
Chapter 10

Depth Estimation via Sampling
By Sariel Har-Peled, March 1, 2023①

“Maybe the Nazis told the truth about us. Maybe the Nazis were the truth. We shouldn’t forget that: perhaps
they were the truth. The rest, just beautiful lies. We’ve sung many beautiful lies about ourselves. Perhaps that’s
what I’m trying to do – to sing another beautiful lie.”

The roots of heaven, Romain Gary

In this chapter, we introduce a “trivial” yet powerful idea. Given a set S of objects and a point p that
is contained in some of the objects, let p’s weight be the number of objects that contain it. We can
estimate the depth/weight of p by counting the number of objects that contain it in a random sample of
the objects. In fact, by considering points induced by the sample, we can bound the number of “light”
vertices induced by S (i.e., vertices that are not contained in many objects). This idea can be extended
to bounding the number of “light” configurations induced by a set of objects.

This approach leads to a sequence of short, beautiful, elegant, and correct② proofs of several hallmark
results in discrete geometry.

While the results in this chapter are not directly related to approximation algorithms, the insights
and general approach will be useful for us later, or so one hopes.

10.1. The at most k-levels
Let L be a set of n lines in the plane. A point p ∈ ⋃

ℓ∈L ℓ is of level k if there are k lines of L strictly
below it. The k-level is the closure of the set of points of level k. Namely, the k-level is an x-monotone
curve along the lines of L.

3-level

0-level
1-level

The 0-level is the boundary of the “bottom” face of the arrangement of
L (i.e., the face containing the negative y-axis). It is easy to verify that the
0-level has at most n−1 vertices, as each line might contribute at most one
segment to the 0-level (which is an unbounded convex polygon).

It is natural to ask what the number of vertices at the k-level is (i.e.,
what the combinatorial complexity of the polygonal chain forming the k-
level is). This is a surprisingly hard question, but the same question on the
complexity of the at most k-level is considerably easier.

Theorem 10.1.1. The number of vertices of level at most k in an arrangement of n lines in the plane
is O(nk).

Proof: Pick a random sample R of L, by picking each line to be in the sample with probability 1/k.
Observe that

E
[
|R|
]

= n

k
.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

②The saying goes that “hard theorems have short, elegant, and incorrect proofs”. This chapter can maybe serve as a
counterexample to this claim.
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Let L≤k = L≤k(L) be the set of all vertices of A(L) of level at most k, for k > 1. For a vertex p ∈ L≤k,
let Xp be an indicator variable which is 1 if p is a vertex of the 0-level of A(R). The probability that p is
in the 0-level of A(R) is the probability that none of the j lines below it are picked to be in the sample,
and the two lines that define it do get selected to be in the sample. Namely,

P[Xp = 1] =
(

1 − 1
k

)j(1
k

)2
≥
(

1 − 1
k

)k 1
k2 ≥ exp

(
−2k

k

)
1
k2 = 1

e2k2

since j ≤ k and 1 − x ≥ e−2x, for 0 < x ≤ 1/2.
On the other hand, the number of vertices on the 0-level of R is at most |R| − 1. As such,∑

p∈L≤k

Xp ≤ |R| − 1.

Moreover this, of course, also holds in expectation, implying

E
[ ∑

p∈L≤k

Xp

]
≤ E

[
|R| − 1

]
≤ n

k
.

On the other hand, by linearity of expectation, we have

E
[ ∑

p∈L≤k

Xp

]
=

∑
p∈L≤k

E[Xp] ≥ |L≤k|
e2k2 .

Putting these two inequalities together, we get that |L≤k|
e2k2 ≤ n

k
. Namely, |L≤k| ≤ e2nk. ■

The connection to depth is simple. Every line defines a halfplane (i.e., the region above the line).
A vertex of depth at most k is contained in at most k halfplanes. The above proof (intuitively) first
observed that there are at most n/k vertices of the random sample of zero depth (i.e., 0-level of R) and
then showed that every such vertex has probability (roughly) 1/k2 to have depth zero in the random
sample. It thus follows that if the number of vertices of level at most k is µ, then µ/k2 ≤ n/k; namely,
µ = O(nk).

