
Chapter 21

The Perceptron algorithm and variants
By Sariel Har-Peled, March 28, 2023

①
 Version: 0.2

21.1. The perceptron algorithm
Assume, that we are given examples, say a database of cars, and you would like to determine which
cars are sport cars, and which are regular cars. Each car record, can be interpreted as a point in high
dimensions. For example, a sport car with 4 doors, manufactured in 1997, by Quaky (with manufacturer
ID 6) will be represented by the point (4, 1997, 6), marked as a sport car. A tractor made by General
Mess (manufacturer ID 3) in 1998, would be stored as (0, 1997, 3) and would be labeled as not a sport
car.

Naturally, in a real database there might be hundreds of attributes in each record, for engine size,
weight, price, maximum speed, cruising speed, etc, etc, etc.

We would like to automate this classification process, so that tagging the records whether they
correspond to race cars be done automatically without a specialist being involved. We would like to
have a learning algorithm, such that given several classified examples, develop its own conjecture about
what is the rule of the classification, and we can use it for classifying new data.

That is, there are two stages for learning: training and classifying. More formally, we are trying
to learn a function

f : Rd → {−1, 1} .

The challenge is, of course, that f might have infinite complexity – informally, think about a label
assigned to items where the label is completely random – there is nothing to learn except knowing the
label for all possible items.

This situation is extremely rare is the real world, and we would limit ourselves to a set of functions
that can be easily described. For example, consider a set of red and blue points that are linearly
separable, as demonstrated in Figure 21.1.1 . That is, we are trying to learn a line ℓ that separates the
red points from the blue points.

The natural question is now, given the red and blue points, how to compute the line ℓ? Well, a line
or more generally a plane (or even a hyperplane) is the zero set of a linear function, that has the form

∀x ∈ Rd f(x) = ⟨a, x⟩+ b,

where a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ R2, and ⟨a, x⟩ = ∑
i aixi is the dot product of a and x. The

classification itself, would be done by computing the sign of f(x); that is sign(f(x)). Specifically, if
sign(f(x)) is negative, it outside the class, if it is positive it is inside.

A set of training examples is a set of pairs

S = {(x1, y1), . . . , (xn, yn)} ,

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

`

Figure 21.1.1: Linear separable red and blue point sets.

where xi ∈ Rd and yi ∈ {-1,1}, for i = 1, . . . , n.
A linear classifier h is a pair (w, b) where w ∈ Rd and b ∈ R. The classification of x ∈ Rd is

sign(⟨w, x⟩+ b). For a labeled example (x, y), h classifies (x, y) correctly if sign(⟨w, x⟩+ b) = y.
Assume that the underlying label we are trying to learn has a linear classifier (this is a problematic

assumption – more on this later), and you are given “enough” examples (i.e., n). How to compute the
linear classifier for these examples?

One natural option is to use linear programming. Indeed, we are looking for (w, b), such that for an
(xi, yi) we have sign(⟨w,xi⟩+ b) = yi, which is

⟨w,xi⟩+ b ≥ 0 if yi = 1,

and ⟨w,xi⟩+ b ≤ 0 if yi = −1.

Or equivalently, let xi =
(
x1

i , . . . , xd
i

)
∈ Rd, for i = 1, . . . , m, and let w =

(
w1, . . . , wd

)
, then we get the

linear constraint
d∑

k=1
wkxk

i + b ≥ 0 if yi = 1,

and
d∑

k=1
wkxk

i + b ≤ 0 if yi = −1.

Thus, we get a set of linear constraints, one for each training example, and we need to solve the
resulting linear program.

The main stumbling block is that linear programming is very sensitive to noise. Namely, if we have
points that are misclassified, we would not find a solution, because no solution satisfying all of the
constraints exists. Instead, we are going to use an iterative algorithm that converges to the optimal
solution if it exists, see Figure 21.1.2 .

Why does the perceptron algorithm converges to the right solution? Well, assume that we made a
mistake on a sample (x, y) and y = 1. Then, ⟨wk,x⟩ < 0, and

⟨wk+1,x⟩ = ⟨wk + y ∗ x, x⟩ = ⟨wk,x⟩+ y ⟨x,x⟩ = ⟨wk,x⟩+ y ∥x∥ > ⟨wk,x⟩ .

