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What do you know? You know just what you perceive.
What can you show? Nothin’ of what you believe,
And as you grow, each thread of life that you leave
Will spin around your deeds and dictate your needs
As you sell your soul and you sow your seeds,
And you wound yourself and your loved one bleeds,
And your habits grow, and your conscience feeds
On all that you thought you should be –
I never thought this could happen to Meeeeeeeee

Dreidel, Don McLean

In this chapter, we discuss quadtrees, arguably one of the simplest and most powerful geometric data-
structures. We begin in  Section 19.1 by defining quadtrees and giving a simple application. We also
describe a clever way for performing point-location queries quickly in such quadtrees. In  Section 19.2 ,
we describe how such quadtrees can be compressed, constructed quickly, and be used for point-location
queries. In  Section 19.3  , we show how to dynamically maintain a compressed quadtree under insertions
and deletions of points.

19.1. Quadtrees – a simple point-location data-structure
Let Pmap be a planar map. To be more concrete, let Pmap be a partition of the unit
square into polygons. The partition Pmap can represent any planar map where a
region in the map might be composed of several polygons (or triangles). For the
sake of simplicity, assume that every vertex in Pmap appears in a constant number
of polygons.

We want to preprocess Pmap for point-location queries, so that given a query
point, we can figure out which polygon contains the query (see the figure on the
right). Of course, there are numerous data-structures that can do this, but let us
consider the following simple solution (which in the worst case, can be quite bad).

Build a tree T, where every node v ∈ T corresponds to a cell □v (i.e., a square) and
the root corresponds to the unit square. Each node has four children that correspond to
the four equal sized squares formed by splitting □v by horizontal and vertical cuts; see
the figure on the right.

The construction is recursive, and we start from v = rootT . The conflict list of the square □v (i.e.,
the square associated with v) is a list of all the polygons of Pmap that intersect □v. If the current node’s

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit  http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.
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QTFastPLI(T, q, l, h).
m← ⌊(l + h)/2⌋
v ← QTGetNode(T, q, m)
if v = null then

return QTFastPLI(T, q, l, m− 1).
w ← Child(v, q)

//w is the child of v containing q.
If w = null then

return v
return QTFastPLI(T, q, m + 1, h)

Figure 19.1.1: One can perform point-location in a quadtree T by calling QTFastPLI(T, q, 0, height(T )).

conflict list has more than, say, nine 

②
 polygons, we create its children nodes, and we call recursively on

each child. We compute each child’s conflict list from its parent list. As such, we stop at a leaf if its
conflict list is of size at most nine. For each constructed leaf, we store in it its conflict list (but we do
not store the conflict list for internal nodes).

Given a query point q, in the unit square, we can compute the polygon of Pmap containing q by
traversing down T from the root, repeatedly going into the child of the current node, whose square
contains q. We stop as soon as we reach a leaf, and then we scan the leaf’s conflict list and check which
of the polygons in this list contains q.

An example is depicted on the right, where the nodes on the
search path of the point-location query (i.e., the nodes accessed
during the query execution) are shown. The marked polygons are
all the polygons in the conflict list of the leaf containing the query
point.

Of course, in the worst case, if the polygons are long and skinny,
this quadtree might have unbounded complexity. However, for rea-
sonable inputs (say, the polygons are all fat triangles), then the
quadtree would have linear complexity in the input size (see Exer-
cise  19.5.2 ). The major advantage of quadtrees, of course, is their
simplicity. In a lot of cases, quadtrees would be a sufficient solu-
tion, and seeing how to solve a problem using quadtrees might be
a first insight into a problem.

19.1.1. Fast point-location in a quadtree
One possible interpretation of quadtrees is that they are a multi-grid representation of a point set.

Definition 19.1.1 (Canonical squares and canonical grids). A square is a canonical square if it is con-
tained inside the unit square, it is a cell in a grid Gr, and r is a power of two (i.e., it might correspond
to a node in a quadtree). We will refer to such a grid Gr as a canonical grid.

Consider a node v of a quadtree of depth i (the root has depth 0) and its associated square □v. The
sidelength of □v is 2−i, and it is a canonical square in the canonical grid G2−i . As such, we will refer to

②The constant here is arbitrary. It just has to be at least the number of polygons of Pmap meeting in one common
corner.
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ℓ(v) = −i as the level of v. However, a cell in a grid has a unique ID made out of two integer numbers.
Thus, a node v of a quadtree is uniquely defined by the triple id(v) = (ℓ(v), ⌊x/r⌋, ⌊y/r⌋), where (x, y)
is any point in □v and r = 2ℓ(v).

Furthermore, given a query point q and a desired level ℓ, we can compute the ID of the quadtree
cell of this level that contains q in constant time. Thus, this suggests a natural algorithm for doing
a point-location in a quadtree: Store all the IDs of nodes in the quadtree in a hash-table, and also
compute the maximal depth h of the quadtree. Given a query point q, we now have access to any node
along the point-location path of q in T, in constant time. In particular, we want to find the point in T

where this path “falls off” the quadtree (i.e., reaches the leaf). This we can find by performing a binary
search for the leaf.

Let QTGetNode(T, q, d) denote the procedure that, in constant time, returns the node v of depth
d in the quadtree T such that □v contains the point q. Given a query point q, we can perform point-
location in T (i.e., find the leaf containing the query) by calling QTFastPLI(T, q, 0, height(T )). See

 Figure 19.1.1 for the pseudo-code for QTFastPLI.