10.2. The crossing lemma
In the following, for a graph G we denote by n = |V (G)| and m = |E(G)| the number of vertices and
edges of G, respectively.

A graph G is planar if it can be drawn in the plane so that none of its edges are crossing.
We state the following well-known fact.

Theorem 10.2.1 (Euler’s formula). For a connected planar graph G, we have f − m + n = 2, where
f, m, and n are the number of faces, edges, and vertices in a planar drawing of G.

Lemma 10.2.2. If G is a planar graph, then m ≤ 3n − 6.

Proof: We assume that the number of edges of G is maximal (i.e., no edges can be added without
introducing a crossing). If it is not maximal, then add edges till it becomes maximal. This implies that
G is a triangulation (i.e., every face is a triangle). Then, every face is adjacent to three edges, and as
such 2m = 3f . By Euler’s formula, we have f − m + n = (2/3)m − m + n = 2. Namely, −m + 3n = 6.
Alternatively, m = 3n − 6. However, if m is not maximal, this equality deteriorates to the required
inequality. ■
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For example, the above inequality implies that the complete graph over five vertices (i.e., K5) is not
planar. Indeed, it has m =

(
5
2

)
= 10 edges and n = 5 vertices, but if it were planar, the above inequality

would imply that 10 = m ≤ 3n − 6 = 9, which is of course false. (The reader can amuse himself or
herself by trying to prove that K3,3, the bipartite complete graph with three vertices on each side, is not
planar.)

Kuratowski’s celebrated theorem states that a graph is planar if and only if it does not contain either
K5 or K3,3 induced inside it (formally, it does not have K5 or K3,3 as a minor).

For a graph G, we define the crossing number of G, denoted as c(G), as the minimal number of edge
crossings in any drawing of G in the plane. For a planar graph c(G) is zero, and it is “larger” for “less
planar” graphs.

Claim 10.2.3. For a graph G, we have c(G) ≥ m − 3n + 6.

Proof: If m − 3n + 6 ≤ 0 ≤ c(G), then the claim holds trivially. Otherwise, the graph G is not planar
by Lemma 10.2.2. Draw G in such a way that c(G) is realized and assume, for the sake of contradiction,
that c(G) < m − 3n + 6. Let H be the graph resulting from G, by removing one of the edges from each
pair of edges of G that intersects in the drawing. We have m(H) ≥ m(G) − c(G). But H is planar
(since its drawing has no crossings), and by Lemma 10.2.2, we have m(H) ≤ 3n(H) − 6, or equivalently,
m(G) − c(G) ≤ 3n − 6. Namely, m − 3n + 6 ≤ c(G), which contradicts our assumption. ■

Lemma 10.2.4 (Crossing lemma). For a graph G, such that m ≥ 6n, we have c(G) = Ω(m3/n2).

Proof: We consider a specific drawing D of G in the plane that has c(G) crossings. Next, let U be a
random subset of V (G) selected by choosing each vertex to be in the sample with probability p > 0.

Let H = GU = (U, E ′) be the induced subgraph of G over U . Here, only edges of G with both their
endpoints in U “survive” in H; that is, E ′ =

{
uv

∣∣∣uv ∈ E(G) and u, v ∈ U
}
.

Thus, the probability of a vertex v to survive in H is p. The probability of an edge of G to survive in
H is p2, and the probability of a crossing (in this specific drawing D) to survive in the induced drawing
DH (of H) is p4. Let Xv and Xe denote the (random variables which are the) number of vertices and
edges surviving in H, respectively. Similarly, let Xc be the number of crossings surviving in DH . By
Claim 10.2.3, we have

Xc ≥ c(H) ≥ Xe − 3Xv + 6.

In particular, this holds in the expectation, and by linearity of expectation, we have that

E[Xc] ≥ E[Xe] − 3E[Xv] + 6.

Now, by linearity of expectation, we have that E[Xc] = c(G)p4, E[Xe] = mp2, and E[Xv] = np, where
m and n are the number of edges and vertices of G, respectively. This implies that

c(G)p4 ≥ mp2 − 3np + 6.

