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①
 

The fact remains that getting people right is not what living is all about anyway. It’s getting them wrong that is
living, getting them wrong and wrong and wrong and then, on careful reconsideration, getting them wrong again.
That’s how we known we’re alive: we’re wrong. Maybe the best thing would be to forget being right or wrong about
people and just go along for the ride. But if you can do that - well, lucky you.

American Pastoral, Philip Roth

In this chapter, we will investigate how to represent distances between points efficiently. Naturally, an
explicit description of the distances between n points requires listing all the

(
n
2

)
distances. Here we will

show that there is a considerably more compact representation which is sufficient if all we care about
are approximate distances. This representation would have many nice applications.

20.1. Well-separated pair decomposition (WSPD)

Let P be a set of n points in Rd, and let 1/4 > ε > 0 be a parameter. One can represent all distances
between points of P by explicitly listing the

(
n
2

)
pairwise distances. Of course, the listing of the coordi-

nates of each point gives us an alternative, more compact representation (of size dn), but its not a very
informative representation. We are interested in a representation that will capture the structure of the
distances between the points.

p
q

s
Figure 20.1.1

As a concrete example, consider the three points on the right. We would
like to have a representation that captures the fact that p has similar distance
to q and s, and furthermore, that q and s are close together as far as p is
concerned. As such, if we are interested in the closest pair among the three
points, we will only check the distance between q and s, since they are the only pair (among the three)
that might realize the closest pair.

Denote by A ⊗ B =
{

{x, y}
∣∣∣x ∈ A, y ∈ B, x ̸= y

}
the set of all the (unordered) pairs of points

formed by the sets A and B. We will be informal and refer to A ⊗ B as a pair of the sets A and B.
Here, we are interested in schemes that cover all possible pairs of points of P by a small collection of
such pairs.
Definition 20.1.1 (Pair decomposition). For a point set P, a pair decomposition of P is a set of pairs

W =
{
{A1, B1} , . . . , {As, Bs}

}
,

such that (I) Ai, Bi ⊂ P for every i, (II) Ai ∩Bi = ∅ for every i, and (III) ⋃s
i=1 Ai ⊗Bi = P ⊗ P.

Translation: For any pair of distinct points p, q ∈ P, there is at least one (and usually exactly one)
pair {Ai, Bi} ∈ W such that p ∈ Ai and q ∈ Bi.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit  http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.
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Q R

Definition 20.1.2. The pair Q and R is (1/ε)-separated if

max(diam(Q), diam(R)) ≤ ε · d(Q,R),

where d(Q,R) = minq∈Q,s∈R ∥qs∥.

Intuitively, the pair Q ⊗ R is (1/ε)-separated if all the points of Q have roughly the same distance
to the points of R. Alternatively, imagine covering the two point sets with two balls of minimum size,
and require that the distance between the two balls is at least 2/ε times the radius of the larger of the
two.

Thus, for the three points of  Figure 4.1.1 , the pairs {p} ⊗ {q, s} and {q} ⊗ {s} are (say) 2-separated
and describe all the distances among these three points. (The gain here is quite marginal, as we replaced
the distance description, made out of three pairs of points, by the distance between two pairs of sets.
But stay tuned – exciting things are about to unfold.)

Motivated by the above example, a well-separated pair decomposition is a way to describe a metric
by such “well-separated” pairs of sets.

Definition 20.1.3 (WSPD). For a point set P, a well-separated pair decomposition (WSPD) of P
with parameter 1/ε is a pair decomposition of P with a set of pairs

W =
{
{A1, B1} , . . . , {As, Bs}

}
,

such that, for any i, the sets Ai and Bi are ε−1-separated.

For a concrete example of a WSPD, see  Figure 4.1.2 .
Instead of maintaining such a decomposition explicitly, it is convenient to construct a tree T having

the points of P as leaves. Now every pair (Ai, Bi) is just a pair of nodes (vi, ui) of T, such that
Ai = Pvi

and Bi = Pui
, where Pv denotes the points of P stored in the subtree of v (here v is a node

of T). Naturally, in our case, the tree we would use is a compressed quadtree of P, but any tree that
decomposes the points such that the diameter of a point set stored in a node drops quickly as we go
down the tree might work. Naturally, even when the underlying tree is specified, there are many possible
WSPDs that can be represented using this tree. Naturally, we will try to find a WSPD that is “minimal”.

This WSPD representation using a tree gives us a compact representation of the distances of the
point set.

Corollary 20.1.4. For an ε−1-WSPD W, it holds, for any pair {u, v} ∈ W, that

∀q ∈ Pu, s ∈ Pv max
(
diam(Pu), diam(Pv)

)
≤ ε ∥qs∥ .

It would usually be convenient to associate with each set Pu in the WSPD an arbitrary representative
point repu ∈ P. Selecting and assigning these representative points can always be done by a simple DFS
traversal of the tree used to represent the WSPD.

20.1.1. The construction algorithm
Given the point set P in Rd, the algorithm first computes the compressed quadtree T of P. Next, the
algorithm works by being greedy. It tries to put into the WSPD pairs of nodes in the tree that are as
high as possible. In particular, if a pair {u, v} would be generated, then the pair formed by the parents

2



a b
c

d
e

f

A1 = {d}, B1 = {e}
A2 = {a, b, c}, B2 = {e}
A3 = {a, b, c}, B3 = {d}
A4 = {a}, B4 = {b, c}
A5 = {b}, B5 = {c}
A6 = {a}, B6 = {f}
A7 = {b}, B7 = {f}
A8 = {c}, B8 = {f}
A9 = {d}, B9 = {f}
A10 = {e}, B10 = {f}

W =



{A1, B1} ,
{A2, B2} ,
{A3, B3} ,
{A4, B4} ,
{A5, B5} ,
{A6, B6} ,
{A7, B7} ,
{A8, B8} ,
{A9, B9} ,
{A10, B10}


(i) (ii) (iii)

d

a

b

f
e

c

d

a

b

{A2, B2} ≡ {a, b, c} ⊗ {e}

f
e

c

(iv) (v)

Figure 20.1.2: (i) A point set P = {a, b, c, d, e, f}. (ii) The decomposition into pairs. (iii) The respective
(1/2)-WSPD. For example, the pair of points b and e (and their distance) is represented by {A2, B2} as
b ∈ A2 and e ∈ B2. (iv) The quadtree T representing the point set P. (v) The WSPD as defined by
pairs of vertices of T.
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of this pair of nodes will not be well separated. As such, the algorithm starts from the root and tries
to separate it from itself. If the current pair is not well separated, then we replace the bigger node
of the pair by its children (i.e., thus replacing a single pair by several pairs). Clearly, sooner or later
this refinement process would reach well-separated pairs, which it would output. Since it considers all
possible distances up front (i.e., trying to separate the root from itself), it would generate a WSPD
covering all pairs of points.