Lemma 19.1.2. Given a quadtree T of size n and of height h, one can preprocess it (using hashing),
in linear time, such that one can perform a point-location query in T in O(log h) time. In particular, if
the quadtree has height O(log n) (i.e., it is “balanced”), then one can perform a point-location query in
T in O(log log n) time.

19.2. Compressed quadtrees

19.2.1. Definition
Definition 19.2.1 (Spread). For a set P of n points in a metric space, let

Φ(P) = maxp,q∈P ∥pq∥
minp,q∈P,p ̸=q ∥pq∥

(19.2.1)

be the spread of P. In words, the spread of P is the ratio between the diameter of P and the distance
between the two closest points in P. Intuitively, the spread tells us the range of distances that P
possesses.

One can build a quadtree T for P, storing the points of P in the leaves of T, where one keeps splitting
a node as long as it contains more than one point of P. During this recursive construction, if a leaf
contains no points of P, we save space by not creating this leaf and instead creating a null pointer in
the parent node for this child.

Lemma 19.2.2. Let P be a set of n points contained in the unit square, such that diam(P) ≥ 1/2,
where diam(P) = maxp,q∈P ∥pq∥. Let T be a quadtree of P constructed over the unit square, where no leaf
contains more than one point of P. Then, the depth of T is bounded by O(log Φ), it can be constructed
in O(n log Φ) time, and the total size of T is O(n log Φ), where Φ = Φ(P).

Proof: The construction is done by a straightforward recursive algorithm as described above.
Let us bound the depth of T. Consider any two points p, q ∈ P, and observe that a node v of T

of level u = ⌊lg ∥pq∥⌋ − 1 containing p must not contain q (we remind the reader that lg n = log2 n).
Indeed, the diameter of □v is smaller than

√
12 + 122u =

√
22u ≤

√
2 ∥pq∥ /2 < ∥pq∥. Thus, □v cannot

contain both p and q. In particular, any node u of T of level r = −⌈lg Φ⌉ − 2 can contain at most one
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Figure 19.2.1: A point set, its quadtree and its compressed quadtree. Note that each node is associated
with a canonical square. For example, the node in the above quadtree marked by p would store the gray
square shown on the left and also would store the point p in this node.

point of P. Since a node of the quadtree containing a single point of P is a leaf of the quadtree, it follows
that all the nodes of T are of depth O(log Φ).

Since the construction algorithm spends O(n) time at each level of T, it follows that the construction
time is O(n log Φ), and this also bounds the size of the quadtree T.

The bounds of  Lemma 19.2.2 are tight, as one can easily verify; see Exercise  19.5.3 . But in fact, if
you inspect a quadtree generated by  Lemma 19.2.2 , you would realize that there are a lot of nodes of
T which are of degree one (the degree of a node is the number of children it has). See  Figure 19.2.1 for
an example. Indeed, a node v of T has more than one child only if it has at least two children x and
y, such that both □x and □y contain points of P. Let Pv be the subset of points of P stored in the
subtree of v, and observe that Px ∪ Py ⊆ Pv and Px ∩ Py = ∅. Namely, such a node v splits Pv into at
least two non-empty subsets and globally there can be only n− 1 such splitting nodes. Thus, a regular
quadtree might have a large number of “useless” nodes that one should be able to get rid of and get a
more compact data-structure.
If you compress them, they will fit in memory. We can replace such
a sequence of edges by a single edge. To this end, we will store inside each
quadtree node v its square □v and its level ℓ(v). Given a path of vertices in
the quadtree that are all of degree one, we will replace them with a single
vertex v that corresponds to the first vertex in this path, and its only child
would be the last vertex in this path (this is the first node of degree larger
than one). This compressed node v has a single child, and the region rgv

that v “controls” is an annulus, seen as the gray area in the figure on the
right.

4



p1

p2

p3

v1

v2

v3

v′1
v′2

rgv′1

p1

p2

p3

Figure 19.2.2

Otherwise, if v is not compressed, the region that v is in charge of
is a square rgv = □v. Specifically, an uncompressed node v is either a
leaf or a node that splits the point set into two (or more) non-empty
subsets (i.e., two or more of the children of v have points stored in their
subtrees). For a compressed node v, its sole child corresponds to the
inner square, which contains all the points of Pv. We call the resulting
tree a compressed quadtree.

Observe that the only nodes in a compressed quadtree with a single
child are compressed (they might be trivially compressed, the child being
one of the four subsquares of the parent). In particular, since any node
that has only a single child is compressed, we can charge it to its parent,
which has two (or more) children. There are at most n−1 internal nodes
in the new compressed quadtree that have degree larger than one, since one can split a set of size n at
most n−1 times till ending up with singletons. As such, a compressed quadtree has linear size (however,
it still can have linear depth in the worst case).

See  Figure 19.2.1 for an example of a compressed quadtree.

Example 19.2.3. As an application for compressed quadtrees, consider the problem of reporting the points
that are inside a query rectangle r. We start from the root of the quadtree and recursively traverse it,
going down a node only if its region intersects the query rectangle. Clearly, we will report all the points
contained inside r. Of course, we have no guarantee about the query time, but in practice, this might
be fast enough.

Note that one can perform the same task using a regular quadtree. However, in this case, such a
quadtree might require unbounded space. Indeed, the spread of the point set might be arbitrarily large,
and as such the depth (and thus size) of the quadtree can be arbitrarily large. On the other hand, a
compressed quadtree would use only O(n) space, where n is the number of points stored in it.