In particular, c(G) ≥ m/p2 − 3n/p3 + 6/p4 ≥ m/p2 − 3n/p3. In particular, setting p = 6n/m ≤ 1, we
have that

c(G) ≥ m

p2 − 3n

p3 = m3

62n2 − m3

2 · 62n2 = m3

72n2 . ■

Surprisingly, despite its simplicity, Lemma 10.2.4 is a very strong tool, as the following results testify.
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10.2.1. On the number of incidences
Let P be a set of n distinct points in the plane, and let L be a set of m distinct lines in the plane (note
that all the lines might pass through a common point, as we do not assume general position here). Let
I(P, L) denote the number of point/line pairs (p, ℓ), where p ∈ P, ℓ ∈ L, and p ∈ ℓ. The number I(P, L)
is the number of incidences between lines of L and points of P . Let I(n, m) = max|P |=n,|L|=m I(P, L).

The following “easy” result has a long history and required major effort to prove before the following
elegant proof was discovered③.

Lemma 10.2.5. The maximum number of incidences between n points and m lines is

I(n, m) = O
(
n2/3m2/3 + n

)
.

Proof: Let P and L be the set of n points and the set of m lines, respectively, realizing I(m, n). Let G
be a graph over the points of P (we assume that P contains an additional point at infinity). We connect
two points if they lie consecutively on a common line of L, and we also connect the first and last points
on each line with the point at infinity.

Clearly, m(G) = I +m and n(G) = n+1, where I = I(m, n). Now, we can interpret the arrangement
of lines A(L) as a drawing of G, where a crossing of two edges of G is just a vertex of A(L). We conclude
that c(G) ≤ m2, since m2 is a trivial bound on the number of vertices of A(L). On the other hand, by
Lemma 10.2.4, if I + m = m(G) ≥ 6n(G) = 6(n + 1), we have c(G) ≥ c1m(G)3/n(G)2, where c1 is some
constant. Thus,

c1
(I + m)3

(n + 1)2 = c1
m(G)3

n(G)2 ≤ c(G) ≤ m2.

Thus, we have I = O
(
m2/3n2/3 − m

)
= O

(
m2/3n2/3

)
.

The other possibility, that m(G) < 6n(G), implies that I +m ≤ 6(n+1). That is, I = O(n). Putting
the two inequalities together, we have that I = O

(
n2/3m2/3 + n

)
. ■

Lemma 10.2.6. I(n, n) = Ω
(
n4/3

)
.

Proof: For a positive integer k, let JkK = {1, . . . , k}. For the sake of simplicity of exposition, assume
that N = n1/3/2 is an integer.

Consider the integer point set P = JNK × J8N2K and the set of lines

L =
{
y = ax + b

∣∣∣ a ∈ J2NK and b ∈ J4N2K
}

.

Clearly, |P | = n and |L| = n.
Now, for any x ∈ JNK, a ∈ J2NK, and b ∈ J4N2K, we have that

y = ax + b ≤ 2N · N + 4N2 ≤ 8N2.

Namely, any line in L is incident to a point along each vertical line of the grid of P . As such, every line
of L is incident to N points of P . Namely, the total number of incidences between the points of P and
L is |L| N = n · n1/3/2 = n4/3/2, which implies the claim. ■

③Or invented – I have no dog in this fight.
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10.2.2. On the number of k-sets
Let P be a set of n points in the plane in general position (i.e., no three points are collinear). A pair of
points p, q ∈ P form a k-set if there are exactly k points in the (closed) halfplane below the line passing
through p and q. Consider the graph G = (P, E) that has an edge for every k-set. We will be interested
in bounding the size of E as a function of n. Observe that via duality we have that the number of k-sets
is exactly the complexity of the k-level in the dual arrangement A = A(P ⋆); that is, P ⋆ is a set of lines,
and every k-set of P corresponds to a vertex on the k-level of A.

Lemma 10.2.7 (Antipodality). Let qp and sp be two k-set edges of G, with
q and s to the left of p. Then there exists a point t ∈ P to the right of p such
that pt is a k-set, and line(p, t) lies between line(q, p) and line(s, p). p

q

s t

Proof: Let f(α) be the number of points below or on the line passing through p and having slope α,
where α is a real number. Rotating this line counterclockwise around p corresponds to increasing α.
In the following, let f+(α) (resp., f−(α)) denote the value of f(·) just to the right (resp., left) of α;
formally, f−(α) = limx→α,x<α f(x) and f+(α) = limx→α,x>α f(x).

