
Chapter 22

Brunn-Minkowski Inequality
By Sariel Har-Peled, April 4, 2023 

①
 

Dixon was alive again. Consciousness was upon him before he could get out of the way; not for him the slow,
gracious wandering from the halls of sleep, but a summary, forcible ejection. He lay sprawled, too wicked to move,
spewed up like a broken spider-crab on the tarry shingle of the morning. The light did him harm, but not as much
as looking at things did; he resolved, having done it once, never to move his eyeballs again. A dusty thudding in his
head made the scene before him beat like a pulse. His mouth had been used as a latrine by some small creature of
the night, and then as its mausoleum. During the night, too, he’d somehow been on a cross-country run and then
been expertly beaten up by secret police. He felt bad.

Lucky Jim, Kingsley Amis

In this chapter, we will prove that given a set P of n points in Rd, one can reduce the dimension
of the points to k = O(ε−2 log n) such that distances are 1 ± ε preserved. Surprisingly, this reduction
is done by randomly picking a subspace of k dimensions and projecting the points into this random
subspace. One way of thinking about this result is that we are “compressing” the input of size nd (i.e.,
n points with d coordinates) into size O(nε−2 log n), while (approximately) preserving distances.

22.1. The Brunn-Minkowski inequality

For a set A ⊆ Rd and a point p ∈ Rd, let A + p denote the translation of A by p. Formally, A + p =
{q + p | q ∈ A}.

Definition 22.1.1. For two sets A and B in Rn, let
A + B denote the Minkowski sum of A and B.
Formally,

A + B = {a + b | a ∈ A, b ∈ B} =
⋃

p∈A

(p + B).
+ =

Remark 22.1.2. It is easy to verify that if A′ and B′ are translated copies of A and B (that is, A′ = A+p
and B′ = B + q, for some points p, q ∈ Rd), respectively, then A′ + B′ is a translated copy of A + B. In
particular, since volume is preserved under translation, we have that Vol(A′ + B′) = Vol((A + B) + p +
q) = Vol(A + B).

Our purpose here is to prove the following theorem.

Theorem 22.1.3 (Brunn-Minkowski inequality). Let A and B be two non-empty compact sets in
Rn. Then

Vol(A + B)1/n ≥ Vol(A)1/n + Vol(B)1/n.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit  http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.
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Definition 22.1.4. A set A ⊆ Rn is a brick set if it is the union of finitely many (close) axis parallel
boxes with disjoint interiors.

It is intuitively clear, by limit arguments, that proving  Theorem 22.1.3 for brick sets will imply it
for the general case.

Lemma 22.1.5 (Brunn-Minkowski inequality for brick sets). Let A and B be two non-empty
brick sets in Rn. Then

Vol(A + B)1/n ≥ Vol(A)1/n + Vol(B)1/n.

Proof: We prove by induction on the number k of bricks in A and B. If k = 2, then A and B are just
bricks, with dimensions α1, . . . , αn and β1, . . . , βn, respectively. In this case, the dimensions of A + B

are α1 + β1, . . . , αn + βn, as can be easily verified. Thus, we need to prove that(
n∏

i=1
αi

)1/n

+
(

n∏
i=1

βi

)1/n

≤
(

n∏
i=1

(αi + βi)
)1/n

.

Dividing the left side by the right side, we have(
n∏

i=1

αi

αi + βi

)1/n

+
(

n∏
i=1

βi

αi + βi

)1/n

≤ 1
n

n∑
i=1

αi

αi + βi

+ 1
n

n∑
i=1

βi

αi + βi

= 1,

by the generalized arithmetic-geometric mean inequality 

②
 , and the claim follows for this case.

Now let k > 2 and suppose that the Brunn-Minkowski inequality holds for any pair of brick sets
with fewer than k bricks (together). Let A and B be a pair of sets having k bricks together. Assume
that A has at least two (disjoint) bricks. However, this implies that there is an axis parallel hyperplane
h that separates the interior of one brick of A from the interior of another brick of A (the hyperplane
h might intersect other bricks of A). Assume that h is the hyperplane x1 = 0 (this can be achieved by
translation and renaming of coordinates).

Let A+ = A ∩ h+ and A− = A ∩ h−, where h+ and h− are the two open halfspaces induced by h.
Let A+ and A− be the closure of A+ and A−, respectively. Clearly, A+ and A− are both brick sets with
(at least) one fewer brick than A.

Next, observe that the claim is translation invariant (see  Remark 22.1.2 ), and as such, let us translate
B so that its volume is split by h in the same ratio A’s volume is being split. Denote the two parts of B
by B+ and B−, respectively. Let ρ = Vol(A+)/ Vol(A) = Vol(B+)/ Vol(B) (if Vol(A) = 0 or Vol(B) = 0,
the claim trivially holds).

