. The cycle 𝐾 has at most
𝑂 (1) +

√
8𝑛 edges.

This cycle 𝐾 also 2/3-separates the vertices of 𝐺 – namely, there are at most (2/3)𝑛 vertices of 𝐺
on each side of it.

Proof: The construction is described above. As for the length of 𝐾, set Δ =

⌈√︁
𝑛/2

⌉
, and by Lemma 16.5.5

we have |𝐾 | ≤ 2Δ + 𝑛/Δ ≤ 𝑂 (1) +
√

2𝑛 +
√

2𝑛 ≤ 𝑂 (1) +
√

8𝑛. (The separator cycle is even shorter if one of
the other cases described above happens.)

As for the running time, observe that the algorithm runs BFS on the graph several times, identify
the edges that form the relevant cycles. Count the number of faces inside these cycles, and finally counts
the number of edges in 𝑅1 and 𝑅2. Clearly, all this work (with a careful implementation) can be done
in linear time.

The second claim follows from a standard argument, see Lemma 16.5.7 (III) below for details. �

16.5.4. From faces separation to vertices separation
Lemma 16.5.7. (I) A simple planar graph 𝐺 with 𝑛 vertices has at most 3𝑛−6 edges and at most 2𝑛−4
faces. A triangulation has exactly 3𝑛 − 6 edges and 2𝑛 − 4 faces. (II) Let 𝐺 be a triangulated planar
graph and let 𝐶 be a simple cycle in it. Then, there are exactly (𝜑(𝐶) − |𝐶 |)/2+1 vertices in the interior
of 𝐶, where 𝜑(𝐶) denotes the number of faces of 𝐺 in the interior of 𝐶. (III) A simple cycle 𝐶 in a
triangulated graph 𝐺 that has at most d(2/3)𝜑e faces in ts interior, contains at most (2/3)𝑛 vertices in
its interior, where 𝑛 and 𝜑 are the number of vertex and faces of 𝐺, respectively.
Proof: (A) is an immediate consequence of Euler’s formula.

(B) Let 𝑛 be the number of vertices of 𝐺 in or on 𝐶 – delete the portion of 𝐺 outside 𝐶, and add a
vertex 𝑣 to 𝐺 outside 𝐶, and connect it to all the vertices of 𝐶. The resulting graph is a triangulation
with 𝑛 + 1 vertices, and 2(𝑛 + 1) − 4 = 2𝑛 − 2 triangles, by part (A). This counts |𝐶 | triangles that were
created by the addition of 𝑣. As such, 𝜑(𝐶) = 2𝑛 − 2 − |𝐶 | =⇒ 𝑛 = 𝜑(𝐶)/2 + 1 + |𝐶 | /2. The number of
inner vertices is 𝑛 − |𝐶 | = (𝜑(𝐶) − |𝐶 |)/2 + 1.

(C) Part (B) implies that number of vertices internal to the cycle 𝐶 is at most
(𝜑(𝐶) − |𝐶 |)/2 + 1 ≤ (d(2/3)𝜑e − |𝐶 |)/2 + 1 = (d(2/3) (2𝑛 − 4)e − |𝐶 |)/2 + 1

≤ (2/3) (2𝑛 − 4) + 1 − |𝐶 |
2 + 1 ≤ 2

3𝑛,

as claimed. �

16.6. Bibliographical notes
History. The planar separator theorem was proved by Ungar [Ung51] which provided a bound 𝑂

(√
𝑛

log 𝑛
)

on the separator size. Lipton and Tarjan [LT79] presented an optimal separator of size 𝑂 (
√
𝑛).

For further details on planar separators and their applications, see Wikipedia (http://en.wikipedia.
org/wiki/Planar_separator_theorem).
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Presentation. The presentation in Section 16.1 follows [Har13], and demonstrates that the planar
separator theorem is an easy consequence of the circle packing theorem, originally proved by Paul
Koebe in 1936 [Koe36]. The circle packing theorem is thus the “true” magic – converting a topological
property (a graph being planar) into a packing property (i.e., disks touching each other). Most° of
the main ingredients of the proof of [Har13] are present in earlier work on this problem. See Miller
et al. [MTTV97], Smith and Wormald [SW98], and Chan [Cha03]. Furthermore, the constants in the
separator are inferior to known constructions [AST94].

The presentation in Section 16.2 follows roughly the work of Lipton and Tarjan [LT79].
The presentation of Section 16.3 follows [Har13]. For all the results in this part there are known

linear time algorithms that work directly on the graph, but they tend to be significantly more tedious.
Section 16.4 is from the work by Alon et al. [AST94].

16.7. Exercises

16.8. From previous lectures
Lemma 16.8.1. A simple planar graph 𝐺 with 𝑛 vertices has at most 3𝑛 − 6 edges and at most 2𝑛 − 4
faces. A triangulation has exactly 3𝑛 − 6 edges and 2𝑛 − 4 faces.

Theorem 16.8.2 (Circle packing theorem). Let 𝐻 = (𝑉, 𝐸) be a finite simple planar graph. Then
𝐻 can be realized by a set of interior-disjoint disks, where every disk corresponds to a vertex, and two
disks touch, if and only if the corresponding vertices has an edge between them in the original graph.

Definition 16.8.3. A maximal planar graph is a triangulation. In any embedding of a triangulation, all
its faces, including the outer face, are triangles (i.e., the boundary of a face is a cycle with three edges).
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