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Union Complexity of Pseudodisks
By Sariel Har-Peled, March 21, 2023 
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 Version: 1.2

I’ve never touched the hard stuff, only smoked grass a few times with the boys to be polite, and that’s all,
though ten is the age when the big guys come around teaching you all sorts to things. But happiness doesn’t
mean much to me, I still think life is better. Happiness is a mean son of a bitch and needs to be put in
his place. Him and me aren’t on the same team, and I’m cutting him dead. I’ve never gone in for politics,
because somebody always stand to gain by it, but happiness is an even crummier racket, and their ought to
be laws to put it out of business.

– – Momo, Emile Ajar.

18.1. Pseudodisks and union complexity
Let Γ = {γ1, . . . , γn} be a set of close Jordan curves in the plane. We assume that Γ is a set of
pseudodisks. Formally, every two curves of Γ either do not intersect, or intersect in two points. (The
case that two curves intersect in a single point in a common tangency point is uninteresting as we
can slightly modify the two curves so that they have two intersections). As usual, we assume general
position – no three curves intersect in a common point. Observe that being a pseudodisk is a social
phenomenal – a curve is one only in the context of a set of other curves. Furthermore, a set of regions
being pseudodisk enable them to be arbitrarily “complicated”. See  Figure 18.1.1 .

Figure 18.1.1: Pseudodisks.

Let di = d(γi) be the closed region bounded by γi, for all i. Let D = {d1, . . . , dn} be the resulting
set of closed regions. We are interested in the union U = U(D) = ∪D = ∪d∈Dd. Specifically, we are
interested in describing the boundary of U (i.e., ∂U). This boundary is a collection of close cycles, where
each cycle is a sequence of arcs, where each arc is taken from a single curve of Γ. The combinatorial
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complexity of the union of the pseudodisks of Γ, denoted by ⟨Γ⟩, is the total number of edges in these
boundary cycles. Our purpose here is to prove that the complexity of the union is ⟨Γ⟩ = O(n). See

 Figure 18.1.2 .
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Figure 18.1.2: Here Γ is a set of three circles and an ellipse. The union boundary has two connected
components, each one of them is a cycle of edges and vertices. For example, the boundary cycle of the
hole can be described as C = ⟨a, 1, d, 4, c, 3, b, 2⟩ (where 1, 2, 3, 4 are the identifiers of the disks, and
a, b, c, d are the vertices) – this is sufficient to recover the edges forming the union. In particular, the
combinatorial complexity of C is (say) 4 – the number of vertices appearing in it. In this case, each of
the connected components of the boundary of the union form a cycle of combinatorial complexity O(4).
Thus ⟨Γ⟩ = O(8) = O(1).

In the following, we use the shorthand Γ − γ = Γ \ {γ}.

Example 18.1.1. Consider a set R of n disjoint narrow horizontal rectangles, and a set of n narrow
vertical rectangles such that every pair of the intersects forming a grid, see  Figure 18.1.3  . Every pair of
rectangles in this example either does not intersect, or intersect in four points. They definitely do not
form a collection of pseudodisks. The complexity of the union is ⟨R⟩ = Θ(n2).

Figure 18.1.3: A grid of n axis-parallel rectangles, and its union. The boundary of the union is made out
of Θ(n2) polygonal cycles – all internal ones have constant complexity, and the other face has complexity
Θ(n).

18.1.1. A warm-up exercise: The union complexity of disks
As suggested by the above name of pseudodisks, the intuition behind the union complexity being low is
disks. So let us first prove this case.
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Lemma 18.1.2. Let D be a set of n disks in the plane. The union complexity of D is O(n).

Proof: Compute the power diagram of D. As a reminder, the power diagram assigns a disk d with
center c and radius r, the “distance” function associated with d is f(p) = ∥pc∥2 − r2. Standard lifting
argument shows that the power diagram is formed by the lower envelope of planes in three dimensions.
As such, the total complexity of the power diagram is O(n), see  Figure 18.1.4 .

Figure 18.1.4: A set of disks, its power diagram, and single cell in the diagram, and contribution of its
disk to the boundary of the union.

The bisector between two disks is a line that passes through the two intersections of their boundary
points if they intersect. As such, the cell of a disk d∈ D in the power diagram is a convex polygon Π.
Furthermore, for every other disk d′ ∈ D we have the property that either d′ ∩ Π = ∅, or d′ ∩ Π ⊆ d.
Namely, any contribution of d to the union ∪D is restricted to lie inside Π. The number of times ∂Π
can intersect ∂d, is bounded by twice the number of edges of Π, Indeed, every edge of Π intersect a
circle at most twice.