Observe that X+ = A+ + B+ ⊆ A + B, and X+ lies on one side of h (since h ≡ (x1 = 0)), and
similarly X− = A− + B− ⊆ A + B and X− lies on the other side of h. Thus, by induction and since

②Here is a proof of the generalized form: Let x1, . . . , xn be n positive real numbers. Consider the quantity R =
x1x2 · · ·xn. If we fix the sum of the n numbers to be equal to γ, then R is maximized when all the xis are equal, as can
be easily verified. Thus, n

√
x1x2 · · ·xn ≤ n

√
(γ/n)n = γ/n = (x1 + · · · + xn)/n.
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A+ + B+ and A− + B− are interior disjoint, we have
Vol(A + B) ≥ Vol

(
A+ + B+

)
+ Vol

(
A− + B−

)
≥
(

Vol
(
A+

)1/n
+ Vol

(
B+

)1/n
)n

+
(

Vol
(
A−

)1/n
+ Vol

(
B−

)1/n
)n

=
[
ρ1/n Vol(A)1/n + ρ1/n Vol(B)1/n

]n
+
[
(1 − ρ)1/n Vol(A)1/n + (1 − ρ)1/n Vol(B)1/n

]n
= (ρ + (1 − ρ))

[
Vol(A)1/n + Vol(B)1/n

]n
=
[
Vol(A)1/n + Vol(B)1/n

]n
,

establishing the claim.
Proof of  Theorem 22.1.3  : Let A1 ⊆ A2 ⊆ · · · ⊆ Ai ⊆ · · · be a sequence of finite brick sets, such
that ⋃i Ai = A, and similarly let B1 ⊆ B2 ⊆ · · · ⊆ Bi ⊆ · · · be a sequence of finite brick sets,
such that ⋃i Bi = B. By the definition of volume  

③
 , we have that limi→∞ Vol(Ai) = Vol(A) and

limi→∞ Vol(Bi) = Vol(B).
We claim that limi→∞ Vol(Ai + Bi) = Vol(A + B). Indeed, consider any point z ∈ A + B, and let

u ∈ A and v ∈ B be such that u + v = z. By definition, there exists an i, such that for all j > i we have
u ∈ Aj, v ∈ Bj, and as such z ∈ Aj +Bj. Thus, A+B ⊆ ⋃

j(Aj +Bj) and ⋃j(Aj +Bj) ⊆ ⋃
j(A+B) ⊆

A + B; namely, ⋃j(Aj + Bj) = A + B.
Furthermore, for any i > 0, since Ai and Bi are brick sets, we have

Vol(Ai + Bi)1/n ≥ Vol(Ai)1/n + Vol(Bi)1/n,

by  Lemma 22.1.5 . Thus,
Vol(A + B)1/n = lim

i→∞
Vol(Ai + Bi)1/n ≥ lim

i→∞

(
Vol(Ai)1/n + Vol(Bi)1/n

)
= Vol(A)1/n + Vol(B)1/n.

Theorem 22.1.6 (Brunn-Minkowski theorem for slice volumes). Let P be a convex set in Rn+1,
and let A = P ∩ (x1 = a), B = P ∩ (x1 = b), and C = P ∩ (x1 = c) be three slices of P, for a < b < c.
We have Vol(B) ≥ min(Vol(A), Vol(C)). In particular, consider the function

v(t) =
(
Vol(P ∩ [x1 = t])

)1/n
,

and let I = [tmin, tmax] be the interval where the hyperplane x1 = t intersects P. Then, v(t) is concave
on I.

Proof: If a or c is outside I, then Vol(A) = 0 or Vol(C) = 0, respectively, and then the claim trivially
holds.

Otherwise, let β = (b − a)/(c − a). We have that b = (1 − β) · a + β · c, and by the convexity of P ,
we have (1 − β)A + βC ⊆ B. Thus, by  Theorem 22.1.3 we have

v(b) = Vol(B)1/n ≥ Vol((1 − β)A + βC)1/n ≥ Vol((1 − β)A)1/n + Vol(βC)1/n

= ((1 − β)n Vol(A))1/n + (βn Vol(C))1/n

= (1 − β) Vol(A)1/n + β Vol(C)1/n

= (1 − β)v(a) + βv(c).
③This is the standard definition of volume. The reader unfamiliar with this fanfare can either consult a standard text

on calculus (or measure theory) or take it for granted as this is intuitively clear.
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Namely, v(·) is concave on I, and in particular v(b) ≥ min(v(a), v(c)), which in turn implies that
Vol(B) = v(b)n ≥

[
min

(
v(a), v(c)

)]n
= min

(
Vol(A), Vol(C)

)
, as claimed.

One possible way to think about the above inequality is as a normalization process. We replace the
n-dimensional slice set S(t) = P ∩ [x1 = t] by an n-dimensional ball b(t) of the same volume, that lies
on the hyperplane x1 = t, and its center is at (t, 0, . . . , 0) – the radius of this ball, up to a universal
constant cn, is our friend 

④
 v(t). That is radius

(
b(t)

)
= cnv(t). The union of these balls form a new

body P ′ = ∪tb(t). The new body has the same volume as P , it is symmetric around the axis x1, and
it has the same volume for all t. The “profile” v(t) of this body is concave, and one thus P ′ body is
convex, as we prove next.

Claim 22.1.7. The body P ′, described above, is convex.

Proof: Consider two points q1 = (t1, p1) and q2 = (t2, p2) that are both in P ′. That is, we have
∥p1∥ ≤ cnv(t1) and ∥p2∥ ≤ cnv(t2). As such, for any β ∈ [0, 1], consider the point

s(β) = (1 − β)(t1, p1) + β(t2, p2).

Its distance from the x1 axis is
ℓ(β) = ∥(1 − β)p1 + βp2∥ .

A straightforward but slightly tedious calculation shows that this function is convex. As such, we have
that

ℓ(β) ≤ (1 − β) ∥p1∥ + β ∥p2∥ ≤ (1 − β)cnv(t1) + βcnv(t2) ≤ cnv
(
(1 − β)t1 + βt2),

by the concavity of v(·). That is, s(β) ∈ P ′, which implies that the segment q1q2 is contained in P ′, and
P ′ is thus convex.