Definition 20.1.5. Let ∆(v) denote the diameter of the cell associated with a node v of the quadtree
T. We tweak this definition a bit so that if a node contains a single point or is empty, then it is zero.
This would make our algorithm easier to describe.

Formally, ∆(v) = 0 if Pv is either empty or a single point. Otherwise, it is the diameter of the region
associated with v ; that is, ∆(v) = diam(□v), where □v (we remind the reader) is the quadtree cell
associated with the node v. Note that since T is a compressed quadtree, we can always decide if |Pv| > 1
by just checking if the subtree rooted at v has more than one node (since then this subtree must store
more than one point).

We define the geometric distance between two nodes u and v of T to be

d(u, v) = d(□u,□v) = min
p∈□u,q∈□v

∥pq∥ .

We compute the compressed quadtree T of P in O(n log n) time. Next, we compute the WSPD by
calling algWSPD(u0, u0,T), where u0 is the root of T and algWSPD is depicted in  Figure 4.1.3 .

algWSPD(u, v)
if u = v and ∆(u) = 0 then

return // Do not pair a leaf with itself
if ∆(u) < ∆(v) then

Exchange u and v
If ∆(u) ≤ ε · d(u, v) then

return
{
{u, v}

}
// u1, . . . , ur – the children of u
return

⋃r
i=1 algWSPD(ui, v).

Figure 20.1.3: The algorithm algWSPD for computing well-separated pair decomposition. The nodes
u and v belong to a compressed quadtree T of P.

20.1.1.1. Analysis

The following lemma is implied by an easy packing argument.

Lemma 20.1.6. Let □ be a cell of a grid G of Rd with cell diameter x. For y ≥ x, the number of cells
in G at distance at most y from □ is O

(
(y/x)d

)
. (The O(·) notation here, and in the rest of the chapter,

hides a constant that depends exponentially on d.)

Lemma 20.1.7. algWSPD terminates and computes a valid pair decomposition.
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Proof: By induction, it follows that every pair of points of P is covered by a pair of subsets {Pu,Pv}
output by the algWSPD algorithm. Note that algWSPD always stops if both u and v are leafs, which
implies that algWSPD always terminates.

Now, observe that if {u, v} is in the output pair and either Pu or Pv is not a single point, then
α = max(diam(Pu), diam(Pv)) > 0. This implies that d(Pu,Pv) ≥ d(u, v) ≥ ∆(u)/ε ≥ α/ε > 0.
Namely, Pu ∩ Pv = ∅.

Lemma 20.1.8. For the WSPD generated by algWSPD, we have that for any pair {u, v} in the WSPD,

max
(
diam(Pu), diam(Pv)

)
≤ ε · d(u, v) and d(u, v) ≤ ∥qs∥

hold for any q ∈ Pu and s ∈ Pv.

Proof: For every output pair {u, v}, we have by the design of the algorithm that

max
(
diam(Pu), diam(Pv)

)
≤ max

(
∆(u),∆(v)

)
≤ ε · d(u, v).

Also, for any q ∈ Pu and s ∈ Pv, we have d(u, v) = d(□u,□v) ≤ d(Pu,Pv) ≤ d(q, s), since Pu ⊆ □u and
Pv ⊆ □v.

Lemma 20.1.9. For a pair {u, v} ∈ W, computed by algWSPD, we have that

max
(
∆(u), ∆(v)

)
≤ min

(
∆(p(u)), ∆(p(v))

)
,

where p(x) denotes the parent node of the node x in the tree T.

Proof: We trivially have that ∆(u) < ∆(p(u)) and ∆(v) < ∆(p(v)). The idea is to track the pairs used
in the recursive calls to generate the pair {u, v}, see  Figure 4.1.4 .

u p(v)

v

p(u)

Figure 20.1.4: The y-order encodes the sidelengths of the cells, higher up means bigger cells.

A pair {u, v} is generated because of a sequence of recursive calls algWSPD(u0, u0), algWSPD(u1, v1),
. . ., algWSPD(us, vs), where us = u, vs = v, and u0 is the root of T. Assume that us−1 = u and
vs−1 = p(v). Then ∆(u) ≤ ∆(p(v)), since the algorithm always refines the larger cell.

Similarly, let t be the last index such that ut−1 = p(u) (namely, ut−1 ̸= ut = u and vt−1 = vt). Then,
since v is a descendant of vt−1, it holds that

∆(v) ≤ ∆(vt) = ∆(vt−1) ≤ ∆(ut−1) = ∆(p(u)),

since (again) the algorithm always refines the larger cell in the pair {ut−1, vt−1}.

Lemma 20.1.10. The number of pairs in the computed WSPD is O(n/εd).
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Proof: Let {u, v} be a pair appearing in the output. Consider the sequence (i.e., stack) of recursive calls
that led to this output. In particular, assume that the last recursive call to algWSPD(u, v) was issued
by algWSPD(u, v′), where v′ = p(v) is the parent of v in T. Then

∆(p(u)) ≥ ∆(v′) ≥ ∆(u),

by  Lemma 4.1.9  .
We charge the pair {u, v} to the node v′ and claim that each node of T is charged at most O

(
ε−d

)
times. To this end, fix a node v′ ∈ V(T), where V(T) is the set of vertices of T. Since the pair {u, v′}
was not output by algWSPD (despite being considered), we conclude that ∆(v′) > ε · d(u, v′) and as
such d(u, v′) < r = ∆(v′)/ε. Now, there are several possibilities:

(i) ∆(v′) = ∆(u). But there are at most O
(
(r/∆(v′))d

)
= O(1/εd) nodes that have the same level

(i.e., diameter) as v′ such that their cells are within a distance at most r from it, by  Lemma 4.1.6 .
Thus, this type of charge can happen at most O(2d · (1/εd)) times, since v′ has at most 2d children.

(ii) ∆(p(u)) = ∆(v′). By the same argumentation as above d(p(u), v′) ≤ d(u, v′) < r. There are at
most O(1/εd) such nodes p(u). Since the node p(u) has at most 2d children, it follows that the
number of such charges is at most O

(
2d · 2d · (1/εd)

)
.

(iii) ∆(p(u)) > ∆(v′) > ∆(u). Consider the canonical grid G having □v′ as one of its cells (see
 Definition 4.6.2 ). Let □̂ be the cell in G containing □u. Observe that □u ⊊ □̂ ⊊ □p(u). In
addition, d

(
□̂,□v′

)
≤ d(□u,□v′) = d(u, v′) < r. It follows that there are at most O(1/εd) cells

like □̂ that might participate in charging v′, and as such, the total number of charges is O(2d/εd),
as claimed.

As such, v′ can be charged at most O
(
22d/εd

)
= O

(
1/εd

)
times 

②
 . This implies that the total number

of pairs generated by the algorithm is O
(
nε−d

)
, since the number of nodes in T is O(n).

Since the running time of algWSPD is clearly linear in the output size, we have the following result.