As such, the contribution of d to the union is bounded by the complexity of its power diagram cell.
Since the total complexity of the diagram is O(n), the claim follows.

18.2. The proof
The idea of the proof is to redraw the collection of curves so that their union complexity increases while
the arrangement they formed becomes simpler. This redrawing process would be done in stages. We
start from the obvious – curves that do not contribute to the union are redundant, and can be removed.

Lemma 18.2.1. A curve γ ∈ Γ is redundant if γ ⊆ ∪σ∈Γ−γd(σ) – that is, γ is fully covered by the
other pseudodisks of D. We have that ⟨Γ − γ⟩ ≥ ⟨Γ⟩.

Proof: Observe that no portion of γ appears on ∂(∪d∈Dd). However, new boundary components might
be exposed in U(Γ) as we remove γ from it. That is, ∂U(Γ) ⊆ ∂U(Γ − γ).

Let Γ = {γ1, . . . , γn}, and D = {d(γi) | γi ∈ Γ}. The above lemma implies that one can assume that,
in no point in time, we have redundant curves, as one can simply remove them, and continue bounding
the complexity of the union on the residual set. Let #3 = #3(Γ) denote the number of triples of regions
of D that intersect, that is

#3 = |{(i, j, k) | i < j < k and di ∩ dj ∩ dk ̸= ∅}| .
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Figure 18.2.1

Lemma 18.2.2. Let Γ be a set of n > 2 pseudodisks. If #3(Γ) = 0, then ⟨U(Γ)⟩ ≤ 6n − 12.

Proof: For a region d ∈ D(Γ), observe that core(d) = d \ U(Γ − γ) is a non-empty connected set.
Indeed, if not, that there must be an intersection of two regions of D inside d, and that is not possible,
as this would imply a triple intersection when including d, see  Figure 18.2.1 .

The last claim seems intuitively obvious but a proof requires some effort. Indeed, let d1, . . . , dt be
all the pseudodisks of Γ−d that intersects d. Let di = d\∪i

ℓ=1dℓ. The claim is that di is connected.
Indeed, di−1 is connected by induction, and subtracting di from it to get di can disconnect it only if
the boundaries of di and d intersect more than twice (impossible!), or di intersect some other earlier
disk d1, . . . , di−1 in the interior of d, which is again preposterous.

Back to the original proof – it is now straightforward to draw a planar graph, where there is an edge
between two cores ⇐⇒ the two corresponding pseudodisks intersect. To this end, for each pseudodisk
d place a vertex v(d) in the middle of its core. For two pseudodisks d, d′ that intersect, let L = d∩d′

be their common intersection (sometime called a lens), see  Figure 18.2.2  . Connect v(d) to a point on
the boundary of L by a curve that lies in the interior of the core of d. Similarly, connect v(d′) to the
boundary of L. Finally, connect the two points on the boundary of L via a curve that lies inside L.
Clearly, since the lenses are disjoint, the resulting drawing has no intersecting edges, and thus the graph
is planar.

Figure 18.2.2: A set of pseudodisks with no triple intersection, their intersection graph, and the resulting
planar graph.

This planar graph has no parallel edges, and every edge can be charged for two vertices on the
boundary of the union. It follows by Euler formula that the number of edges is bounded by 3n − 6,
and the number of vertices on the boundary of the union is bounded by 6n − 12. To see the last step,
consider an edge e between d and d′. In the union boundary, this intersection gives rise to two vertices.
Since a vertex on the boundary of the union is visited only once (assuming general position), the claim
follows.

For the next step of the proof we need an intuitive but somewhat heavy hammer (we will not prove
it):
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Theorem 18.2.3 (Schoenflies theorem). If γ ⊆ R2 is a simple closed curve, then there is a homeo-
morphism f : R2 → R2 such that f(γ) is the unit circle in the plane (centered at the origin).

The above theorem is clear except for what the words used in stating it mean. Being somewhat
informal, a homeomorphism is a continuous (bijective) deformation of the plane. This means that
we can deform the plane continuously from its original to its target “drawing” in such away that curves
remain curves, and we never introduce new intersections during this process (or remove intersections).
Note, that by this continuity requirement, we can not do things like flipping the plane (or inversions),
since this would require non-intersecting curves to intersect sometime during the process. Two spaces
with a homeomorphism between them are homeomorphic, and from a topological viewpoint they are
the same.

As such, for our purposes, we can continue the argument on the union complexity of pseudodisks
after applying a homeomorphism to the plane and arguing about the complexity of the union of the new
pseudodisks.