Note, that the 1/n power in the Brunn-Minkowski inequality is required – the volume of the slices
themselves is not concave, and becomes concave only under the duress of the 1/n power. this is illustrated
in  Figure 22.1.1 .

1

2

3

−1 −0.2 0.2 1
x

(vol(C ∩ (x = α)))1/9

vol(C ∩ (x = α))

Figure 22.1.1: The slice volume, and its 1/9 power, for the unit radius ball (i.e., C) in 10 dimensions
(i.e., n = 9). This is an example of the concavity implied by the Brunn-Minkowski inequality, which in
turn implies that the slice volume function is unimodular.

④With friends like that, who needs enemies?
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Corollary 22.1.8. For A and B compact sets in Rn, Vol((A + B)/2) ≥
√

Vol(A) Vol(B).

Proof: We have that

Vol((A + B)/2)1/n = Vol(A/2 + B/2)1/n ≥ Vol(A/2)1/n + Vol(B/2)1/n

= (Vol(A)1/n + Vol(B)1/n)/2 ≥
√

Vol(A)1/n Vol(B)1/n

by  Theorem 22.1.3 and since (a + b)/2 ≥
√

ab for any a, b ≥ 0. The claim now follows by raising this
inequality to the power n.

22.1.1. The isoperimetric inequality
The following is not used anywhere else and is provided because of its mathematical elegance. The
skip-able reader can thus employ their special gift and move on to  Section 22.2 .

The isoperimetric inequality states that among all convex bodies of a fixed surface area, the ball
has the largest volume (in particular, the unit circle is the largest area planar region with perimeter 2π).
This problem can be traced back to antiquity; in particular Zenodorus (200–140 BC) wrote a monograph
(which was lost) that seemed to have proved the claim in the plane for some special cases. The first
formal proof for the planar case was done by Steiner in 1841. Interestingly, the more general claim is
an easy consequence of the Brunn-Minkowski inequality.

Let K be a convex body in Rn and let b be the n-dimensional ball of radius 1 centered at the origin.
Let S(X) denote the surface area of a compact set X ⊆ Rn. The isoperimetric inequality states
that (

Vol(K)
Vol(b)

)1/n

≤
(

S(K)
S(b)

)1/(n−1)

. (22.1.1)

Namely, the left side is the radius of a ball having the same volume as K,
and the right side is the radius of a sphere having the same surface area as K.
In particular, if we scale K so that its surface area is the same as b, then the
above inequality implies that Vol(K) ≤ Vol(b).

To prove Eq. ( 22.1.1 ), observe that Vol(b) = S(b)/n 

⑤
 . Also, observe that

K +ε b is the body K together with a small “atmosphere” around it of thickness
ε. In particular, the volume of this “atmosphere” is (roughly) ε S(K) (in fact,
Minkowski defined the surface area of a convex body to be the limit stated next).

Formally, we have

S(K) = lim
ε→0+

Vol(K + ε b) − Vol(K)
ε

≥ lim
ε→0+

(
Vol(K)1/n + Vol(ε b)1/n

)n
− Vol(K)

ε
,

by the Brunn-Minkowski inequality. Now Vol(ε b)1/n = ε Vol(b)1/n, and as such

S(K) ≥ lim
ε→0+

Vol(K) +
(

n
1

)
ε Vol(K)

n−1
n Vol(b)

1
n +

(
n
2

)
ε2 ⟨· · ·⟩ + · · · + εn Vol(b) − Vol(K)

ε

= lim
ε→0+

nε Vol(K)
n−1

n Vol(b)
1
n

ε
= n Vol(K)

n−1
n Vol(b)

1
n .

⑤Indeed, Vol(b) =
∫ 1

r=0 S(b)rn−1dr = S(b)/n.
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Dividing both sides by S(b) = n Vol(b), we have

S(K)
S(b) ≥ Vol(K)(n−1)/n

Vol(b)(n−1)/n
⇒

(
S(K)
S(b)

)1/(n−1)

≥
(

Vol(K)
Vol(b)

)1/n

,

establishing the isoperimetric inequality.

22.2. Measure concentration on the sphere

Let S(n−1) be the unit sphere in Rn. We assume there is a uniform probability measure defined over
S(n−1), such that its total measure is 1. Surprisingly, most of the mass of this measure is near the
equator. Indeed, consider an arbitrary equator π on S(n−1) (that it, it is the intersection of the sphere
with a hyperplane passing through the center of the ball inducing the sphere). Next, consider all the
points that are within distance ≈ ℓ(n) = c/n1/3 from π. The question we are interested in is what
fraction of the sphere is covered by this strip T (depicted in  Figure 22.2.1 ).

Notice that as the dimension increases, the width ℓ(n) of this strip decreases. But surprisingly,
despite its width becoming smaller, as the dimension increases, this strip contains a larger and larger
fraction of the sphere. In particular, the total fraction of the sphere not covered by this (shrinking!)
strip converges to zero.

Furthermore, counterintuitively, this is true for any equator. We are going to show that even a
stronger result holds: The mass of the sphere is concentrated close to the boundary of any set A ⊆ S(n−1)

such that P[A] = 1/2.
Before proving this somewhat surprising theorem, we will first try to get an intuition about the

behavior of the hypersphere in high dimensions.