Any point swept over by this line which is to the right of p increases f , and any point swept over to
the left of p decreases f by 1.

Let αq and αs be the slope of the lines containing qp and sp, respectively. Assume, for the sake of
simplicity of exposition, that αq < αs. Clearly, f(αq) = f(αs) = k and f+(αq) = k − 1. Let y be the
smallest value such that y > αq and f(y) = k. Such a y exists since αq < αs, f+(αq) = k − 1, f(αs) = k,
and there are no three points that are collinear.

We have that f−(y) = k − 1, which implies that the line passing through p with slope f(y) has a
point t ∈ P on it and t is to the right of p. Clearly, if we continue sweeping, the line would sweep over
sp, which implies the claim. ■

Lemma 10.2.7 also holds by symmetry in the other direction: Between any two edges to the right of
p, there is an antipodal edge on the other side.

Lemma 10.2.8. Let p be a point of P , and let q be a point to its left, such that qp ∈ E(G) and it has
the largest slope among all such edges. Furthermore, assume that there are k − 1 points of P to the right
of p. Then, there exists a point s ∈ P , such that ps ∈ E(G) and ps has larger slope than qp.

Proof: Let α be the slope of qp, and observe that f(α) = k and f+(α) = k − 1 and f(∞) ≥ k. Namely,
there exists y > α such that f(y) = k. We conclude that there is a k-set adjacent to p on the right,
with slope larger than α. ■

So, imagine that we are at an edge e = qp ∈ E(G), where q is to the left of p. We rotate a line
around p (counterclockwise) till we encounter an edge e′ = ps ∈ E(G), where s is a point to the right of
p. We can now walk from e to e′ and continue walking in this way, forming a chain of edges in G. Note
that by Lemma 10.2.7, no two such chains can be “merged” into using the same edge. Furthermore,
by Lemma 10.2.8, such a chain can end only in the last k − 1 points of P (in their ordering along the
x-axis). Namely, we decomposed the edges of G into k − 1 edge disjoint convex chains (the chains are
convex since we rotate counterclockwise as we walk along a chain). See Figure 10.1 for an example.

Lemma 10.2.9. The edges of G can be decomposed into k − 1 convex chains C1, . . . , Ck−1.
Similarly, the edges of G can be decomposed into m = n − k + 1 concave chains D1, . . . , Dm.
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Figure 10.1: An example of 5-sets and their decomposition into four convex chains.

Proof: The first part of the claim is proved above. As for the second claim,
rotate the plane by 180◦. Every k-set is now an (n − k + 2)-set, and by the
above argumentation, the edges of G can be decomposed into n − k + 1
convex chains, which are concave in the original orientation. (The figure
on the right shows these concave chains for k = 5 for the example used
above.) ■

Theorem 10.2.10. The number of k-sets defined by a set of n points in the plane is O
(
nk1/3

)
.

Proof: The graph G has n = |P | vertices, and let m = |E(G)| be the number of k-sets. By Lemma 10.2.9,
any crossing of two edges of G is an intersection point of one convex chain of C1, . . . , Ck−1 with a
concave chain of D1, . . . , Dn−k+1. Since a convex chain and a concave chain can have at most two
intersections, we conclude that there are at most 2(k − 1)(n − k + 1) crossings in G. By the crossing
lemma (Lemma 10.2.4), there are at least Ω(m3/n2) crossings. Putting these two inequalities together,
we conclude m3/n2 = O(nk), which implies m = O

(
nk1/3

)
. ■

10.3. A general bound for the at most k-weight
We now extend the at most k-level technique to the general moments technique setting. We quickly
restate the abstract settings.

Let S be a set of objects. For a subset R ⊆ S, we define a collection of ‘regions’ called F(R). Let
T = T (S) = ⋃

R⊆S F(R) denote the set of all possible regions defined by subsets of S. We associate
two subsets D(σ), K(σ) ⊆ S with each region σ ∈ T . The defining set D(σ) of σ is a subset of S
defining the region σ. We assume that for every σ ∈ T , |D(σ)| ≤ d for a (small) constant d, which
is the combinatorial dimension. The conflicting set K(σ) of σ is the set of objects of S such
that including any object of K(σ) into R prevents σ from appearing in F(R). The weight of σ is
ω(σ) = |K(σ)|.