Theorem 20.1.11. For 1 ≥ ε > 0, and a set P of n points in Rd, one can construct, in O
(
n log n+ nε−d

)
.

time, an ε−1-WSPD of P of size nε−d.

20.2. Applications of WSPD

20.2.1. Spanners
It is sometime beneficial to describe distances between n points by using a sparse graph to encode the
distances.

Definition 20.2.1. For a weighted graph G and any two vertices p and q of G, we will denote by dG(q, s)
the graph distance between q and s. Formally, dG(q, s) is the length of the shortest path in G between
q and s. It is easy to verify that dG is a metric; that is, it complies with the triangle inequality. Naturally,
if q and s belongs to two different connected components of G, then dG(q, s) = ∞.

②We remind the reader that we will usually consider the dimension d to be a constant, and the O notation would
happily consume any constants that depend only on d. Conceptually, you can think about the O as being a black hole for
such constants, as its gravitational force tears such constants away. The shrieks of horror of these constants as they are
being swallowed alive by the black hOle can be heard every time you look at the O.
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Such a graph might be useful algorithmically if it captures the distances we are interested in while
being sparse (i.e., having few edges). In particular, if such a graph G over n vertices has only O(n) edges,
then it can be manipulated efficiently, and it is a compact implicit representation of the

(
n
2

)
distances

between all the pairs of vertices of G.
A t-spanner of a set of points P ⊂ Rd is a weighted graph G whose vertices are the points of P,

and for any q, s ∈ P, we have
∥qs∥ ≤ dG(q, s) ≤ t ∥qs∥ .

The ratio dG(q, s)/ ∥qs∥ is the stretch of q and s in G. The stretch of G is the maximum stretch of any
pair of points of P.

20.2.1.1. Construction

We are given a set of n points in Rd and a parameter 1 ≥ ε > 0. We will construct a spanner as follows.
Let c ≥ 16 be an arbitrary constant, and set δ = ε/c. Compute a δ−1-WSPD decomposition of P using

the algorithm of  Theorem 4.1.11 . For any vertex u in the quadtree T (used in computing the WSPD),
let repu be an arbitrary point of Pu. For every pair {u, v} ∈ W , add an edge between {repu, repv} with
weight ∥repurepv∥, and let G be the resulting graph.

One can prove that the resulting graph is connected and that it contains all the points of P. We will
not prove this explicitly as this is implied by the analysis below.

20.2.1.2. Analysis

Observe that by the triangle inequality, we have that dG(q, s) ≥ ∥qs∥, for any q, s ∈ P.

Theorem 20.2.2. Given a set P of n points in Rd and a parameter 1 ≥ ε > 0, one can compute a
(1 + ε)-spanner of P with O

(
nε−d

)
edges, in O

(
n log n+ nε−d

)
time.

Proof: The construction is described above. The upper bound on the stretch is proved by induction on
the length of pairs in the WSPD. So, fix a pair x, y ∈ P, and assume that by the induction hypothesis,
for any pair z, w ∈ P such that ∥zw∥ < ∥xy∥, it follows that dG(z, w) ≤ (1 + ε) ∥zw∥.

The pair x, y must appear in some pair{u, v} ∈ W , where x ∈ Pu and y ∈ Pv. Thus, by construction

∥repurepv∥ ≤ d(u, v) + ∆(u) + ∆(v) ≤ (1 + 2δ)d(u, v) ≤ (1 + 2δ) ∥xy∥ (20.2.1)

and this implies

max(∥repux∥ , ∥repv − y∥) ≤ max(∆(u),∆(v)) ≤ δ · d(u, v) ≤ δ ∥repu − repv∥

≤ δ(1 + 2δ) ∥x− y∥ < 1
4 ∥x− y∥ ,

by  Theorem 4.1.11  and since δ ≤ 1/16. As such, we can apply the induction hypothesis (twice) to the
pairs of points repu, x and repv, y, implying that

dG(x, repu) ≤ (1 + ε) ∥repu − x∥ and dG(repv, y) ≤ (1 + ε) ∥y − repv∥ .

Now, since repurepv is an edge of G, dG(repu, repv) ≤ ∥repu − repv∥. Thus, by the inductive hypothesis,
the triangle inequality and Eq. (  4.2.1 ), we have that

∥x− y∥ ≤ dG(x, y) ≤ dG(x, repu) + dG(repu, repv) + dG(repv, y)
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≤ (1 + ε) ∥repu − x∥ + ∥repu − repv∥ + (1 + ε) ∥repv − y∥
≤ 2(1 + ε) · δ · ∥repu − repv∥ + ∥repu − repv∥
≤ (1 + 2δ + 2εδ) ∥repu − repv∥ ≤ (1 + 2δ + 2εδ) (1 + 2δ) ∥x− y∥
≤ (1 + ε) ∥x− y∥ .

The last step follows by an easy calculation. Indeed, since c ≥ 16 and cδ = ε ≤ 1, we have that

(1 + 2δ + 2εδ)(1 + 2δ) ≤ (1 + 4δ)(1 + 2δ) = 1 + 6δ + 8δ2 ≤ 1 + 14δ ≤ 1 + ε,

as required.

20.2.2. Approximating the minimum spanning tree
For a graph G, let G≤r denote the subgraph of G resulting from removing all the edges of weight (strictly)
larger than r from G.

Lemma 20.2.3. Given a set P of n points in Rd, one can compute a spanning tree T of P, such that
ω(T) ≤ (1 + ε)ω(MST), where MST is a minimum spanning tree of P and ω(T) is the total weight of the
edges of T. This takes O

(
n log n+ nε−d

)
time. Furthermore, for any r ≥ 0 and a connected component

C of MST≤r, the set C is contained in a connected component of T≤(1+ε)r.

Proof: Compute a (1 + ε)-spanner G of P and let T be a minimum spanning tree of G. We output the
tree T as the approximate minimum spanning tree. Clearly the time to compute T is O

(
n log n+ nε−d

)
,

since the MST of a graph with n vertices and m edges can be computed in O(n log n+m) time.
There remains the task of proving that T is the required approximation. For any q, s ∈ P, let πqs

denote the shortest path between q and s in G. Since G is a (1 + ε)-spanner, we have that w(πqs) ≤
(1 + ε) ∥q − s∥, where w(πqs) denotes the weight of πqs in G. We have that G′ = (P, E) is a connected
subgraph of G, where

E =
⋃

qs∈E(MST)
πuv,

where E(MST) denotes the set of edges of the graph MST. Furthermore,

ω(G′) ≤
∑

qs∈MST
w(πqs) ≤

∑
qs∈MST

(1 + ε) ∥q − s∥ = (1 + ε)ω(MST),

since G is a (1 + ε)-spanner. Since G′ is a connected spanning subgraph of G, it follows that ω(T) ≤
ω(G′) ≤ (1 + ε)w(MST).

The second claim follows by similar argumentation.