π

T

Figure 22.2.1

22.2.1. The strange and curious life of the hypersphere
Consider the ball of radius r in Rn (denoted by r bn), where bn is the unit radius ball centered at the
origin. Clearly, Vol(r bn) = rn Vol(bn). Now, even if r is very close to 1, the quantity rn might be very
close to zero if n is sufficiently large. Indeed, if r = 1 − δ, then rn = (1 − δ)n ≤ exp(−δn), which is very
small if δ ≫ 1/n. (Here, we used 1 − x ≤ ex, for x ≥ 0.) Namely, for the ball in high dimensions, its
mass is concentrated in a very thin shell close to its surface.
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The volume of a ball and the surface area of a hypersphere. Let Vol(rbn) denote the volume
of the ball of radius r in Rn, and let S(rbn) denote the surface area of its bounding sphere (i.e., the
surface area of rS(n−1)). It is known that

Vol(rbn) = πn/2rn

Γ(n/2 + 1) and S(rbn) = 2πn/2rn−1

Γ(n/2) ,

where the gamma function, Γ(·), is an extension of the factorial function. Specifically, if n is even, then
Γ(n/2+1) = (n/2)!, and for n odd Γ(n/2+1) =

√
π(n!!)/2(n+1)/2, where n!! = 1 ·3 ·5 · · · n is the double

factorial. The most surprising implication of these two formulas is that, as n increases, the volume of
the unit ball first increases (till dimension 5) and then starts decreasing to zero.

Similarly, the surface area of the unit sphere S(n−1) in Rn tends to zero as the dimension increases.
To see the above explicitly, compute the volume of the unit ball using an integral of its slice volume,
when it is being sliced by a hyperplane perpendicular to the nth coordinate.

We have (see figure on the right) that

Vol(bn) =
∫ 1

xn=−1
Vol

(√
1 − x2

n bn−1
)

dxn = Vol
(
bn−1

) ∫ 1

xn=−1

(
1 − x2

n

)(n−1)/2
dxn.

1
xn 1

√ 1 − x2
n

Now, the integral on the right side tends to zero as n increases. In fact, for n very large, the term
(1 − x2

n)(n−1)/2 is very close to 0 everywhere except for a small interval around 0. This implies that
the main contribution of the volume of the ball happens when we consider slices of the ball created by
hyperplanes of the form xn = δ, where δ is small (roughly, for |δ| ≤ 1/

√
n).

If one has to visualize what such a ball in high dimensions looks like, it might be best to think about
it as a star-like creature: It has very little mass close to the tips of any set of orthogonal directions we
pick, and most of its mass (somehow) lies on hyperplanes passing close to its center. 

⑥
 

22.2.1.1. The stranger and curiouser life of the simplex in high dimensions

A regular n-simplex ∆n is a set of n + 1 points in Euclidean space such that every pair of points is
in distance exactly 1 from each other.

Corollary 22.2.1. The width of the regular n-simplex ∆n is
√

2/(n + 1) if n is odd. The width is√
2(n+1)
n(n+2) if n is even. The inradius (i.e., radius of largest ball inside ∆n) is rn = 1/

√
2n(n + 1), and the

circumradius (i.e., radius of minimum ball enclosing ∆n is Rn =
√

n
2(n+1) .

⑥In short, it looks like a Boojum [  Car76 ].
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22.2.2. Measure concentration on the sphere

Theorem 22.2.2 (Measure concentration on the sphere). Let A ⊆ S(n−1) be a measurable set
with P[A] ≥ 1/2, and let At denote the set of points of S(n−1) within a distance at most t from A, where
t ≤ 2. Then 1 − P[At] ≤ 2 exp(−nt2/2).

Proof: We will prove a slightly weaker bound, with −nt2/4 in the exponent. Let Â = T (A), where

T (X) =
{
αx

∣∣∣x ∈ X, α ∈ [0, 1]
}

⊆ bn

and bn is the unit ball in Rn. We have that P[A] = µ
(
Â
)
, where µ

(
Â
)

= Vol
(
Â
)
/ Vol(bn) 

⑦
 .

Let B = S(n−1) \ At and B̂ = T (B). We have that ∥a − b∥ ≥ t for all a ∈ A and b ∈ B. By
 Lemma 22.2.3 below, the set

(
Â + B̂

)
/2 is contained in the ball rbn centered at the origin, where

r = 1 − t2/8. Observe that µ(rbn) = Vol(rbn)/Vol(bn) = rn = (1 − t2/8)n. As such, applying the
Brunn-Minkowski inequality in the form of  Corollary 22.1.8 , we have(

1 − t2

8

)n

= µ(rbn) ≥ µ

(
Â + B̂

2

)
≥
√

µ
(
Â
)
µ
(
B̂
)

=
√
P[A]P[B] ≥

√
P[B]/2.

Thus, P[B] ≤ 2(1 − t2/8)2n ≤ 2 exp(−2nt2/8), since 1 − x ≤ exp(−x), for x ≥ 0.