Namely, we are “walking” in the right direction, in the sense that the new value assigned to x by wk+1
is larger (“more positive”) than the old value assigned to x by wk.

Theorem 21.1.1. Let S be a training set of examples, and let R = max(x,y)∈S

∥∥∥x∥∥∥. Suppose that there
exists a vector wopt such that

∥∥∥wopt

∥∥∥ = 1, and a number γ > 0, such that

y ⟨wopt, x⟩ ≥ γ ∀(x, y) ∈ S.

2

Algorithm perceptron(S: a set of l examples)
w0 ← 0,k ← 0
R = max(x,y)∈S

∥∥∥x∥∥∥ .
repeat

for (x, y) ∈ S do
if sign(⟨wk,x⟩) ̸= y then
wk+1 ← wk + y ∗ x
k ← k + 1

until no mistakes are made in the classification
return wk and k

Figure 21.1.2: The perceptron algorithm.

Then, the number of mistakes made by the online perceptron algorithm on S is at most(
R

γ

)2

.

Proof: Intuitively, the perceptron algorithm weight vector converges to wopt, To see that, let us define
the distance between wopt and the weight vector in the kth update:

αk =
∥∥∥∥∥wk −

R2

γ
wopt

∥∥∥∥∥
2

.

We next quantify the change between αk and αk+1 (the example being misclassified is (x, y)):

αk+1 =
∥∥∥∥∥wk+1 −

R2

γ
wopt

∥∥∥∥∥
2

=
∥∥∥∥∥wk + yx− R2

γ
wopt

∥∥∥∥∥
2

=
∥∥∥∥∥
(

wk −
R2

γ
wopt

)
+ yx

∥∥∥∥∥
2

=
〈(

wk −
R2

γ
wopt

)
+ yx,

(
wk −

R2

γ
wopt

)
+ yx

〉
.

Expanding this we get:

αk+1 =
〈(

wk −
R2

γ
wopt

)
,

(
wk −

R2

γ
wopt

)〉
+ 2y

〈(
wk −

R2

γ
wopt

)
,x

〉
+ ⟨x,x⟩

= αk + 2y

〈(
wk −

R2

γ
wopt

)
, x

〉
+
∥∥∥x∥∥∥2

.

As (x, y) is misclassified, it must be that sign(⟨wk,x⟩) ̸= y, which implies that sign(y ⟨wk,x⟩) = −1;
that is y ⟨wk,x⟩ < 0. Now, since

∥∥∥x∥∥∥ ≤ R, we have

αk+1 ≤ αk + R2 + 2y ⟨wk,x⟩ − 2y

〈
R2

γ
wopt,x

〉

≤ αk + R2 + −2R2

γ
y ⟨wopt,x⟩ .

3

Next, since y ⟨wopt , x⟩ ≥ γ for ∀(x, y) ∈ S, we have that

αk+1 ≤ αk + R2 − 2R2

γ
γ ≤ αk + R2 − 2R2 ≤ αk −R2.

We have: αk+1 ≤ αk −R2, and

α0 =
∥∥∥∥∥0− R2

γ
wopt

∥∥∥∥∥
2

= R4

γ2

∥∥∥wopt

∥∥∥2
= R4

γ2 .

Finally, observe that αi ≥ 0 for all i. At each misclassification, αi shrinks by R2. It starts at R4/γ2.
As such, he algorithm can perform at most

R4/γ2

R2 = R2

γ2 ,

iterations before αi becomes negative, which is of course impossible.

It is important to observe that any linear program can be written as the problem of separating red
points from blue points. As such, the perceptron algorithm can be used to solve linear programs.

21.2. Learning A Circle
Given a set of red points, and blue points in the plane, we want to learn a circle that contains all the
red points, and does not contain the blue points.

σ

How to compute the circle σ ?
It turns out we need a simple but very clever trick. For every point (x, y) ∈ P map it to the point

(x, y, x2 + y2). Let z(P) =
{
(x, y, x2 + y2)

∣∣∣ (x, y) ∈ P
}

be the resulting point set.

Theorem 21.2.1. Two sets of points R and B are separable by a circle in two dimensions, if and only
if z(R) and z(B) are separable by a plane in three dimensions.