Let S, F(R), D(σ), and K(σ) be such that for any subset R ⊆ S, the set F(R) satisfies the following
axioms: (i) For any σ ∈ F(R), we have D(σ) ⊆ R and R∩K(σ) = ∅. (ii) If D(σ) ⊆ R and K(σ)∩R = ∅,
then σ ∈ F(R).

Let T≤k(S) be the set of regions of T with weight at most k. Furthermore, assume that the expected
number of regions of zero weight of a sample of size r is (or is at most) f0(r). Formally, for a sample of
size r from S, we denote f0(r) = E

[
|F(R)|

]
. We have the following theorem.

Theorem 10.3.1. Let S be a set of n objects as above, with combinatorial dimension d, and let k be a
parameter. Let R be a random sample created by picking each element of S with probability 1/k. Then,
for some constant c, we have

|T≤k(S)| ≤ c E
[
kdf0(|R|)

]
.
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Proof: We reproduce the proof of Theorem 10.1.1. Every region σ ∈ T≤k appears in F(R) with proba-
bility ≥ 1/kd(1 − 1/k)k ≥ e−2/kd. Observe that every sample of size |R| has equal probability of being
picked to be R. As such, we have that f0(r) = E

[
|F(R)|

∣∣∣ |R| = r
]
.

Now, setting Xσ = 1 if and only if σ ∈ F(R), we have that

E
[
f0(|R|)

]
= E

[
E
[
|F(R)|

∣∣∣ |R| = k
]]

= E
[
|F(R)|

]
≥ E

[ ∑
σ∈T≤k

Xσ

]
=

∑
σ∈T≤k

P
[
σ ∈ F(R)

]
≥ |T≤k|

kde2 . ■

Lemma 10.3.2. Let f0(·) be a monotone increasing function which is well behaved; namely, there exists
a constant c, such that f0(xr) ≤ cf0(r), for any r and 1 ≤ x ≤ 2. Let Y be the number of heads in n
coin flips where the probability for head is 1/k. Then E[f0(Y )] = O(f0(n/k)).

Proof: The claim④ follows easily from Chernoff’s inequality. Indeed, we have that

E[Y ] = n/k and P[Y ≥ t(n/k)] ≤ 2−t(n/k),

for t > 3, by the simplified form of the Chernoff inequality; see Lemma 10.6.1. Furthermore, by
assumption we have that

f
(
(t + 1)n/k

)
≤ cf

(
t+1

2 (n/k)
)

≤ c⌈lg (t+1)⌉f0(n/k).

Putting these two things together, we have that

E
[
f0(Y )

]
≤
∑

i

f0(i)P[Y = i] ≤ f
(

10n

k

)
+

k−1∑
t=10

f
(

(t + 1)n

k

)
P[Y ≥ t(n/k)]

≤ O
(
f0(n/k)

)
+

k∑
t=10

c⌈lg (t+1)⌉f0(n/k)2−t(n/k) = O
(
f0(n/k)

)
. ■

The following is an immediate consequence of Theorem 10.3.1 and Lemma 10.3.2.

Theorem 10.3.3. Let S be a set of n objects with combinatorial dimension d, and let k be a parameter.
Assume that the number of regions formed by a set of m objects is bounded by a function f0(m) and,
furthermore, f0(m) is well behaved in the sense of Lemma 10.3.2. Then, |T≤k(S)| = O

(
kdf0(n/k)

)
.

In particular, let f≤k(n) = max|S|=n |T≤k(S)| be the maximum number of regions of weight at most k

that can be defined by any set of n objects. We have that f≤k(n) = O
(
kdf0(n/k)

)
.

Note that if the function f0(·) grows polynomially, then Theorem 10.3.3 applies. It fails if f0(·) grows
exponentially fast.

10.3.1. Example – k-level in higher dimensions
We need the following fact, which we state without proof.

Theorem 10.3.4 (The upper bound theorem). The complexity of the convex hull of n points in d
dimensions is bounded by O

(
n⌊d/2⌋

)
.