Example 19.2.4. Consider the point set P = {p1, . . . , pn}, where pi = (3/4, 3/4)/8i−1, for i = 1, . . . , n.
The compressed quadtree for this point set is depicted in  Figure 19.2.2 .

Here, we have □vi
= [0, 1]2/8i−1 and □v′

i
= [0, 1]2/(2 · 8i−1). As such, v′

i is a compressed node, where

rgv′
i

= □v′
i
\□vi+1 .

Note that this compressed quadtree has depth and size Θ(n). In particular, in this case, the com-
pressed quadtree looks like a linked list storing the points.

19.2.2. Efficient construction of compressed quadtrees
19.2.2.1. Bit twiddling and compressed quadtrees

Unfortunately, to be able to efficiently build compressed quadtrees, one requires a somewhat bizarre
computational model. We are assuming implicitly the unit RAM model, where one can store and
manipulate arbitrarily large real numbers in constant time. To work with grids efficiently, we need to
be able to compute quickly (i.e., constant time) lg(x) (i.e., log2), 2x, and ⌊x⌋. Strangely, computing a
compressed quadtree efficiently is equivalent to the following operation.

Definition 19.2.5 (Bit index). Let α, β ∈ [0, 1) be two real numbers. Assume these numbers in base two
are written as α = 0.α1α2 . . . and β = 0.β1β2 . . .. Let bit∆(α, β) be the index of the first bit after the
period in which they differ.
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For example, bit∆(1/4 = 0.012, 3/4 = 0.112) = 1 and bit∆(7/8 = 0.1112, 3/4 = 0.1102) = 3.

Lemma 19.2.6. If one can compute a compressed quadtree of two points in constant time, then one
can compute bit∆(α, β) in constant time.

Proof: Given α and β, we need to compute bit∆(α, β). Now, if |α− β| > 1/128, then we can compute
bit∆(α, β) in constant time. Otherwise, build a one-dimensional compressed quadtree (i.e., a compressed
trie) for the set {α, β}. The root is a compressed node in this tree, and its only child 

③
 v has sidelength

2−i; that is, ℓ(v) = −i. A quadtree node stores the canonical grid cell it corresponds to, and as such
ℓ(v) is available from the compressed quadtree. As such, α and β are identical in the first i bits of
their binary representation, but clearly they differ at the (i + 1)st bit, as the next level of the quadtree
splits them into two different subtrees. As such, if one can compute a compressed trie of two numbers
in constant time, then one can compute bit∆(α, β) in constant time.

If the reader is uncomfortable with building a one-dimensional compressed quadtree, then use the
point set P = {(α, 1/3), (β, 1/3)}, and compute a compressed quadtree T for P having the unit square
as the root. Similar argumentation would apply in this case.

Interestingly, once one has such an operation at hand, it is quite easy to compute a compressed
quadtree efficiently via “linearization”. The idea is to define an order on the nodes of a compressed
quadtree and maintain the points sorted in this order; see  Section 19.3 below for details. Given the
points sorted in this order, one can build the compressed quadtree in linear time using, essentially,
scanning.

However, the resulting algorithm is somewhat counterintuitive. As a first step, we suggest a direct
construction algorithm.

19.2.2.2. A construction algorithm

Let P be a set of n points in the unit square, with unbounded spread. We are interested in computing
the compressed quadtree of P. The regular algorithm for computing a quadtree when applied to P might
require unbounded time (but in practice it might be fast enough). Modifying it so that it requires only
quadratic time is an easy exercise. Getting down to O(n log n) time requires some cleverness.

Theorem 19.2.7. Given a set P of n points in the plane, one can compute a compressed quadtree of P
in O(n log n) deterministic time.

Proof: Compute, in linear time, a disk d of radius r, which contains at least n/10 of the points of P,
such that r ≤ 2ropt(P, n/10), where ropt(P, n/10) denotes the radius of the smallest disk containing n/10
points of P. Computing d can be done in linear time, by a rather simple algorithm (see  Lemma 19.6.2  ).

Let α = 2⌊lg r⌋. Consider the grid Gα. It has a cell that contains at least (n/10)/25 points of P (since
d is covered by 5× 5 = 25 grid cells of Gα and α ≥ r/2), and no grid cell contains more than 5(n/10)
points, by  Lemma 19.6.1 . Thus, compute Gα(P), and find the cell □ containing the largest number of
points. Let Pin be the set of points inside this cell □, and let Pout be the set of points outside this cell.
Specifically, we have

Pin = P ∩□ and Pout = P \□ = P \ Pin.

We know that |Pin| ≥ n/250 and |Pout| ≥ n/2.
③The root is Chinese and is not allowed to have more children at this point in time.
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Next, compute (recursively) the compressed quadtrees for Pin and Pout,
respectively, and let Tin and Tout denote the respective quadtrees. Create
a node in both quadtrees that corresponds to □. For Tin this would just
be the root node vin, since Pin ⊆ □. For Tout this would be a new leaf node
vout, since Pout ∩ □ = ∅. Note that inserting this new node might require
linear time, but it requires only changing a constant number of nodes and
pointers in both quadtrees. Now, hang vout on vin creating a compressed
quadtree for P; see the figure on the right. Observe that the new glued
node (i.e., vout and vin) might be redundant because of compression, and it can be removed if necessary
in constant time.

The overall construction time is T (n) = O(n) + T (|Pin|) + T (|Pout|) = O(n log n).