Lemma 22.2.3. For any â ∈ Â and b̂ ∈ B̂, we have
∥∥∥∥∥ â + b̂

2

∥∥∥∥∥ ≤ 1 − t2

8 .

a

b

t/2
≤{

u

o

h

Proof: Let â = αa and b̂ = βb, where a ∈ A and b ∈ B. We have

∥u∥ =
∥∥∥∥∥a + b

2

∥∥∥∥∥ =

√√√√12 −
∥∥∥∥∥a − b

2

∥∥∥∥∥
2

≤
√

1 − t2

4 ≤ 1 − t2

8 , (22.2.1)

since ∥a − b∥ ≥ t. As for â and b̂, assume that α ≤ β, and observe that the quantity
∥∥∥ â + b̂

∥∥∥ is
maximized when β = 1. As such, by the triangle inequality, we have

⑦This is one of these “trivial” claims that might give the reader a pause, so here is a formal proof. Pick a random
point p uniformly inside the ball bn. Let ψ be the probability that p ∈ Â. Clearly, Vol

(
Â
)

= ψVol(bn). So, consider the

normalized point q = p/ ∥p∥. Clearly, p ∈ Â if and only if q ∈ A, by the definition of Â. Thus, µ
(
Â
)

= Vol
(
Â
)
/Vol(bn) =

ψ = P
[
p ∈ Â

]
= P[q ∈ A] = P[A], since q has a uniform distribution on the hypersphere by assumption.
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∥∥∥∥∥ â + b̂

2

∥∥∥∥∥ =
∥∥∥∥∥αa + b

2

∥∥∥∥∥ ≤
∥∥∥∥∥α(a + b)

2

∥∥∥∥∥+
∥∥∥∥∥(1 − α) b

2

∥∥∥∥∥ ≤ α

(
1 − t2

8

)
+ (1 − α)1

2 = τ,

by Eq. (  22.2.1 ) and since ∥b∥ = 1. Now, τ is a convex combination of the two numbers 1/2 and 1 − t2/8.
In particular, we conclude that τ ≤ max(1/2, 1 − t2/8) ≤ 1 − t2/8, since t ≤ 2.

22.3. Concentration of Lipschitz functions

Consider a function f : S(n−1) → R, and imagine that we have a probability density function defined
over the sphere. Let P[f ≤ t] = P

[{
x ∈ Sn−1

∣∣∣ f(x) ≤ t
}]

. We define the median of f , denoted by
med(f), to be sup t, such that P[f ≤ t] ≤ 1/2.

We define P[f < med(f)] = supx<med(f) P[f ≤ x]. The following is obvious but requires a formal
proof.

Lemma 22.3.1. We have P[f < med(f)] ≤ 1/2 and P[f > med(f)] ≤ 1/2.

Proof: Since ⋃k≥1(−∞, med(f) − 1/k] = (−∞, med(f)), we have

P[f < med(f)] = sup
k≥1

P
[
f ≤ med(f) − 1

k

]
≤ sup

k≥1

1
2 = 1

2 .

The second claim follows by a symmetric argument.

Definition 22.3.2 (c-Lipschitz). A function f : A → B is c-Lipschitz if, for any x, y ∈ A, we have that
∥f(x) − f(y)∥ ≤ c ∥x − y∥.

Theorem 22.3.3 (Lévy’s lemma). Let f : S(n−1) → R be 1-Lipschitz. Then for all t ∈ [0, 1], we have

P[f > med(f) + t] ≤ 2 exp
(
−t2n/2

)
and P[f < med(f) − t] ≤ 2 exp

(
−t2n/2

)
.

Proof: We prove only the first inequality; the second follows by symmetry. Let

A =
{
x ∈ S(n−1)

∣∣∣ f(x) ≤ med(f)
}

.

By  Lemma 22.3.1  , we have P[A] ≥ 1/2. Consider a point x ∈ At, where At is as defined in  Theorem 22.2.2  .
Let nn(x) be the nearest point in A to x. We have by definition that ∥xnn(x)∥ ≤ t. As such, since f is
1-Lipschitz and nn(x) ∈ A, we have that

f(x) ≤ f(nn(x)) + ∥nn(x)x∥ ≤ med(f) + t.

Thus, by  Theorem 22.2.2 , we get P[f > med(f) + t] ≤ 1 − P[At] ≤ 2 exp(−t2n/2).

9



22.4. The Johnson-Lindenstrauss lemma

Lemma 22.4.1. For a unit vector x ∈ S(n−1), let

f(x) =
√

x2
1 + x2

2 + · · · + x2
k

be the length of the projection of x into the subspace formed by the first k coordinates. Let x be a vector
randomly chosen with uniform distribution from S(n−1). Then f(x) is sharply concentrated. Namely,
there exists m = m(n, k) such that

P[f(x) ≥ m + t] ≤ 2 exp(−t2n/2) and P[f(x) ≤ m − t] ≤ 2 exp(−t2n/2),

for any t ∈ [0, 1]. Furthermore, for k ≥ 10 ln n, we have m ≥ 1
2

√
k/n.

Proof: The orthogonal projection p : Rn → Rk given by p(x1, . . . , xn) = (x1, . . . , xk) is 1-Lipschitz (since
projections can only shrink distances; see Exercise  22.7.4 ). As such, f(x) = ∥p(x)∥ is 1-Lipschitz, since
for any x, y we have

|f(x) − f(y)| =
∣∣∣∥p(x)∥ − ∥p(y)∥

∣∣∣ ≤ ∥p(x) − p(y)∥ ≤ ∥x − y∥ ,

by the triangle inequality and since p is 1-Lipschitz.  Theorem 22.3.3 (i.e., Lévy’s lemma) gives the
required tail estimate with m = med(f).