20.2.3. Approximating the diameter

Lemma 20.2.4. Given a set P of n points in Rd, one can compute, in O
(
n log n+ nε−d

)
time, a pair

p, q ∈ P, such that ∥pq∥ ≥ (1 − ε)diam(P), where diam(P) is the diameter of P.

Proof: Compute a (4/ε)-WSPD W of P. As before, we assign for each node u of T an arbitrary repre-
sentative point that belongs to Pu. This can be done in linear time. Next, for each pair of W , compute
the distance of its representative points (for each pair, this takes constant time). Let {x, y} be the pair
in W such that the distance between its two representative points is maximal, and return repx and
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repy as the two points realizing the approximation. Overall, this takes O
(
n log n+ nε−d

)
time, since

|W| = O(n/εd).
To see why it works, consider the pair q, s ∈ P realizing the diameter of P, and let {u, v} ∈ W be

the pair in the WSPD that contain the two points, respectively (i.e., q ∈ Pu and s ∈ Pv). We have that

∥repu − repv∥ ≥ d(u, v) ≥ ∥q − s∥ − diam(Pu) − diam(Pv)
≥ (1 − 2(ε/2)) ∥q − s∥ = (1 − ε)diam(P),

since, by  Corollary 4.1.4  , max(diam(Pu), diam(Pv)) ≤ 2(ε/4) ∥q − s∥. Namely, the distance of the two
points output by the algorithm is at least (1 − ε)diam(P).

20.2.4. Closest pair
Let P be a set of points in Rd. We would like to compute the closest pair , namely, the two points
closest to each other in P.

We need the following observation.

Lemma 20.2.5. Let W be an ε−1-WSPD of P, for ε ≤ 1/2. There exists a pair {u, v} ∈ W, such that
(i) |Pu| = |Pv| = 1 and

(ii) ∥repurepv∥ is the length of the closest pair, where Pu = {repu} and Pv = {repv}.

p

q

s
Pu

Pv

Proof: Consider the pair of closest points p and q in P, and consider the pair {u, v} ∈ W , such that
p ∈ Pu and q ∈ Pv. If Pu contains an additional point s ∈ Pu, then we have that

∥ps∥ ≤ diam(Pu) ≤ ε · d(u, v) ≤ ε ∥p− q∥ < ∥p− q∥ ,

by  Theorem 4.1.11  and since ε = 1/2. Thus, ∥ps∥ < ∥pq∥, a contradiction to the choice of p and q as
the closest pair. Thus, |Pu| = |Pv| = 1 and repu = q and repv = s.

Algorithm. Compute an ε−1-WSPD W of P, for ε = 1/2. Next, scan all the pairs of W , and compute
for all the pairs {u, v} which connect singletons (i.e., |Pu| = |Pv| = 1) the distance between their
representatives repu and repv. The algorithm returns the closest pair of points encountered.

Theorem 20.2.6. Given a set P of n points in Rd, one can compute the closest pair of points of P in
O(n log n) time.

We remind the reader that we already saw a linear (expected) time algorithm for this problem.
However, this is a deterministic algorithm, and it can be applied in more abstract settings where a small
WSPD still exists, while the previous algorithm would not work.

20.2.5. All nearest neighbors
Given a set P of n points in Rd, we would like to compute for each point q ∈ P its nearest neighbor
in P (formally, this is the closest point in P \ {q} to q).

p

q

sThis is harder than it might seem at first, since this is not a symmetrical rela-
tionship. Indeed, in the figure on the right, q is the nearest neighbor to p, but s is
the nearest neighbor to q.
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20.2.5.1. The bounded spread case

Algorithm. Assume P is contained in the unit square and diam(P) ≥ 1/4. Furthermore, let Φ = Φ(P)
denote the spread of P. Compute an ε−1-WSPD W of P, for ε = 1/4.

Scan all the pairs {u, v} with a singleton as one of their sides (i.e., |Pu| = 1), and for each such
singleton Pu = {p}, record for p the closest point to it in the set Pv. Maintain for each point the closest
point to it that was encountered.

We claim that in the end of this process, for every point p in P its recorded nearest point is its
nearest neighbor in P \ {p}.
Analysis. The analysis of this algorithm is slightly tedious, but it reveals some additional interesting
properties of WSPD. We start with a claim that shows that we will indeed find the nearest neighbor for
each point.

Lemma 20.2.7. Let p be any point of P, and let q be the nearest neighbor to p in the set P\{p}. Then,
there exists a pair {u, v} ∈ W, such that Pu = {p} and q ∈ Pv.

Proof: Consider the pair {u, v} ∈ W such that {p, q} ∈ Pu ⊗ Pv, where p ∈ Pu and q ∈ Pv. Now,
diam(Pv) ≤ εd(Pu,Pv) ≤ ε ∥pq∥ ≤ ∥pq∥ /4. Namely, if Pv contained any other point except p, then q
would not be the nearest neighbor to p.

Thus, the above lemma implies that the algorithm will find the nearest neighbor for each point p of
P, as the appropriate pair containing only p on one side would be considered by the algorithm. Thus
remains the task of bounding the running time.

A pair of nodes {x, y} of T is a generator of a pair {u, v} ∈ W if {u, v} was computed inside a
recursive call algWSPD(x, y).

Lemma 20.2.8. Let W be an ε−1-WSPD of a point set P generated by algWSPD. Consider a pair
{u, v} ∈ W. Then ∆(p(v)) ≥ (ε/2)d(u, v) and ∆(p(u)) ≥ (ε/2)d(u, v), where d(u, v) = d(□u,□v) is
the distance between the cell of u and the cell of v.

Proof: Assume, for the sake of contradiction, that ∆(v′) < (ε/2)ℓ, where ℓ = d(u, v) and v′ = p(v). By
 Lemma 4.1.9 , we have that

∆(u) ≤ ∆(v′) < ε
ℓ

2 .

But then
d(u, v′) ≥ ℓ− ∆(v′) ≥ ℓ− ε

ℓ

2 ≥ ℓ

2 .

Thus,
max(∆(u),∆(v′)) < ε

ℓ

2 ≤ εd(u, v′).

Namely, u and v′ are well separated, and as such {u, v′} cannot be a generator of {u, v}. Indeed, if
{u, v′} was considered by the algorithm, then it would have added it to the WSPD and never created
the pair {u, v}.

So, the other possibility is that {u′, v} is the generator of {u, v}, where u′ = p(u). But then
∆(u′) ≤ ∆(v′) < εℓ/2, by  Lemma 4.1.9 . Using the same argumentation as above, we have that {u′, v}
is a well-separated pair and as such it cannot be a generator of {u, v}.

But this implies that {u, v} cannot be generated by algWSPD, since either {u, v′} or {u′, v} must
be a generator of {u, v}, a contradiction.
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Claim 20.2.9. For two pairs {u, v} , {u′, v′} ∈ W such that □u ⊆ □u′, the interiors of □v and □v′ are
disjoint.