Remark 19.2.8. The reader might wonder where the Tweedledee and Tweedledum operation (i.e., bit∆(·, ·))
gets used in the algorithm of  Theorem 19.2.7 . Observe that the hanging stage might require such an
operation if we hang Tin from a compressed node of Tout, as computing the new compressed node requires
exactly this kind of operation.

Compressed quadtree from squares.It is sometime useful to be able to construct a compressed
quadtree from a list of squares that must appear in it as nodes.

Lemma 19.2.9. Given a list C of n canonical squares, all lying inside the unit square, one can construct
a (minimal) compressed quadtree T such that for any square c ∈ C, there exists a node v ∈ T , such that
□v = c. The construction time is O(n log n).

Proof: For every canonical square □ ∈ C, we place two points into a set P, such that any quadtree for
P must have □ in it. This is done by putting two points in □ such that they belong to two different
subsquares of □. See the figure on the right.

The resulting point set P has 2n points, and we can compute its compressed quadtree T in O(n log n)
time using  Theorem 19.2.7 . Observe that any cell of C is an internal node of T. Thus trimming away
all the leaves of the quadtree results in a minimal quadtree that contains all the cells of C as nodes.

19.2.3. Fingering a compressed quadtree – fast point-location
Let T be a compressed quadtree of size n. We would like to preprocess it so that given a query point,
we can find the lowest node of T whose cell contains a query point q. As before, we can perform this by
traversing down the quadtree, but this might require Ω(n) time. Since the range of levels of the quadtree
nodes is unbounded, we can no longer use a binary search on the levels of T to answer the query.

Instead, we are going to use a rebalancing technique on T. Namely, we are going to build a balanced
tree T′, which would have cross pointers (i.e., fingers) into T. The search would be performed on T′

instead of on T. In the literature, the tree T′ is known as a finger tree.

Definition 19.2.10. Let T be a tree with n nodes. A separator in T is a node v, such that if we remove
v from T, we remain with a forest, such that every tree in the forest has at most ⌈n/2⌉ vertices.

Lemma 19.2.11. Every tree has a separator, and it can be computed in linear time.
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Proof: Consider T to be a rooted tree. We precompute for every node in the tree the number of nodes
in its subtree by a bottom-up computation that takes linear time. Set v to be the lowest node in T such
that its subtree has ≥ ⌈n/2⌉ nodes in it, where n is the number of nodes of T. This node can be found
by performing a walk from the root of T down to the child with a sufficiently large subtree till this walk
gets “stuck”. Indeed, let v1 be the root of T, and let vi be the child of vi−1 with the largest number of
nodes in its subtree. Let s(vi) be the number of nodes in the subtree rooted at vi. Clearly, there exists
a k such that s(vk) ≥ n/2 and s(vk+1) < n/2.

Clearly, all the subtrees of the children of vk have size at most n/2. Similarly, if we remove vk and its
subtree from T, we remain with a tree with at most n/2 nodes. As such, vk is the required separator.

This suggests a natural way for processing a compressed quadtree for point-location queries. Find a
separator v ∈ T , and create a root node fv for T′ which has a pointer to v; now recursively build a finger
tree for each tree of T \ {v}. Hang the resulting finger trees on fv. The resulting tree is the required
finger tree T′.

Given a query point q, we traverse T′, where at node fv ∈ T′, we check whether the query point
q ∈ □v, where v is the corresponding node of T. If q /∈ □v, we continue the search into the child of fv,
which corresponds to the connected component outside □v that was hung on fv. Otherwise, we continue
into the child that contains q; naturally, we have to check out the O(1) children of v to decide which one
we should continue the search into. This takes constant time per node. As for the depth for the finger
tree T′, observe D(n) ≤ 1 + D(⌈n/2⌉) = O(log n). Thus, a point-location query in T′ takes logarithmic
time.

Theorem 19.2.12. Given a compressed quadtree T of size n, one can preprocess it, in time O(n log n),
such that given a query point q, one can return the lowest node in T whose region contains q in O(log n)
time.

Proof: We just need to bound the preprocessing time. Observe that it is T (n) = O(n) + ∑t
i=1 T (ni),

where n1, . . . , nt are the sizes of the subtrees formed by removing the separator node from T. We know
that t = O(1) and ni ≤ ⌈n/2⌉, for all i. As such, T (n) = O(n log n).

19.3. Dynamic quadtrees
Here we show how to store compressed quadtrees using any data-structure for ordered sets. The idea is
to define an order on the compressed quadtree nodes and then store the compressed nodes in a data-
structure for ordered sets. We show how to perform basic operations using this representation. In
particular, we show how to perform insertions and deletions. This provides us with a simple implemen-
tation of dynamic compressed quadtrees.

We start our discussion with regular quadtrees and later on discuss how to handle compressed
quadtrees.

19.3.1. Ordering of nodes and points
Consider a regular quadtree T and a DFS traversal of T, where the DFS always traverse the children
of a node in the same relative order (i.e., say, first the bottom-left child, then the bottom-right child,
top-left child, and top-right child).
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Consider any two canonical squares □ and □̂, and imagine a quadtree T that contains
both squares (i.e., there are nodes in T with these squares as their cells). Notice that the
above DFS would always visit these two nodes in a specific order, independent of the
structure of the rest of the quadtree. Thus, if □ gets visited before □̂, we denote this fact
by □ ≺ □̂. This defines a total ordering over all canonical squares. It is useful to extend
this ordering to also include points. Thus, consider a point p and a canonical square □. If p ∈ □, then
we will say that □ ≺ p. Otherwise, if □ ∈ Gi, let □̂ be the cell in Gi that contains p. We have that
□ ≺ p if and only if □ ≺ □̂. Next, consider two points p and q, and let Gi be a grid fine enough such
that p and q lie in two different cells, say, □p and □q, respectively. Then p ≺ q if and only if □p ≺ □q.