④Note that this lemma is not implied by Jensen’s inequality (see Lemma 10.6.2p9) since if f0(·) is convex, then
E[f0(Y )] ≥ f0(E[Y ]) = f0(n/k), which goes in the wrong direction.
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Example 10.3.5 (At most k-sets). Let P be a set of n points in Rd. A region here is a halfspace with d
points on its boundary. The set of regions defined by P is just the faces of the convex hull of P . The
complexity of the convex hull of n points in d dimensions is f0(n) = O

(
n⌊d/2⌋

)
, by Theorem 10.3.4. Two

halfspaces h, h′ would be considered to be combinatorially different if P ∩h ̸= P ∩h′. As such, the number
of combinatorially different halfspaces containing at most k points of P is at most O

(
kdf0(n/k)

)
=

O
(
k⌈d/2⌉n⌊d/2⌋

)
.

10.4. Bibliographical notes
The reader should not mistake the simplicity of the proofs in this chapter with easiness. Almost all the
results presented have a long and painful history with earlier proofs being considerably more complicated.
In some sense, these results are the limit of mathematical evolution: They are simple, breathtakingly
elegant (in some cases), and on their own (without exposure to previous work on the topic), it seems
inconceivable that one could come up with them.

At most k-level. The technique for bounding the complexity of the at most k-level (or at most depth
k) is generally attributed to Clarkson and Shor [CS89] and more precisely it is from [Cla88]. Previous
work on just the two-dimensional variant include [GP84, Wel86, AG86]. Our presentation in Section 10.1
and Section 10.3 follows (more or less) Sharir [Sha03]. The connection of this technique to the crossing
lemma is from there.

For a proof of the upper bound theorem (Theorem 10.3.4), see Matoušek [Mat02].

The crossing lemma. The crossing lemma is by Ajtai et al. [ACNS82] and Leighton [Lei84]. The
current greatly simplified “proof from the book” is attributed to Sharir. The insight that this lemma
has something to do with incidences and similar problems is due to Székely [Szé97]. Elekes [G E97] used
the crossing lemma to prove surprising lower bounds on sum and product problems (the proofs of these
bounds are surprisingly elegant).

The complexity of k-level and number of k-sets. This is considered to be one of the hardest
problems in discrete geometry, and there is still a big gap between the best lower bound [Tót01] and
best upper bound currently known [Dey98]. Our presentation in Section 10.2.2 follows suggestions by
Micha Sharir and is based on the result of Dey [Dey98] (which was in turn inspired by the work of
Agarwal et al. [AACS98]). This problem has a long history, and the reader is referred to Dey [Dey98]
for its history.

Incidences. This problem again has a long and painful history. The reader is referred to [PS04, Szé97]
for details. The elegant lower bound proof of Lemma 10.2.6 is by Elekes [Ele02].

We only skimmed the surface of some problems in discrete geometry and results known in this field
related to incidences and k-sets. Good starting points for learning more are the books by Brass et al.
[BMP05] and Matoušek [Mat02].

10.5. Exercises

Exercise 10.1 (Incidence lower bound). Prove that I(m, n) = Ω
(
m2/3n2/3

)
for any n and m.
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Exercise 10.2 (The number of heavy disks). Let P be a set of n points in the plane. A disk d is canonical
if its boundary passes through three points of P . Provide a bound on the number of canonical disks
that contain at most k points of P in their interior.

Exercise 10.3 (The number of heavy vertical segments). Let L be a set of n lines in the plane. A vertical
segment has weight k if it intersects k segments of L of its interior. Two such vertical segments are
distinct if the subsets of segments they intersect are different. Bound the number of distinct vertical
segments of weight at most k.

10.6. From previous lectures
Lemma 10.6.1. Let X1, . . . , Xn be n independent Bernoulli trials, where P[Xi = 1] = pi and P[Xi = 0] =
qi = 1 − pi, for i = 1, . . . , n. Let X = ∑n

i=1 Xi and µ = E[X] = ∑n
i=1 pi. For any δ ≥ 2e − 1, we have

P[X ≥ (1 + δ)µ] ≤ 2−µ(1+δ),

Lemma 10.6.2 (Jensen’s inequality). Let f(x) be a convex function. Then, for any random variable
X, we have E[f(X)] ≥ f(E[X]).
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