Proof: Since □u ⊆ □u′ , it follows that u′ is an ancestor of u.
If v′ is an ancestor of v, then algWSPD returned the pair {u′, v′} and it would have never generated

the pair {u, v}.
If v is an ancestor of v′ (see the figure on the right), then

∆(u) < ∆(u′) (u′ is an ancestor of u)
≤ ∆(p(v′)) (by  Lemma 4.1.9 applied to {u′, v′})
≤ ∆(v) (v is an ancestor of v′)
≤ ∆(p(u)) (by  Lemma 4.1.9 applied to {u, v})
≤ ∆(u′) (u′ is an ancestor of u).

v′

vu′

u

p(v′)

Namely, ∆(v) = ∆(u′). But then the pair {u′, v} is a generator of both {u, v} and {u′, v′}. To see that,
observe that algWSPD always tries to consider pairs that have the same diameter (it always splits
the bigger side of a pair). As such, for the algorithm to generate the pair {u, v}, it must have had a
generator {u′′, v}, such that diam(u′′) ≥ diam(v). But the lowest ancestor of u that has this property is
u′.

Now, when algWSPD considered the pair {u′, v}, it split one of its sides (by calling on its children).
In either case, it either did not create the pair {u, v} or it did not create the pair {u′, v′}, a contradiction.

The case v = v′ is handled in a similar fashion.

Lemma 20.2.10. Let P be a set of n points in Rd, let W be an ε−1-WSPD of P, let ℓ > 0 be a distance,
and let L be the set of pairs {u, v} ∈ W such that ℓ ≤ d(u, v) ≤ 2ℓ. Then, for any point p ∈ P, the
number of pairs in L containing p is O(1/εd).

Proof: Let u be the leaf of the quadtree T (that is used in computing W) storing the point p, and let π
be the path between u and the root of T. We claim that L contains at most O(1/εd) pairs with nodes
that appear along π. Let

X =
{
v
∣∣∣x ∈ π and {x, v} ∈ L

}
.

The cells of X are interior disjoint by  Claim 4.2.9 , and they contain all the pairs in W that covers p.
So, let r be the largest power of two which is smaller than (say) εℓ/

(
4
√

d
)
. Clearly, there are O(1/εd)

cells of Gr within a distance at most 2ℓ from □u. We account for the nodes v ∈ X, as follows:
(i) If ∆(v) ≥ r

√
d, then □v contains a cell of Gr, and there are at most O(1/εd) such cells.

(ii) If ∆(v) < r
√

d and ∆(p(v)) ≥ r
√

d, then:

1. If p(v) is a compressed node, then p(v) contains a cell of Gr and it has only v as a single
child. As such, there are at most O(1/εd) such charges.

2. Otherwise, p(v) is not compressed, but then diam(□v) = diam
(
□p(v)

)
/2. As such, □v contains

a cell of Gr/2 within a distance at most 2ℓ from □u, and there are O(1/εd) such cells.

(iii) The case ∆(p(v)) < r
√

d is impossible. Indeed, by  Lemma 4.1.9 , we have ∆(p(v)) < r
√

d ≤
εℓ/4 = (ε/4)d(u, v), a contradiction to  Lemma 4.2.8  .
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We conclude that there are at most O(1/εd) pairs that include p in L.

Lemma 20.2.11. Let P be a set of n points in the plane. Then one can solve the all nearest neighbors
problem, in O(n(log n+ log Φ(P ))) time, where Φ is the spread of P.

Proof: The algorithm is described above. There only remains the task of analyzing the running time.
For a number i ∈ {0,−1, . . . ,− ⌊lg Φ⌋ − 4}, consider the set of pairs Li, such that {u, v} ∈ Li, if and
only if {u, v} ∈ W , and 2i−1 ≤ d(u, v) ≤ 2i. Here, W is a 1/ε-WSPD of P, where ε = 1/4. A point
p ∈ P can be scanned at most O(1/εd) = O(1) times because of pairs in Li by  Lemma 4.2.10 . As such,
a point gets scanned at most O(log Φ) times overall, which implies the running time bound.

20.2.5.2. All nearest neighbors – the unbounded spread case

To handle the unbounded case, we need to use some additional geometric properties.

Lemma 20.2.12. Let u be a node in the compressed quadtree of P, and partition the space around repu

into cones of angle ≤ π/3. Let ψ be such a cone, and let Q be the set of all points in P which are within
a distance ≥ 4diam(Pu) from repu and all lie inside ψ. Let q be the closest point in Q to repu. Then,
q is the only point in Q whose nearest neighbor might be in Pu.

Proof: Let p = repu and consider any point s ∈ Q.

p

Pu

ψ q

s
Qβ

γ

α
Since ∥s − p∥ ≥ ∥q − p∥, it follows that α = ∠sqp ≥ ∠qsp = γ. Now,

α + γ = π − β, where β = ∠spq. But β ≤ π/3, and as such

2α ≥ α + γ = π − β ≥ 3β − β = 2β.

Namely, α is the largest angle in the triangle △pqs, which implies ∥s − p∥ ≥ ∥s − q∥. Namely, q is closer
to s than p, and as such p cannot serve as the nearest neighbor to s in P.

It is now straightforward (but tedious) to show that, in fact, for any t ∈ Pu, we have ∥s − t∥ ≥ ∥s − q∥,
which implies the claim. 

③
 

 Lemma 4.2.12 implies that we can do a top-down traversal of the compressed quadtree of P, after
computing an ε−1-WSPD W of P, for ε = 1/16. For every node u, we maintain a (constant size) set Ru

of candidate points such that Pu might contain their nearest neighbor.
So, assume we had computed Rp(u), and consider the set

X(u) = Rp(u) ∪
⋃

{u,v}∈W,|Pv |=1
Pv.

(Note that we do not have to consider pairs with |Pv| > 1, since no point in Pv can have its nearest
neighbor in Pu in such a scenario.) Clearly, we can compute X(u) in linear time in the number of pairs
in W involved with u. Now, we build a “grid” of cones around repu and throw the points of X(u) into
this grid. For each such cone, we keep only the closest point p′ to repu (because the other points in this

③Here are the details for readers of little faith. By the law of sines, we have ∥p−s∥
sin α = ∥q−s∥

sin β . As such, ∥q − s∥ =
∥p − s∥ sin β

sin α . Now, if α ≤ π − 3β, then ∥q − s∥ = ∥p − s∥ sin β
sin α ≤ ∥p − s∥ sin β

sin(3β) ≤ ∥p−s∥
2 < ∥p − s∥ − ∆(u), since

∥p − s∥ ≥ 4∆(u). This implies that no point of Pu can be the nearest neighbor of s.
If α ≥ π − 3β, then the maximum length of qs is achieved when γ = 2β. The law of sines then implies that ∥q − s∥ =

∥p − q∥ sin β
sin(2β) ≤ 3

4 ∥p − q∥ ≤ 3
4 ∥p − s∥ < ∥p − s∥ − ∆(u), which again implies the claim.
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cone would use p′ as nearest neighbor before using any point of Pu). Let Ru be the set of these closest
points. Since the number of cones is O(1), it follows that |Ru| = O(1).