We will refer to the ordering induced by ≺ as the Q-order .
The ordering ≺ when restricted only to points is the ordering along a space

filling mapping that is induced by the quadtree DFS. This ordering is known as
the Z-order . Specifically, there is a bijection z from the unit interval [0, 1) to
the unit square [0, 1)2 such that the ordering along the resulting “curve” is the
Z-order. Note, however, that since we allow comparing cells to cells and cells to
points, the Q-order no longer has this exact interpretation. Unfortunately, unlike

the Peano or Hilbert space filling curves, the Z-order mapping z is not continuous. Nevertheless, the
Z-order mapping has the advantage of being easy to define. Indeed, given a real number α ∈ [0, 1),
with the binary expansion α = 0.x1x2x3 . . . (i.e., α = ∑∞

i=1 xi2−i), the Z-order mapping of α is the point
z(α) = (0.x2x4x6 . . . , 0.x1x3x5 . . .).

0

0.0...

0 0 1

1 0 1 1

0.1...

0.0...

0.1...
To see that this property indeed holds, think about performing a point-

location query in an infinite quadtree for a point p ∈ [0, 1)2. In the top level
of the quadtree we have four possibilities to continue the search. These four pos-
sibilities can be encoded as a binary string of length 2; see the figure on the right.
Now, if y(p) ∈ [0, 1/2), then the first bit in the encoding is 0, and if y(p) ∈ [1/2, 1),
the first bit output is 1.

Similarly, the second bit in the encoding is the first bit in the binary representation of x(p). Now,
after resolving the point-location query in the top level, we continue this search in the tree. Every level
in this traversal generates two bits, and these two bits corresponds to the relevant two bits in the binary
representation of y(p) and x(p). In particular, the 2i + 1 and 2i + 2 bits in the encoding of p as a single
real number (in binary), are the ith bits of (the binary representation of) y(p) and x(p), respectively.
In particular, for a point p ∈ [0, 1)d, let enc≺(p) denote the number in the range [0, 1) encoded by this
process.

Claim 19.3.1. For any two points p, q ∈ [0, 1)2, we have that p ≺ q if and only if enc≺(p) < enc≺(q).

19.3.1.1. Computing the Q-order quickly

For our algorithmic applications, we need to be able to find the ordering according to ≺ between any
two given cells/points quickly.

Definition 19.3.2. For any two points p, q ∈ [0, 1]2, let lca(p, q) denote the smallest canonical square that
contains both p and q. It intuitively corresponds to the node that must be in any quadtree storing p
and q.

To compute lca(p, q), we revisit the Tweedledee and Tweedledum operation bit∆(α, β) (see  Definition 19.2.5 )
that for two real numbers α, β ∈ [0, 1) returns the index of the first bit in which α and β differ (in base
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two). The level ℓ of □ = lca(p, q) is equal to

ℓ = 1−min(bit∆(xp, xq), bit∆(yp, yq)),

where xp and yp denote the x and y coordinates of p, respectively. Thus, the sidelength of □ = lca(p, q)
is ∆ = 2ℓ. Let x′ = ∆ ⌊x/∆⌋ and y′ = ∆ ⌊y/∆⌋. Thus,

lca(p, q) = [x′, x′ + ∆)× [y′, y′ + ∆).

We also define the lca of two cells to be the lca of their centers.
Now, given two cells □ and □̂, we would like to determine their Q-order. If □ ⊆ □̂, then □̂ ≺ □. If

□̂ ⊆ □, then □ ≺ □̂. Otherwise, let □̃ = lca(□, □̂). We can now determine which children of □̃ contain
these two cells, and since we know the traversal ordering among children of a node in a quadtree, we
can now resolve this query in constant time.

Corollary 19.3.3. Assuming that the bit∆ operation and the ⌊·⌋ operation can be performed in constant
time, then one can compute the lca of two points (or cells) in constant time. Similarly, their Q-order
can be resolved in constant time.

Computing bit∆ efficiently. It seems somewhat suspicious that one assumes that the bit∆ operations
can be done in constant time on a classical RAM machine. However, it is a reasonable assumption on
a real world computer. Indeed, in floating point representation, once you are given a number, it is easy
to access its mantissa and exponent in constant time. If the exponents are different, then bit∆ can be
computed in constant time. Otherwise, we can easily ⊕xor the mantissas of both numbers and compute
the most significant bit that is one. This can be done in constant time by converting the resulting
mantissa into a floating point number and computing its log2 (some CPUs have this command built in).
Observe that all these operations are implemented in hardware in the CPU and require only constant
time.

19.3.2. Performing operations on a (regular) quadtree stored using Q-order

Let T be a given (regular) quadtree, with its nodes stored in an ordered-set data-structure (for example,
using a red-black tree or a skip-list), using the Q-order over the cells. We next describe how to implement
some basic operations on this quadtree.