Thus, we only need to prove the lower bound on m. For a random x = (x1, . . . , xn) ∈ S(n−1), we
have E

[
∥x∥2

]
= 1. By linearity of expectations and by symmetry, we have 1 = E

[
∥x∥2

]
= E[∑n

i=1 x2
i ] =∑n

i=1 E[x2
i ] = nE

[
x2

j

]
, for any 1 ≤ j ≤ n. Thus, E

[
x2

j

]
= 1/n, for j = 1, . . . , n. Thus,

E
[
(f(x))2

]
= E

[
k∑

i=1
x2

i

]
=

k∑
i=1

E[xi] = k

n
,

by linearity of expectation.
We next use that f is concentrated to show that f 2 is also relatively concentrated. For any t ≥ 0,

we have
k

n
= E

[
f 2
]

≤ P
[
f ≤ m + t

]
(m + t)2 + P

[
f ≥ m + t

]
· 1 ≤ 1 · (m + t)2 + 2 exp(−t2n/2),

since f(x) ≤ 1, for any x ∈ S(n−1). Let t =
√

k/5n. Since k ≥ 10 ln n, we have that 2 exp(−t2n/2) ≤ 2/n.
We get that

k

n
≤
(

m +
√

k/5n
)2

+ 2/n,

implying that
√

(k − 2)/n ≤ m +
√

k/5n, which in turn implies that m ≥
√

(k − 2)/n −
√

k/5n ≥
1
2

√
k/n.

Next, we would like to argue that given a fixed vector, projecting it down into a random k-dimensional
subspace results in a random vector such that its length is highly concentrated. This would imply that
we can do dimension reduction and still preserve distances between points that we care about.

To this end, we would like to flip  Lemma 22.4.1 around. Instead of randomly picking a point and
projecting it down to the first k-dimensional space, we would like x to be fixed and randomly pick the
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k-dimensional subspace we project into. However, we need to pick this random k-dimensional space
carefully. Indeed, if we rotate this random subspace, by a transformation T , so that it occupies the first
k dimensions, then the point T (x) needs to be uniformly distributed on the hypersphere if we want to
use  Lemma 22.4.1 .

As such, we would like to randomly pick a rotation of Rn. This maps the standard orthonormal
basis into a randomly rotated orthonormal space. Taking the subspace spanned by the first k vectors of
the rotated basis results in a k-dimensional random subspace. Such a rotation is an orthonormal matrix
with determinant 1. We can generate such a matrix, by randomly picking a vector e1 ∈ S(n−1). Next,
we set e1 as the first column of our rotation matrix and generate the other n − 1 columns, by generating
recursively n − 1 orthonormal vectors in the space orthogonal to e1.

Remark 22.4.2 (Generating a random point on the sphere). At this point, the reader might wonder how
we pick a point uniformly from the unit hypersphere. The idea is to pick a point from the multi-
dimensional normal distribution Nn(0, 1) and normalize it to have length 1. Since the multi-dimensional
normal distribution has the density function

(2π)−n/2 exp
(
−(x2

1 + x2
2 + · · · + x2

n)/2
)
,

which is symmetric (i.e., all the points at distance r from the origin have the same distribution), it
follows that this indeed generates a point randomly and uniformly on S(n−1).

Generating a vector with multi-dimensional normal distribution is no more than picking each co-
ordinate according to the normal distribution; see  Lemma 22.8.1 . Given a source of random numbers
according to the uniform distribution, this can be done using O(1) computations per coordinate, using
the Box-Muller transformation [ BM58 ]. Overall, each random vector can be generated in O(n) time.

Since projecting down the n-dimensional normal distribution to the lower-dimensional space yields
a normal distribution, it follows that generating a random projection is no more than randomly picking
n vectors according to the multi-dimensional normal distribution v1, . . . , vn. Then, we orthonormalize
them, using Graham-Schmidt, where v̂1 = v1/ ∥v1∥ and v̂i is the normalized vector of vi − wi, where wi

is the projection of vi to the space spanned by v1, . . . , vi−1.
Taking those vectors as columns of a matrix generates a matrix A, with determinant either 1 or

−1. We multiply one of the vectors by −1 if the determinant is −1. The resulting matrix is a random
rotation matrix.

We can now restate  Lemma 22.4.1 in the setting where the vector is fixed and the projection is into
a random subspace.

Lemma 22.4.3. Let x ∈ S(n−1) be an arbitrary unit vector. Now, consider a random k-dimensional
subspace F, and let f(x) be the length of the projection of x into F. Then, there exists m = m(n, k)
such that

P
[
f(x) ≥ m + t

]
≤ 2 exp

(
−t2n/2

)
and P

[
f(x) ≤ m − t

]
≤ 2 exp

(
−t2n/2

)
,

for any t ∈ [0, 1]. Furthermore, for k ≥ 10 ln n, we have m ≥ 1
2

√
k/n.

Proof: Let vi be the ith orthonormal vector having 1 at the ith coordinate and 0 everywhere else. Let M
be a random translation of space generated as described above. Clearly, for arbitrary fixed unit vector
x, the vector Mx is distributed uniformly on the sphere. Now, the ith column of the matrix M is the
random vector ei, and ei = MT vi. As such, we have

⟨Mx, vi⟩ = (Mx)T vi = xT MT vi = xT ei = ⟨x, ei⟩ .

11



In particular, treating Mx as a random vector and projecting it on the first k coordinates, we have that

f(x) =

√√√√ k∑
i=1

⟨Mx, vi⟩2 =

√√√√ k∑
i=1

⟨x, ei⟩2.

But e1, . . . , ek is just an orthonormal basis of a random k-dimensional subspace. As such, the expression
on the right is the length of the projection of x into a k-dimensional random subspace. As such, the
length of the projection of x into a random k-dimensional subspace has exactly the same distribution
as the length of the projection of a random vector into the first k coordinates. The claim now follows
by  Lemma 22.4.1 .