We continue this top-down traversal till Ru is computed for all the nodes in the tree.
Now, for every vertex u, if Pu contains only a single point p, then we compute for any point q ∈ Ru

its distance to p, and if p is a better candidate to be a nearest neighbor, then we set p as the (current)
nearest neighbor to q.
Correctness. Clearly, the resulting running time (ignoring the computation of the WSPD) is linear in
the number of pairs of the WSPD and the size of the compressed quadtree. If p is the nearest neighbor
to q, then there must be a WSPD pair {u, v} such that Pv = {q} and p ∈ Pu. But then the algorithm
would add q to the set Ru, and it would be in Rz, for all descendants z of u in the quadtree, such that
p ∈ Pz. In particular, if y is the leaf of the quadtree storing p, then q ∈ Ry, which implies that the
algorithm computes correctly the nearest neighbor to q.

This implies the correctness of the algorithm.

Theorem 20.2.13. Given a set P of n points in Rd, one can solve the all nearest neighbors problem in
O(n log n) time.

20.3. Semi-separated pair decomposition (SSPD)
Here we present an interesting relaxation of WSPD that has the advantage of having a low total weight.

Definition 20.3.1. Given a pair decomposition W =
{
{A1, B1} , . . . , {As, Bs}

}
of a point set P, its weight

is ω(W) = ∑s
i=1(|Ai| + |Bi|).

It is easy to verify that, in the worst case, a WSPD of a set of n points in
the plane might have weight O(n2); see Exercise  4.5.1 . The notation of SSPD
circumvents this by requiring a weaker notion of separation.

Definition 20.3.2. Two sets of points Q and R are (1/ε)-semi-separated if

min(diam(Q), diam(R)) ≤ ε · d(Q,R),

where d(Q,R) = mins∈Q,t∈R ∥st∥.
See the figure on the right for an example.

Q

R

See  Definition 4.1.2 for the original notion of sets being well separated; in particular, in the well-
separated case we demanded that the separation be large relative to the diameter of both sets, while
here it is sufficient that the separation be large for the smaller of the two sets. The following is the
analog of the WSPD ( Definition 4.1.3 ).

Definition 20.3.3 (SSPD). For a point set P, a semi-separated pair decomposition (SSPD) of P
with parameter 1/ε, denoted by ε−1-SSPD, is a pair decomposition of P formed by a set of pairs W such
that all the pairs are 1/ε-semi-separated.

Observation 20.3.4. An ε−1-WSPD of P is an ε−1-SSPD of P.
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20.3.1. Construction
We use the property that in low dimensions there always exists a good separating ring that breaks the
point set into two reasonably large subsets. Indeed, consider the smallest ball b = b(p, r) that contains
n/c1 points of P, where c1 is a sufficiently large constant. Let b′ be the scaling of this ball by a factor
of two. By a standard packing argument, the ring b′ \ b can be covered with c = O(1) copies of b, none
of which can contain more than n/c1 points of P, see  Figure 4.3.1 . It follows that by picking c1 = 3c,
we are guaranteed that at least half the points of P are outside b′. Now, the ring can be split into n/2
empty rings (by taking a sphere that passes through each point inside the ring). One of them would
be of thickness at least r/n, and it would separate the inner n/c points of P from the outer n/2 points
of P. Doing this efficiently requires trading off some constants, and it requires some tedious details, as
described in the following lemma.

Lemma 20.3.5. Let P be a set of n points in Rd, let t > 0 be a parameter, and let c be a sufficiently
large constant. Then one can compute, in linear time, a ball b = b(p, r), such that

(i) |b ∩ P| ≥ n/c,
(ii) |b(p, r(1 + 1/t)) ∩ P| ≤ n/2t+ |b ∩ P|, and

(iii) |P \ b(p, 2r)| ≥ n/2.

Proof: Let b = b(p, α) be the disk computed, in O(n) time, by  Lemma 4.6.1 , for k = n/c. This ball
contains n/c points of P and α ≤ 2ropt(P, k), where ropt(P, k) is the radius of the smallest ball containing
k points of P. Observe that the ball b8α = b(p, 8α) can be covered by M = O(1) balls of radius α/2.
Each of these balls contains at most n/c points, by the construction of b. As such, if c > 2M , we have
that |P ∩ b8α| ≤ M(n/c) ≤ n/2 and |P \ b8α| ≥ n/2.

We will set r ∈ [α, eα] in such a way that property (ii) will hold for it. Indeed, set ri = α(1 + 1/t)i,
for i = 0, . . . , t, and consider the rings

Ri = b(p, ri) \ b(p, ri−1),

for i = 1, . . . , t. We have that rt = α(1 + 1/t)t ≤ α exp(t/t) = αe, since 1 + x ≤ ex for all x ≥ 0. Now,
all these (interior disjoint) rings are contained inside b4α. It follows that one of these rings, say the ith
ring Ri, contains at most (n/2)/t of the points of P (since b(p, 8α) contains at most half of the points
of P). For r = ri−1 ≤ 4r the ball b = b(p, r) has the required properties, as b(p, 2r) ⊆ b(p, 8α).

We also need the following easy property.

≤ n/c1

≥ n/2

b

b′

Figure 20.3.1: Cover ring.
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Lemma 20.3.6. Let P be a set of n points in Rd, with spread Φ = Φ(P), and let ε > 0 be a parameter.
Then, one can compute (1/ε)-WSPD (and thus a (1/ε)-SSPD) for P of total weight O(nε−d log Φ).
Furthermore, any point of P participates in at most O

(
ε−d log Φ

)
pairs.

Proof: Build a regular (i.e., not compressed) quadtree for P, and observe that its depth is O(log Φ).
Now, construct a WSPD for P using this quadtree. Consider a pair of nodes (u, v) in this WSPD, and
observe that the sidelength of u and v is the same up to a factor of two (since we used a non-compressed
quadtree). As such, every node participates in O(1/εd) pairs in the WSPD. We conclude that each point
participates in O

(
ε−d log Φ

)
pairs, which implies that the total weight of this WSPD is as claimed.

Theorem 20.3.7. Let P be a set of points in Rd, and let ε > 0 be a parameter. Then, one can compute
a ε−1-SSPD for P of total weight O

(
nε−d log2 n

)
. The number of pairs in the SSPD is O

(
nε−d log n

)
,

and the computation time is O
(
n log2 n+ nε−d log n

)
.

Proof: Using  Lemma 4.3.5 , with t = n, we compute a ball b(p, r) that contains at least n/c points of P
and such that R = b(p, (1 + 1/t)r) \ b(p, r) contains no point of P.