19.3.2.1. Performing a point-location in a quadtree

Given a query point q ∈ [0, 1]2, we would like to find the leaf v of T such that its cell contains q.
To answer the query, we first find the two consecutive cells in this ordered list such that q lies between

them. Formally, let □ be the last cell in this list such that □ ≺ q. It is now easy to verify that □ must
be the quadtree leaf containing q. Indeed, let □q be the leaf of T whose cell contains q. By definition, we
have that □q ≺ q. Thus, the only bad scenario is that □q ≺ □ ≺ q. But this implies, by the definition
of the Q-order, that □ must be contained inside □q, contradicting our assumption that □q is a leaf of
the quadtree.

Lemma 19.3.4. Given a quadtree T of size n, with its leaves stored in an ordered-set data-structure D

according to the Q-order, then one can perform a point-location query in O(Q(n)) time, where Q(n) is
the time to perform a search query in D.
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19.3.2.2. Overlaying two quadtrees

Given two quadtrees T′ and T′′, we would like to overlay them to compute their combined quadtree.
This is the minimal quadtree such that every cell of T′ and T′′ appears in it. Observe that if the two
quadtrees are given as sorted lists of their cells (ordered by the Q-order), then their overlay is just the
merged list, with replication removed.
Lemma 19.3.5. Given two quadtrees T′ and T′′, given as sorted lists of their nodes, one can compute
the merged quadtree in linear time (in the total size of the lists representing them) by merging the two
sorted lists and removing duplicates.

19.3.3. Performing operations on a compressed quadtree stored using the
Q-order

Let T be a compressed quadtree whose nodes are stored in an ordered-set data-structure using the Q-
order. Note that the nodes are sorted according to the canonical square that they correspond to. As
such, a node v ∈ T is sorted according to □v. The subtlety here is that a compressed node v is stored
according to the square □v in this representation, but in fact it is in charge of the compressed region
rgv. This will make things slightly more complicated.

19.3.3.1. Point-location in a compressed quadtree

Performing a point-location query is a bit subtle in this case. Indeed, if the query point q is contained
inside a leaf of T, then a simple binary search for the predecessor of q in the Q-order sorted list of the
cells of T would return this leaf.

However, if the query is contained inside the region of a compressed node, the
predecessor to q in this list (sorted by the Q-order) might be some arbitrary leaf that is
contained inside the compressed node of interest. As a concrete example, consider the
figure on the right of a compressed node w. Because of the Q-order, the predecessor
query on q would return a leaf v that is stored in the subtree of w but does not contain
the query point.

v
q

w

In such a case, we need to find the LCA of the query point and the leaf returned. This returned cell
□ could be in the quadtree itself. In this case, we are done as □ corresponds to the compressed node
that contains q. The other possibility is that □ is contained inside the cell □w of a compressed node w
that is the parent of v. Again, we can now find this parent node using a single predecessor query.

algPntLoc_Qorder(T, q).
□v = predecessorQ−order(T, q).
// □v last node in T

// s.t. □v ⪯ q.
if q ∈ □v then

return v
□ = lca(□v, q)
□w = predecessorQ−order(T,□).
return w

The code for the point-location procedure is depicted on
the right. The query point is q. The query point is not neces-
sarily stored in the quadtree, and as such the cell that contains
it might be a compressed node (as described above). As such,
the required node v has q ∈ rgv and is either a leaf of the
quadtree or a compressed node.
Lemma 19.3.6. We have that: (i) if q ∈ □v, then q ∈ rgv and (ii) if the region of T containing the
query point q is a leaf, then v is the required leaf.

Proof: (i) Otherwise, there exists a node x ∈ T such that q ∈ rgx ⊆ □x and □x ⊊ □v, but that would
imply that □v ≺ □x ≺ q, contradicting how □v was computed.

(ii) Since q is contained in a leaf, then the last square in the Q-order that is before q is the cell of
this leaf, that is, the node v.
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Now, if q /∈ □v, then our search “failed” to find a node that contains the query point. So, consider
the node w that should be returned. It must be a compressed node, and by the above, the search
returned a node v that is a descendant of w. As a first step, we compute the square □ = lca(□v, q).
Next, we compute the last cell □u such that □u ⪯ □.

Now, if □u = □, then we are done as q ∈ rgu. Otherwise, if □ is not in the tree, then u is a
compressed node, and consider its child u′. We have that □ is contained inside □u and contains □u′ .
Namely, q ∈ □u \□u′ = rgu. Now, u′ is the only child of u (since it is a compressed node), which implies
that □u and □u′ are consecutive in T according to the Q-order, and □ lies in between these two cells in
this order. As such, u ≺ □ ≺ u′ and as such u is the required node that contains the query point.

We get the following result.

Lemma 19.3.7. Given a compressed quadtree T of size n, with its nodes stored in an ordered-set data-
structure D according to the Q-order, then point-location queries can be performed using T in O(Q(n))
time, where Q(n) is the time to perform a search query in D.

19.3.3.2. Insertions and deletions

Let q be a point to be inserted into the quadtree, and let w be the node of the compressed quadtree
such that q ∈ rgw. There are several possibilities:
(A) The node w is a leaf, and there is no point associated with it. Then store p at w, and return.
(B) The node w is a leaf, and there is a point p already stored in w. In this case, let □ = lca(p, q), and

insert □ into the compressed quadtree. This is done by creating a new node z in the quadtree,
with the cell of z being □. We hang z below w if □ ̸= □w (this turns w into a compressed node).
(If □ = □w, we do not need to introduce a new cell and set z = w.) Furthermore, split □ into
its children, and also insert the children into the compressed quadtree. Finally, associate p with
the new leaf that contains it, and associate q with the leaf that contains it. Note that because of
the insertion w becomes a compressed node if □w ̸= □, and it becomes a regular internal node
otherwise.