Definition 22.4.4. The mapping f : Rn → Rk is called K-bi-Lipschitz for a subset X ⊆ Rn if there
exists a constant c > 0 such that

cK−1 · ∥p − q∥ ≤ ∥f(p) − f(q)∥ ≤ c · ∥p − q∥ ,

for all p, q ∈ X.
The least K for which f is K-bi-Lipschitz is called the distortion of f and is denoted dist(f). We

will refer to f as a K-embedding of X.

Remark 22.4.5. Let X ⊆ Rm be a set of n points, where m potentially might be much larger than n.
Observe that in this case, since we only care about the inter-point distances of points in X, we can
consider X to be a set of points lying in the affine subspace F spanned by the points of X. Note that
this subspace has dimension n−1. As such, each point of X can be interpreted as an (n−1)-dimensional
point in F. Namely, we can assume, for our purposes, that the set of n points in Euclidean space we
care about lies in Rn (i.e., Rn−1).

Note that if m < n, we can always pad all the coordinates of the points of X by zeros, such that the
resulting point set lies in Rn.

Theorem 22.4.6 (Johnson-Lindenstrauss lemma / JLlemma). Let X be an n-point set in a Eu-
clidean space, and let ε ∈ (0, 1] be given. Then there exists a (1 + ε)-embedding of X into Rk, where
k = O(ε−2 log n).

Proof: By  Remark 22.4.5 , we can assume that X ⊆ Rn. Let k = 200ε−2 ln n. Assume k < n, and let
F be a random k-dimensional linear subspace of Rn. Let PF : Rn → F be the orthogonal projection
operator of Rn into F. Let m be the number around which ∥PF(x)∥ is concentrated, for x ∈ S(n−1), as
in  Lemma 22.4.3 .

Fix two points x, y ∈ Rn. We prove that(
1 − ε

3

)
m ∥x − y∥ ≤ ∥PF(x) − PF(y)∥ ≤

(
1 + ε

3

)
m ∥x − y∥

holds with probability ≥ 1 − n−2. Since there are
(

n
2

)
pairs of points in X, it follows that with constant

probability (say > 1/3) this holds for all pairs of points of X. In such a case, the mapping p is a
D-embedding of X into Rk with D ≤ 1+ε/3

1−ε/3 ≤ 1 + ε, for ε ≤ 1.
Let u = x − y. We have PF(u) = PF(x) − PF(y) since PF(·) is a linear operator. Thus, the condition

becomes
(
1 − ε

3

)
m ∥u∥ ≤ ∥PF(u)∥ ≤

(
1 + ε

3

)
m ∥u∥. Again, since projection is a linear operator, for any

α > 0, the condition is equivalent to(
1 − ε

3

)
m ∥αu∥ ≤ ∥PF(αu)∥ ≤

(
1 + ε

3

)
m ∥αu∥ .
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As such, we can assume that ∥u∥ = 1 by picking α = 1/ ∥u∥. Namely, we need to show that

|∥PF(u)∥ − m| ≤ ε

3m.

Let f(u) = ∥PF(u)∥. By  Lemma 22.4.1 (exchanging the random space with the random vector), for
t = εm/3, we have that the probability that this does not hold is bounded by

P[|f(u) − m| ≥ t] ≤ 4 exp
(

−t2n

2

)
= 4 exp

(
−ε2m2n

18

)
≤ 4 exp

(
−ε2k

72

)
< n−2,

since m ≥ 1
2

√
k/n and k = 200ε−2 ln n.

22.5. Bibliographical notes
Our presentation follows Matoušek [  Mat02 ]. The Brunn-Minkowski inequality is a powerful inequality
which is widely used in mathematics. A nice survey of this inequality and its applications is provided
by Gardner [ Gar02 ]. Gardner says, “In a sea of mathematics, the Brunn-Minkowski inequality appears
like an octopus, tentacles reaching far and wide, its shape and color changing as it roams from one area
to the next.” However, Gardner is careful in claiming that the Brunn-Minkowski inequality is one of
the most powerful inequalities in mathematics since, as a wit put it, “The most powerful inequality is
x2 ≥ 0, since all inequalities are in some sense equivalent to it.”

A striking application of the Brunn-Minkowski inequality is the proof that in any partial ordering of n
elements, there is a single comparison that, knowing its result, reduces the number of linear extensions
that are consistent with the partial ordering, by a constant fraction. This immediately implies (the
uninteresting result) that one can sort n elements in O(n log n) comparisons. More interestingly, it
implies that if there are m linear extensions of the current partial ordering, we can always sort it using
O(log m) comparisons. A nice exposition of this surprising result is provided by Matoušek [  Mat02 ,
Section 12.3].

There are several alternative proofs of the Johnson-Lindenstrauss lemma (i.e., JLlemma); see [  IM98 ]
and [ DG03 ]. Interestingly, it is enough to pick each entry in the dimension-reducing matrix randomly
out of −1, 0, 1. This requires a more involved proof [ Ach01 ]. This is useful when one cares about storing
this dimension reduction transformation efficiently. In particular, recently, there was a flurry of work on
making the JLlemma both faster to compute (per point) and sparser. For example, Kane and Nelson
[ KN14 ] show that one can compute a matrix for dimension reduction with O(ε−1 log n) non-zero entries
per column (the target dimension is still O(ε−2 log n)). See [ KN14 ] and references therein for more
details.