Let Pin = P ∩ b,
Pout = (P \ Pin) ∩ b(p, 2r/ε),

and
Pfar = P \

(
Pin ∪ Pout

)
.

Clearly, {Pin,Pfar} is a (1/ε)-semi-separated pair, which we add to our SSPD.
Let ℓ = minp∈Pin,q∈Pout

∥pq∥. Observe that ℓ is larger than the thickness of the
empty ring R; that is, ℓ ≥ r/n.

r
Pin

Pout Pfar

p

2r
ε

We would like to compute the SSPD for all pairs in Pin ⊗ Pout. The observation is that none of these
pairs are of distance smaller than ℓ, and the diameter of the point set Q = Pin ∪Pout is diam(Q) ≤ 4ℓn/ε.
Thus, we can snap the point set Q to a grid of sidelength εℓ/(10d). The resulting point set Q′ has spread
O(n/ε2). Next, compute a 2/ε-SSPD for the snapped point set Q′, using  Lemma 4.3.6 . Clearly, the
computed SSPD when extended back to the point set Q would cover all the pairs of Pin ⊗ Pout, and it
would provide a (1/ε)-SSPD for these pairs. By  Lemma 4.3.6 , every point of Q would participate in at
most O

(
ε−d log(n/ε)

)
= O

(
ε−d log n

)
pairs.

To complete the construction, we need to construct a (1/ε)-SSPD for the pairs in Pin ⊗ Pin and in
(Pout ∪ Pfar) ⊗ (Pout ∪ Pfar). This we do by continuing the construction recursively on the point sets Pin
and Pout ∪ Pfar.

In the resulting WSPD, every point participates in at most

T (n) = 1 +O
(
ε−d log n

)
+ max

(
T (n1), T (n2)

)
pairs of the resulting SSPD, where n1 = |Pin| and n2 = |Pout ∪ Pfar|. Since n1 +n2 = n and n1, n2 ≥ n/c,
where c is some constant, it follows that T (n) = O

(
ε−d log2 n

)
. Namely, every point of P partici-

pates in at most O
(
ε−d log2 n

)
pairs in the resulting SSPD. As such, the total weight of the SSPD is

O
(
nε−d log2 n

)
.

In each level of the recursion, we create at most O(n/ε2) pairs. As such, the bound on the number
of pairs created follows. The bound on the running time follows by similar argumentation.
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20.3.2. Lower bound

The result of  Theorem 4.3.7 can be improved so that the total weight of the SSPD is O
(
nε−d log n

)
;

see the bibliographical notes in the next section. Interestingly, it turns out that any pair decomposition
(without any required separation property) has to be of total weight Ω(n log n).

Lemma 20.3.8. Let P be a set of n points, and let W =
{
{A1, B1} , . . . , {As, Bs}

}
be a pair decompo-

sition of P (see  Definition 4.1.1 ). Then, ω(W) = ∑
i(|Ai| + |Bi|) = Ω(n log n).

Proof: Scan the pairs {Ai, Bi} one by one, and for each such pair, randomly set Yi to be either Ai or Bi

with equal probability. Let R = P \
(⋃

i

Yi

)
.

Observe that R is either empty or contain a single point. Indeed, if there are two distinct points
p, q ∈ R, then there exists an index j such that {p, q} ∈ Aj ⊗ Bj. In particular, |{p, q} ∩ Aj| = 1 and
|{p, q} ∩Bj| = 1. As such |{p, q} ∩ Yj| = 1, and this implies that R cannot contain both points, as R
does not contain any of the points of Yj.

Now, let P = {p1, . . . , pn} and let xi be the number of pairs that contain pi (in either side of the
pair), for i = 1, . . . , n. Now, the quantity we need to bound is ∑i xi since ∑s

i=1(|Ai| + |Bi|) = ∑n
i=1 xi.

Observe that the probability of pi to be in R is exactly 1/2xi since this is the probability that for all the
xi pairs that contain pi we eliminated the side that does not contain pi. As such, define an indicator
variable Zi such that Zi = 1 if and only if pi ∈ R. Observe that ∑i Zi = |R| ≤ 1. As such, by linearity
of expectations, we have that ∑i E[Zi] = E[∑i Zi] ≤ 1. But E[Zi = 1] = P[pi ∈ R] = 1/2xi . Namely, we
have that

n∑
i=1

1
2xi

=
∑

i

P[pi ∈ R] =
∑

i

E[Zi] ≤ 1.

Let u1, . . . , un be a set of n positive integers that minimizes ∑i ui, such that ∑n
i=1 2−ui ≤ 1. Observe

that ∑i ui ≤ ∑
i xi.

Now, if there are i and j such that ui > uj + 1, then we have that

1
2ui−1 + 1

2uj+1 ≤ 2
2uj+1 = 1

2uj
≤ 1

2ui
+ 1

2uj
.

Namely, setting ui − 1 and uj + 1 as the new values of ui and uj, respectively, does not change the
quantity u1 + · · · + un, while preserving the inequality ∑n

i=1 2−ui ≤ 1. We repeat this fix-up process till
we have |ui − uj| ≤ 1 for all i and j. So, let t be the number such that t ≤ ui ≤ t+ 1, for all i. We have
that

n∑
i=1

1/2t+1 ≤
n∑

i=1
1/2ui ≤ 1 =⇒ n/2t+1 ≤ 1 =⇒ n ≤ 2t+1 =⇒ t ≥ lg(n/2).

We conclude that ∑i xi ≥ ∑
i ui ≥ nt ≥ n lg(n/2), as claimed.

20.4. Bibliographical notes
Well-separated pair decomposition was defined by Callahan and Kosaraju [  CK95 ]. They defined a
different space decomposition tree, known as the fair split tree. Here, one computes the axis parallel
bounding box of the point set, always splitting along the longest edge by a perpendicular plane in the
middle (or near the middle). This splits the point set into two sets, for which we construct the fair split
tree recursively. Implementing this in O(n log n) time requires some cleverness. See [ CK95 ] for details.
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Our presentation of the WSPD (very roughly) follows [ HM06 ]. The (easy) observation that a WSPD
can be generated directly from a compressed quadtree (thus avoiding the fair split tree) is from there.

Callahan and Kosaraju [ CK95 ] were inspired by the work of Vaidya [ Vai86  ] on the all nearest neigh-
bors problem (i.e., compute for each point in P its nearest neighbor in P). He defined the fair split tree
and showed how to compute the all nearest neighbors in O(n log n) time. However, the first to give an
O(n log n) time algorithm for the all nearest neighbors problem was Clarkson [  Cla83 ] using similar ideas
(this was part of his PhD thesis).
Diameter. The algorithm for computing the diameter in  Section 4.2.3 can be improved by not con-
structing pairs that cannot improve the (current) diameter and by constructing the underlying tree on
the fly together with the diameter. This yields a simple algorithm that works quite well in practice; see
[ Har01 ].
All nearest neighbors.