Proof: Let σ ≡ (x − a)2 + (y − b)2 = r2 be the circle containing all the points of R and having all the
points of B outside. Clearly, (x− a)2 + (y − b)2 ≤ r2 for all the points of R. Equivalently

−2ax− 2by +
(
x2 + y2

)
≤ r2 − a2 − b2.

Setting z = x2 + y2 we get that

h ≡ −2ax− 2by + z − r2 + a2 + b2 ≤ 0.

4

Namely, p ∈ σ if and only if h(z(p)) ≤ 0. We just proved that if the point set is separable by a circle,
then the lifted point set z(R) and z(B) are separable by a plane.

As for the other direction, assume that z(R) and z(B) are separable in 3d and let

h ≡ ax + by + cz + d = 0

be the separating plane, such that all the point of z(R) evaluate to a negative number by h. Namely,
for (x, y, x2 + y2) ∈ z(R) we have ax + by + c(x2 + y2) + d ≤ 0

and similarly, for (x, y, x2 + y2) ∈ B we have ax + by + c(x2 + y2) + d ≥ 0.
Let U(h) =

{
(x, y)

∣∣∣ h((x, y, x2 + y2)) ≤ 0
}
. Clearly, if U(h) is a circle, then this implies that

R ⊂ U(h) and B ∩ U(h) = ∅, as required.
So, U(h) are all the points in the plane, such that

ax + by + c
(
x2 + y2

)
≤ −d.

Equivalently (
x2 + a

c
x
)

+
(

y2 + b

c
y

)
≤ −d

c

(
x + a

2c

)2
+
(

y + b

2c

)2

≤ a2 + b2

4c2 − d

c

but this defines the interior of a circle in the plane, as claimed.

This example show that linear separability is a powerful technique that can be used to learn com-
plicated concepts that are considerably more complicated than just hyperplane separation. This lifting
technique showed above is the kernel technique or linearization.

21.3. Active learning, sparsity and large margin
Let P be a point set of n points in Rd. Every point has a label/color (say black or white), but we do not
know the labels. In particular, let B and W be the set of black and white points in P. Furthermore, let
∇ = diam(P), and assume that there exist two parallel hyperplanes h, h′ in distance γ from each other,
such that the slab between h and h′ does not contain an point of P, and the points of B are on one side
of this slab, and the points of W are on the other side. The quantity γ is the margin of P.

A somewhat more convenient way to handle such slabs, is to consider two points b and w in Rd.
Let slab(b, w) be the region of points in Rd, such that their projection onto the line spanned by b
and w is contained in the open segment bw. We use (1 − ε)slab(b, w) to denote the slab formed from
slab(b, w) by shrinking it by a factor of (1− ε) around its middle hyperplane. Formally, it is defined as
(1− ε)slab(b, w) = slab(b′, w′), where b′ = (1− ε/2)b + (ε/2)w and w′ = (ε/2)b + (1− ε/2)w.

In the following, we assume have an access to a labeling oracle that can return the label of a
specific query point. Similarly, we assume access to a counterexample oracle, such that given a slab
that does not contain any points of P in its interior, and supposedly separates the points of P into B
and W, it returns a point that is mislabeled by this classifier (i.e., slab) if such a point exists.

Conceptually, asking queries from the oracles is quite expensive, and the algorithm tries to minimize
the number of such queries.

5

The algorithm. Assume there are two points b1 ∈ B and w1 ∈ W. For i > 0, in the ith iteration, the
algorithm considers the slab Si = (1− ε)slab(bi, wi). There are two possibilities:
(A) If the slab Si contains no points of P, then the algorithm uses the counterexample oracle to check

if it is done – that is, all the points are classified correctly. Otherwise, a badly classified point pi

was returned.
(B) The Si contains some points of P, and let pi be the closest point to the middle hyperplane of the

slab Si. The algorithm uses the labeling oracle to get the label of pi.
Assume that the label of pi is white. Then, the algorithm set wi+1 be the projection of bi to wipi, and
bi+1 = bi (the case that pi is black is handled in a symmetric fashion).