(C) The node w is a compressed node. Let z be the child of w, and consider □ = lca(□z, q). Insert
□ into the compressed quadtree if □ ̸= □w (note that in this case w would still be a compressed
node, but with a larger “hole”). Also insert all the children of □ into the quadtree, and store p in
the appropriate child. Hang □z from the appropriate child, and turn this child into a compressed
node.

In all three cases, the insertion requires a constant number of search/insert operations on the ordered-
set data-structure.

Deletion is done in a similar fashion. We delete the point from the node that contains it, and then
we trim away nodes that are no longer necessary.

Theorem 19.3.8. Assuming one can compute the Q-order in constant time, then one can maintain a
compressed quadtree of a set of points in O(log n) time per operation, where insertions, deletions and
point-location queries are supported. Furthermore, this can implemented using any data-structure for
ordered-set that supports an operation in logarithmic time.

19.3.4. Compressed quadtrees in high dimension
Naively, the constants used in the compressed quadtree are exponential in the dimension d. However,
one can be more careful in the implementation. The first problem, for a node v in the compressed
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quadtree, is to store all the children of v in an efficient way so that we can access them efficiently. To
this end, each child of v can be encoded as a binary string of length d, and we build a trie inside v for
storing all the strings defining the children of v. It is easy, given a point, to figure out what the binary
string encoding the child containing this point is. As such, in O(d) time, one can retrieve the relevant
child. (One can also use hashing to this end, but it is not necessary here.)

Now, we build the compressed quadtree using the algorithm described above using the Q-order. It
is not too hard to verify that all the basic operations can be computed in O(d) time. Specifically,
comparing two points in the Q-order takes O(d) time. One technicality that matters when d is large
(but this issue can be ignored in low dimensions) is that if a node has only a few children that are not
empty, we create only these nodes and not the other children. Putting everything together, we get the
following result.

Theorem 19.3.9. Assuming one can compute the Q-order in O(d) time for two points Rd, then one
can maintain a compressed quadtree of a set of points in Rd, in O(d log n) time per operation. The
operations of insertion, deletion, and point-location query are supported. Furthermore, this can be imple-
mented using any data-structure for ordered-set that supports insertion/deletion/predecessor operations
in logarithmic time.

In particular, one can construct a compressed quadtree of a set of n points in Rd in O(dn log n) time.

19.4. Bibliographical notes
The authoritative text on quadtrees is the book by Samet [  Sam90 ]. He also has a more recent book that
provides a comprehensive survey of various tree-like data-structures [ Sam05 ] (our treatment is naturally
more theoretically oriented than his). The idea of using hashing in quadtrees is a variant of an idea
due to Van Emde Boas and is also used in performing fast lookup in IP routing (using PATRICIA tries
which are one-dimensional quadtrees [ WVTP01 ]), among a lot of other applications.

The algorithm described in  Section 19.2.2 for the efficient construction of compressed quadtrees is
new, as far as the author knows. The classical algorithms for computing compressed quadtrees efficiently
achieve the same running time but require considerably more careful implementation and paying careful
attention to details [ CK95 ,  AMN+98 ]. The idea of fingering is used in [ AMN+98 ] (although their
presentation is different than ours) but the idea is probably much older.

The idea of storing a quadtree in an ordered set by using the Q-order on the nodes (or even only
on the leaves) is due to Gargantini [ Gar82 ], and it is referred to as linear quadtrees in the literature.
The idea was used repeatedly for getting good performance in practice from quadtrees.

Our presentation of the dynamic quadtrees (i.e.,  Section 19.3 ) follows (very roughly) the work de
Berg et al. [ dHTT07 ].

It is maybe beneficial to emphasize that if one does not require the internal nodes of the compressed
quadtree for the application, then one can avoid storing them in the data-structure. If only the points
are needed, then one can even skip storing the leaves themselves, and then the compressed quadtree
just becomes a data-structure that stores the points according to their Z-order. This approach can be
used for example to construct a data-structure for approximate nearest neighbor [ Cha02 ] (however, this
data-structure is still inferior, in practice, to the more optimized but more complicated data-structure
of Arya et al. [ AMN+98 ]). The author finds that thinking about such data-structures as compressed
quadtrees (with the whole additional unnecessary information) is more intuitive, but the reader might
disagree 

④
 .