 Section 4.2.5 is a simplification of the algorithm for the all k-nearest neighbors problem. Here, one
can compute for every point its k-nearest neighbors in O(n log n+ nk) time. See [  CK95 ] for details.

The all nearest neighbors algorithm for the bounded spread case ( Section 4.2.5.1 ) is from [ HM06 ].
Note that unlike the unbounded case, this algorithm only uses packing arguments for its correctness.
Surprisingly, the usage of the Euclidean nature of the underlying space (as done in  Section 4.2.5.2 ) seems
to be crucial in getting a faster algorithm for this problem. In particular, for the case of metric spaces
of low doubling dimension (that do have a small WSPD), solving this problem requires Ω(n2) time in
the worst case.

Note, that the all nearest neighbors graph is a subgraph of the MST, and more importantly for our
purposes, it is also a subgraph of the Delaunay triangulation. As such, in the plane, it can be computed
in O(n log n) time. However, in higher dimensions, no exact MST algorithm is known with near linear
running time.
Dynamic maintenance. WSPD can be maintained in polylogarithmic time under insertions and
deletions. This is quite surprising when one considers that, in the worst case, a point might participate
in a linear number of pairs, and a node in the quadtree might participate in a linear number of pairs.
This is described in detail in Callahan’s thesis [ Cal95 ]. Interestingly, using randomization, maintaining
the WSPD can be considerably simplified; see the work by Fischer and Har-Peled [ FH05 ].
High dimension. In high dimensions, as the uniform metric demonstrates (i.e., n points, all of them
within a distance of 1 from each other), the WSPD can have quadratic complexity. This metric is easily
realizable as the vertices of a simplex in Rn−1. On the other hand, doubling metrics have near linear
size WSPD. Since WSPDs by themselves are so powerful, it is tempting to try to define the dimension of
a point set by the size of the WSPD it has. This seems like an interesting direction for future research,
as currently little is known about it (to the best of the author’s knowledge).
Semi-separated pair decomposition. The notion of semi-separated pair decomposition was intro-
duced by Varadarajan [ Var98  ] who used it to speed up the matching algorithm for points in the plane.
His SSPD construction was of total weight O(n log4 n) (for a constant ε). This was improved to O(n log n)
by [ ABFG09 ].

SSPDs were used to construct spanners that can survive even if a large fraction of the graph disappears
(for example, all the nodes inside the arbitrary convex region disappear) [  ABFG09 ]. In [ ABF+11 ],
SSPDs were used for computing additively weighted spanners. Further work on SSPDs can be found
in [ ACFS09 ]. The simpler construction shown here is due to Abam and Har-Peled [ AH10 ] and it also
works for metrics with low doubling dimension.

The elegant proof of the lower bound on the size of the SSPD is from [ BS07 ].
Euclidean minimum spanning tree. Let P be a set of points in Rd for which we want to compute
its minimum spanning tree (MST). It is easy to verify that if an edge pq is not a Delaunay edge of P,
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then its diametrical ball must contain some other point s in its interior, but then ps and qs are shorter
than pq. This in turn implies that pq cannot be an edge of the MST. As such, the edges of the MST
are subset of the edges of the Delaunay triangulation of P. Since the Delaunay triangulation can be
computed in O(n log n) time in the plane, this implies that the MST can be computed in O(n log n) time
in the plane. In d ≥ 3 dimensions, the exact MST can be computed in O

(
n2−2/(⌈d/2⌉+1)+ε′

)
time, where

ε′ > 0 is an arbitrary small constant [ AESW91 ]. The computation of the MST is closely related to the
bichromatic closest pair problem [ KLN99 ].

There is a lot of work on the MST in Euclidean settings, from estimating its weight in sublinear time
[ CRT05  ], to doing this in the streaming model under insertions and deletions [ FIS05 ], to implementation
of a variant of the approximation algorithm described here [ NZ01 ]. This list is by no means exhaustive.

20.5. Exercises
Exercise 20.5.1 (The unbearable weight of the WSPD). Show that there exists a set of n points (even on
the line), such that any ε−1-WSPD for it has weight Ω(n2), for ε = 1/4.

Exercise 20.5.2 (WSPD structure). Let ε > 0 be a sufficiently small constant. For any n sufficiently large,
show an example of a point set P of n points, such that its (1/ε)-WSPD (as computed by algWSPD)
has the property that a single set participates in Ω(n) sets. 

④
 

Exercise 20.5.3 (Number of resolutions that matter). Let P be an n-point set in Rd, and consider the set

U =
{
i
∣∣∣ 2i ≤ ∥p− q∥ ≤ 2i+1, for p, q ∈ P

}
.

Prove that |U | = O(n) (the constant depends on d). Namely, there are only n different resolutions that
“matter”.

Exercise 20.5.4 (WSPD and sum of distances). Let P be a set of n points in Rd. The sponginess  

⑤
 of P

is X = ∑
{p,q}⊆P ∥p− q∥. Provide an efficient algorithm for approximating X. Namely, given P and a

parameter ε > 0, it outputs a number Y such that X ≤ Y ≤ (1 + ε)X.
(The interested reader can also verify that computing (exactly) the sum of all squared distances

(i.e., ∑{p,q}⊆P ∥p− q∥2) is considerably easier.)

Exercise 20.5.5 (SSPD with fewer pairs). Let P be a set of n points in Rd. The result of  Theorem 4.3.7 

can be improved so that the number of pairs in the (1/ε)-SSPD W generated is O(n/εd). To this end,
consider a pair separating points of Pin from Pfar as a long pair , and a pair separating Pin from Pout as
a short pair .
(A) Prove that the number of long pairs generated by the construction of  Theorem 4.3.7 is O(n).
(B) For an appropriately small enough constant c, consider a (c/ε)-WSPD W ′ of P, and show how to

find for each short pair of W the pair in W ′ that looks like it.
(C) Show how to reduce the number of short pairs in the SSPD by merging certain pairs, so that the

resulting pairs are still O(1/ε)-separated.
(D) Describe how to reduce the number of pairs W , so that the resulting decomposition is an O(1/ε)-

SSPD with O(n/εd) pairs and having the same weight as W .
④Note that there is always a WSPD construction such that each node participates in a “small” number of pairs.
⑤This is also known as the sum of pairwise distances in the literature, for reasons that the author cannot fathom.
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20.6. From previous lectures

Lemma 20.6.1. Given a set P of n points in Rd and parameter k, one can compute, in O
(
n(n/k)d

)
deterministic time, a ball b that contains k points of P and its radius radius(b) ≤ 2ropt(P, k), where
ropt(P, k) is the radius of the smallest ball in Rd containing k points of P.

Definition 20.6.2 (Canonical squares and canonical grids). A square is a canonical square if it is con-
tained inside the unit square, it is a cell in a grid Gr, and r is a power of two (i.e., it might correspond
to a node in a quadtree). We will refer to such a grid Gr as a canonical grid.
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