Lemma 21.3.1 ([HRZ07]). Let P be a set of points in Rd, with diameter ∇. Assume there is an
unknown partition of P into two point sets W and B, of white and black points, respectively, and this
partition has margin γ. Furthermore, we are given an access to a labeling and counterexample oracles.
Finally, there are two given initial points b1 ∈ B and w1 ∈ W.

Then, for any ε > 0, one can compute using an iterative algorithm, in I = O
(

(∇/γ)2/ε2
)

iterations
and in O(Idn) time, a slab of width ≥ (1 − ε)γ that separates B from W. This algorithm performs I
calls to the labeling/counterexample oracles.

Proof: Our purpose is to analyze the number of iterations of this algorithm till it terminates. So, let
ℓi = ∥biwi∥. Clearly, ∇ ≥ ℓ0 ≥ ℓ1 ≥ · · · ≥ γ, the last step follows as bi ∈ CH(B) and wi ∈ CH(W), and
the distance d(CH(B), CH(W)) ≥ γ, where d(X, Y) = minx∈X miny∈Y ∥xy∥.

wi

bi

wi+1

pi
p′i

`i
Si

α

Let p′
i be the projection of pi to the line spanned by wibi. Observe that if

pi ∈ Si then ∥p′
iwi∥ ≥ εℓi/2. Formally, the points wi breaks the line spanned

by wi and bi into two parts, and bi and p′
i are on the same side, and p′

i is
distance at least ℓi/2 away from wi along this ray. Observe that if case (B)
above happened, then pi is not inside Si, and this distance is significantly
larger.

Setting α = ∠piwibi, we have cos α = ∥p
′
iwi∥
∥wipi∥

≥ εℓi/2
∇

. As such, we have

ℓi+1 = ℓi sin α ≤ ℓi

√√√√1−
(

εℓi

2∇

)2

≤

1−
(

εℓi

4∇

)2
ℓi. (21.3.1)

We have that ℓi+k ≤ ℓi/2, for k =
⌈
64∇2/(εℓi)2

⌉
. Indeed, if ℓi+k > ℓi/2, then

ℓi+k ≤ ℓi

k−1∏
j=0

1−
(

εℓi+j

4∇

)2
 ≤ ℓi

k−1∏
j=0

1−
(

εℓi+k

4∇

)2
 ≤ ℓi exp

−k

(
εℓi+k

4∇

)2
 (21.3.2)

≤ ℓi exp
−k

(
εℓi

8∇

)2
 ≤ ℓi exp

−k

(
εℓi

8∇

)2
 ≤ ℓi

e
, (21.3.3)

which is a contradiction.
In particular, the jth epoch of the algorithm are the iterations where ℓi ∈

[
∇/2j−1,∇/2j

]
. Namely,

during an epoch the width of the current slab shrinks by a factor of two. By Eq. (21.3.3), the jth epoch
lasts nj = O

(
(2j/ε)2) iterations. As such, the total number of iterations ∑j nj is dominated by the last

6

epoch, that starts (roughly) when ℓi ≤ 2γ, and end when it hits γ. This last epoch takes O
(
∇2/(εγ)2

)
iterations, which also bounds the total number of iterations.

Remark. (A) if the data is already labeled, then the algorithm of Lemma 21.3.1 can be implemented
directly resulting in the same running time as stated. This algorithm approximates the maximum margin
classifier to the data. Specifically, the above algorithm (1 + ε)-approximates the distance d(B, W), and
it can be interpreted as an approximation algorithm for the associated quadratic program.

(B) One can implement the counterexample oracle, by sampling enough labels, and using the labeling
oracle. This is introduces a certain level of error. See [HRZ07] for details.

21.3.1. Computing the approximate distance to the convex hull
The following is well known, and is included for the sake of completeness, see [HKMR15]. It also follows
readily from the Preceptron algorithm (see Remark ?? below).

Lemma 21.3.2. Let P ⊆ Rd be a point set, ε > 0 be a parameter, and let q ∈ Rd be a given query point.
Then, one can compute, in O(|P| d/ε2) time, a point q ∈ CH(P), such that ∥qq∥ ≤ d(q, CH(P)) + ε∇,
where ∇ = diam(P). Furthermore, q is a convex combination of O(1/ε2) points of P.