④The author reserves the right to disagree with himself on this topic in the future if the need arises.
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Z-order and space filling curves. The idea of using Z-order for speeding up spatial data-structures
can be traced back to the above work of Gargantini [ Gar82 ], and it is widely used in databases and
seems to improve performance in practice [ KF93 ]. The Z-order can be viewed as a mapping from the
unit interval to the unit square, by splitting the sequence of bits representing a real number α ∈ [0, 1),
where the odd bits are the x-coordinate and the even bits are the y-coordinate of the mapped point.
While this mapping is simple to define, it is not continuous. Somewhat surprisingly, one can find a
continuous mapping that maps the unit interval to the unit square; see Exercise  19.5.5 . A large family
of such mappings is known by now; see Sagan [ Sag94 ] for an accessible book on the topic.
But is it really practical? Quadtrees seem to be widely used in practice and perform quite well.
Compressed quadtrees seem to be less widely used, but they have the benefit of being much simpler
than their relatives which seems to be more practical but theoretically equivalent.
Compressed quadtrees require strange operations.  Lemma 19.2.6 might be new, although it
seems natural to assume that it was known before. It implies that computing compressed quadtrees
requires at least one “strange” operation in the computation model. Once one comes to term with this
imperfect situation, the use of the Q-order seems natural and yields a reasonably simple algorithm for
the dynamic maintenance of quadtrees. For example, if we maintain such a compressed quadtree by
using skip-list on the Q-order, we will essentially get the skip-quadtree of Eppstein et al. [ EGS05 ].
Generalized compressed quadtrees. Har-Peled and Mendel [  HM06 ] have shown how to extend com-
pressed quadtrees to the more general settings of doubling metrics. Note that this variant of compressed
quadtrees no longer requires strange bit operations. However, in the process, one loses the canonical
grid structures that a compressed quadtree has, which is such a useful property.
Why compressed quadtrees? The reader might wonder why we are presenting compressed quadtrees
when in practice people use different data-structures (that can also be analyzed). Our main motivation
is that compressed quadtrees seem to be a universal data-structure, in the sense that they can be used
for many different tasks, they are conceptually and algorithmically simple, and they provide a clear
route to solving a problem: Solve your problem initially on a quadtree for a point set with bounded
spread. If this works, try to solve it on a compressed quadtree. If you want something practical, try
some more practical variants like kd-trees [ BCKO08 ].

19.5. Exercises
Exercise 19.5.1 (Geometric obesity is good). For a constant α ≥ 1, a planar convex region T is α-fat if
the ratio R(T )/r(T ) ≤ α, where R(T ) and r(T ) are the radii of the smallest disk containing T and the
largest disk contained in T , respectively.
(A) Prove that if a triangle △ has all angles larger than β, then △ is 1

sin(β/2) fat. We will refer to
such a triangle as being fat.

(B) Let S be a set of interior disjoint α-fat shapes all intersecting a common square □. Furthermore,
for every △ ∈ S we have that diam(△) ≥ c · diam(□), where c is some constant. Prove that
|S| = O(1). Here, the constant depends on c and α, and the reader is encouraged to be less lazy
than the author and to figure out the exact value of this constant as a function of α and c.

Exercise 19.5.2 (Quadtree for fat triangles). Let P be a triangular planar map of the unit square (i.e.,
each face is a triangle but it is not necessarily a triangulation), where all the triangles are fat and the
total number of triangles is n.
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(A) Show how to build a compressed quadtree storing the triangles, such that every node of the
quadtree stores only a constant number of triangles (the same triangle might be stored in several
nodes) and given a query point p, the triangle containing p is stored somewhere along the point-
location query path of p in the quadtree.
(Hint: Think about what is the right resolution to store each triangle.)

(B) Show how to build a compressed quadtree for P that stores triangles only in the leaves, and such
that every leaf contains only a constant number of triangles and the total size of the quadtree is
O(n).
Hint: Using the construction from the previous part, push down the triangles to the leaves, storing
in every leaf all the triangles that intersect it. Use Exercise  19.5.1 to argue that no leaf stores
more than a constant number of triangles.

(C) (Tricky but not hard) Show that one must use a compressed quadtree in the worst case if one
wants linear space.

(D) (Hard) We remind the reader that a triangulation is a triangular planar map that is compatible.
That is, the intersection of triangles in the triangulation is either empty, a vertex of both triangles,
or an edge of both triangles (this is also known as a simplicial complex). Prove that a fat
triangulation with n triangles can be stored in a regular (i.e., non-compressed) quadtree of size
O(n).

Exercise 19.5.3 (Quadtree construction is tight). Prove that the bounds of  Lemma 19.2.2  are tight. Namely,
show that for any fixed constant ε > 0, a sufficiently large r > 2, and any positive integer n ≤ r2−ε,
there exists a set of n points in the plane with diameter Ω(1) and spread Φ(P) = Θ(r), such that its
quadtree has size Ω(n log Φ(P)).

Exercise 19.5.4 (Cell queries). Let □̂ be a canonical grid cell. Given a compressed quadtree T̂ , we would
like to find the single node v ∈ T̂ , such that P∩ □̂ = Pv. We will refer to such a query as a cell query.
Show how to support cell queries in a compressed quadtree in logarithmic time per query.

Exercise 19.5.5 (Space filling curve). The Peano curve σ : [0, 1)→ [0, 1)2 maps a number α = 0.t1t2t3 . . .
(the expansion is in base 3) to the point σ(α) = (0.x1x2x3 . . . , 0.y1y2 . . .), where x1 = t1, xi =
ϕ(t2i−1, t2 + t4 + · · · + t2i−2), for i ≥ 1. Here, ϕ(a, b) = a if b is even and ϕ(a, b) = 2 − a if b is
odd. Similarly, yi = ϕ(t2i, t1 + t3 + · · ·+ t2i−1), for i ≥ 1.
(A) Prove that the mapping σ covers all the points in the open square [0, 1)2, and it is one-to-one.
(B) Prove that σ is continuous.

19.6. From previous lectures
Lemma 19.6.1. For any point set P and α > 0, we have that if α ≤ 2ropt(P, k), then any cell of the
grid Gα contains at most 5k points; that is, gdα(P) ≤ 5k.

Lemma 19.6.2. Given a set P of n points in Rd and parameter k, one can compute, in O
(
n(n/k)d

)
deterministic time, a ball b that contains k points of P and its radius radius(b) ≤ 2ropt(P, k), where
ropt(P, k) is the radius of the smallest ball in Rd containing k points of P.
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