Magen [  Mag07 ] observed that the JL lemma preserves angles, and in fact can be used to preserve any
“k-dimensional angle”, by projecting down to dimension O(kε−2 log n). In particular, Exercise  22.7.5 is
taken from there.

Surprisingly, the random embedding preserves much more structure than distances between points. It
preserves the structure and distances of surfaces as long as they are low dimensional and “well behaved”;
see [  AHY07 ] for some results in this direction.

Dimension reduction is crucial in computational learning, AI, databases, etc. One common technique
that is being used in practice is to do PCA (i.e., principal component analysis) and take the first few main
axes. Other techniques include independent component analysis and MDS (multi-dimensional scaling).
MDS tries to embed points from high dimensions into low dimension (d = 2 or 3), while preserving some
properties. Theoretically, dimension reduction into really low dimensions is hopeless, as the distortion
in the worst case is Ω(n1/(k−1)), if k is the target dimension [  Mat90 ].
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22.6. Normal distribution
The normal distribution has

f(x) = 1/
√

2π exp
(
−x2/2

)
as its density function. We next verify that it is a valid density function.

Lemma 22.6.1. We have I =
∫∞

−∞ f(x)dx = 1.

Proof: Observe that

I2 =
(∫ ∞

x=−∞
f(x) dx

)2
=
(∫ ∞

x=−∞
f(x) dx

)(∫ ∞

y=−∞
f(y) dy

)
=
∫ ∞

x=−∞

∫ ∞

y=−∞
f(x)f(y) dx dy

= 1
2π

∫ ∞

x=−∞

∫ ∞

y=−∞
exp

(
−x2 + y2

2

)
dx dy.

Change the variables to x = r cos α, y = r sin α, and observe that the determinant of the Jacobian is

J = det
∣∣∣∣∣

∂x
∂r

∂x
∂α

∂y
∂r

∂y
∂α

∣∣∣∣∣ = det
∣∣∣∣∣cos α −r sin α

sin α r cos α

∣∣∣∣∣ = r
(
cos2 α + sin2 α

)
= r.

As such,

I2 = 1
2π

∫ ∞

r=0

∫ 2π

α=0
exp

(
−r2

2

)
|J | dα dr = 1

2π

∫ ∞

r=0

∫ 2π

α=0
exp

(
−r2

2

)
r dα dr

=
∫ ∞

r=0
exp

(
−r2

2

)
r dr =

[
− exp

(
−r2

2

)]r=∞

r=0
= − exp(−∞) − (− exp(0)) = 1.

The multi-dimensional normal distribution, denoted by Nd, is the distribution in Rd that
assigns a point p = (p1, . . . , pd) the density

g(p) = 1
(2π)d/2 exp

(
−1

2

d∑
i=1

p2
i

)
.

It is easy to verify, using the above, that
∫
Rd g(p)dp = 1. Furthermore, we have the following useful

but easy properties. 

⑧
 

Lemma 22.6.2. (A) The multi-dimensional normal distribution is symmetric; that is, for any two
points p, q ∈ Rd such that ∥p∥ = ∥q∥ we have that g(p) = g(q), where g(·) is the density function of the
multi-dimensional normal distribution Nd.

(B) The projection of the normal distribution on any direction is a one-dimensional normal distri-
bution.

(C) Picking d variables X1, . . . , Xd using the one-dimensional normal distribution N results in a
point (X1, . . . , Xd) that has multi-dimensional normal distribution Nd.

The generalized multi-dimensional distribution is a Gaussian. Fortunately, we only need the simpler
notion.

⑧The normal distribution has such useful properties that it seems that the only thing normal about it is its name.

14



22.7. Exercises
Exercise 22.7.1 (Boxes can be separated). (Easy) Let A and B be two axis parallel boxes that are interior
disjoint. Prove that there is always an axis parallel hyperplane that separates the interior of the two
boxes.

Exercise 22.7.2 (Brunn-Minkowski inequality, slight extension). Prove the following claim.

Corollary 22.7.3. For A and B compact sets in Rn, we have for any λ ∈ [0, 1]
that Vol(λA + (1 − λ)B) ≥ Vol(A)λ Vol(B)1−λ.

Exercise 22.7.4 (Projections are contractions). (Easy) Let F be a k-dimensional affine subspace, and let
PF : Rd → F be the projection that maps every point x ∈ Rd to its nearest neighbor on F. Prove that PF

is a contraction (i.e., 1-Lipschitz). Namely, for any p, q ∈ Rd, we have that ∥PF(p) − PF(q)∥ ≤ ∥ p − q ∥.

Exercise 22.7.5 (JL lemma works for angles). Show that the Johnson-Lindenstrauss lemma also (1 ± ε)-
preserves angles among triples of points of P (you might need to increase the target dimension however
by a constant factor).

(
Hint: For every angle, construct an equilateral triangle whose edges are being

preserved by the projection (add the vertices of those triangles (conceptually) to the point set being
embedded). Argue that this implies that the angle is being preserved.

)

22.8. From previous lectures
Lemma 22.8.1. (A) The multi-dimensional normal distribution is symmetric; that is, for any two
points p, q ∈ Rd such that ∥p∥ = ∥q∥ we have that g(p) = g(q), where g(·) is the density function of the
multi-dimensional normal distribution Nd.

(B) The projection of the normal distribution on any direction is a one-dimensional normal distri-
bution.

(C) Picking d variables X1, . . . , Xd using the one-dimensional normal distribution N results in a
point (X1, . . . , Xd) that has multi-dimensional normal distribution Nd.
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