Proof: The algorithm is iterative, computing a sequence of points q0, . . . , qi inside CH(P) that approach
q. Initially, p0 = q0 is the closest point of P to q. In the ith iteration, the algorithm computes the
vector vi = q − qi−1, and the point pi ∈ P that is extremal in the direction of vi. Now, the algorithm
sets qi to be the closest point to q on the segment si = qi−1pi, and continues to the next iteration, for
M = O(1/ε2) iterations. The algorithm returns the point qM as the desired answer.

ti−1

pi

ti

yi
α

q

vi `i

Figure 21.3.1

By induction, the point qi ∈ CH({p0, . . . , pi}). Furthermore, observe that the distance of the points
q0, q1, . . . from q is monotonically decreasing. In particular, for all i > 0, qi must fall in the middle of
the segment si, as otherwise, pi would be closer to q than p0, a contradiction to the definition of p0.

Project the point pi to the segment qi−1q, and let si be the projected point. Observe that ∥qsi∥ is
a lower bound on d(q, CH(P)). Therefore, if ∥siqi−1∥ ≤ ε∇ then we are done, as ∥qqi−1∥ ≤ ∥qi−1si∥ +
∥siq∥ ≤ ε∇ + d(q, CH(P)). (In particular, one can use this as alternative stopping condition for the
algorithm, instead of counting iterations.)

So, let α be the angle ∠piqi−1q. Observe that as qi−1pi ⊆ CH(P), it follows that ∥qi−1pi∥ ≤ diam(P) =

∇. Furthermore, cos α = ∥siqi−1∥
∥qi−1pi∥

>
ε∇
∇

= ε, since ∥siqi−1∥ > ε∇. Hence, sin α =
√

1− cos2 α ≤
√

1− ε2 ≤ 1− ε2/2. Let ℓi−1 = ∥qqi−1∥. We have that

ℓi = ∥qqi∥ = ∥qqi−1∥ sin α ≤ (1− ε2/2)ℓi−1.

7

Analyzing the number of iterations required by the algorithm is somewhat tedious. If ℓ0 = ∥qq0∥ ≥
(4/ε2)∇ then the algorithm would be done in one iteration as otherwise ℓ1 ≤ ℓ0 − 2∇, which is impos-
sible. In particular, after 4/ε2 iterations the distance ℓi shrinks by a factor of two, and as such, after
O((1/ε2) log(1/ε)) iterations the algorithm is done.

One can do somewhat better. By the above, we can assume that d(q, P) = O(∇/ε2). Now, set εj =
1/22+j. By the above, after n0 = O((1/ε2

0) log(1/ε0)) = O(1) iterations, ℓn0 ≤ d(q, CH(P)) + diam(P)/4.
For j ≥ 1, let nj = 4/(εj)2, and observe that, after νj = nj +∑j−1

k=0 nk iterations, we have that

ℓνj
≤
(
d(q, CH(P)) + εj−1∇

)
/2 ≤ d(q, CH(P)) + εj∇.

In particular, stopping as soon as εj ≤ ε, we have the desired guarantee, and the number of iterations
needed is M = O(1) +∑⌈lg 1/ε⌉

j=0 4/ε2
j = O(1/ε2).

Theorem 21.3.3 (Fractional Carathéodory). Let P be a set of n points in Rd. Given a point
q ∈ CH(P) and a parameter ε ∈ (0, 1), one can compute k = O(1/ε2) points p1, . . . , pk ∈ P , and convex
coefficients α1, . . . , αk ∈ (0, 1) such that q′ = ∑

i αipi is “close” to q. That is, formally we have that∑
i αi = 1, and ∥qq′∥ ≤ εdiam(P).

References
[HKMR15] S. Har-Peled, N. Kumar, D. Mount, and B. Raichel. Space exploration via proximity search .

Proc. 31st Int. Annu. Sympos. Comput. Geom. (SoCG), vol. 34. 374–389, 2015.
[HRZ07] S. Har-Peled, D. Roth, and D. Zimak. Maximum margin coresets for active and noise

tolerant learning. Proc. 21st Int. Joint Conf. Art. Intell. (IJCAI), 836–841, 2007.

8

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.374

	The Perceptron algorithm and variants
	The perceptron algorithm
	Learning A Circle
	Active learning, sparsity and large margin
	Computing the approximate distance to the convex hull