In the following, let b(p, r) = {q ∈ R2 | ∥pq∥ ≤ r} be the disk of radius r centered at p.

Lemma 18.2.4. Given a collection Γ of n pseudodisks such that #3(Γ) > 0, one can assume there are
three curves γ1, γ2, γ3 ∈ Γ with the following properties:

(I) d(γ1) ∩ d(γ2) ∩ d(γ3) ̸= ∅.
(II) γ1 is the unit circle centered at the origin.

(III) For any i > 1, if γi intersect γ1, then its intersection with the ring

⊚(1, 2) = b(o, 2) \ b(o, 1)

is two straight segments that are collinear with the plane, where o denotes the origin.
(IV) For i > 1, we have that γi ∩ b(o, 1) is either empty or a segment.
Such that the union complexity ⟨Γ⟩ remains the same.

Proof: (I) follows by renumbering the curves, as #3(Γ) > 0 implies that there are three curves that their
interior intersect in a common point.

(II) This is readily implied by  Schoenflies theorem .
(III) The intuitive idea is to think about γ1 has having “thickness” one. Formally, given a drawing of

Γ that fulfills the above two properties, and a parameter ε ∈ [0.1], consider the mapping gε : R+ → R+:

gε(x) =


x x ∈ [0, 1]
1 + (x − 1)/ε x ∈ (1, 1 + ε)
2(x − ε) x > 1 + ε.

Consider the associated homomorphism fε : R2 → R2, where fε(p) = gε

(
∥p∥

)
p

∥p∥ . This maps the ring
⊚(1, 1 + ε) to the ring ⊚(1, 2). In the limit, as ε → 0, we get thee resulting redrawing of Γ, where any
curve that intersect γ1, intersect ⊚(1, 2) in two straight segments collinear with the origin.

(IV) The curve γ1 is now a circle. If γi intersects γ1, we replace this portion by the segment that
connects the two intersection points. Clearly, two such segment intersect on only if the original two
curves intersected. Since this redrawing happens inside d(γ1) = b(o, 1), it does not effect the union or
its complexity. Clearly, the resulting collection of curves is a set of pseudodisks. See  Figure 18.2.3 .
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Figure 18.2.3: Left: A set of pseudodisks after we applied  Lemma 18.2.4 to it. Right: A curve that is
covered by the other pseudodisks on γ1 can be “snapped” out, in the process reducing the number #3
of triple intersections.

Lemma 18.2.5. Given a set Γ of pseudodisks Γ with #3(Γ) > 0, one can replace it with a set of
pseudodisks Γ′, such that #3(Γ′) < #3(Γ) and the ⟨Γ′⟩ ≥ ⟨Γ⟩.

Proof: We apply the redrawing of Γ as specified by  Lemma 18.2.4 so that γ1 is the union circle γ1 =
∂b(o, 1), and there at least two other curves γ2 and γ3 that intersect γ1 (there might be many more).
let di = d(γi), for all i. Importantly, d1 ∩ d2 ∩ d3 ̸= ∅. We assume that properties (I)-(IV) of

 Lemma 18.2.4 hold for this drawing.
For every curve γi that intersect γ1, its region di intersects γ1 in a circular arc, and let Ii = γ1 ∩ di

denote this circular arc. If I3 is covered by the union of pseudodisks (ignoring d1), then we redraw
γ3, so that its interior inside b(o, 2) is replaced by the (scaled) arc (3/2)I3 together with two segments
that connect it to the outside of b(o, 2). It is easy to verify that the new set of curves is still a set of
pseudo disks – see  Figure 18.2.3 and  Figure 18.2.4 . Furthermore, the union of pseudodisks have not
changed, but γ1 and γ3 no longer intersect (bye bye, and thanks for all the intersections!). Namely, for
the resulting set of pseudodisks Γ′, we have that #3(Γ′) < #3(Γ) and ⟨Γ′⟩ = ⟨Γ⟩.

We can apply the above argument if any other arc Ij is covered by the union of the remaining arcs.
So assume this does not happen – every arc Ii has at least one point on γ1 that no other curve covers.
In this case, we do the same thing – we redraw γ3 by replacing the portion between the endpoints of
(3/2)I3 on γ3 by (3/2)I3. It is again easy to verify that the resulting set of curves Γ′ is a set of pseudo
disks. However, interestingly, the union U(Γ′) now has a hole that was previously covered by d3, see

 Figure 18.2.4 . Namely, the union complexity of the new set of pseudodisks is strictly larger. We conclude
that #3(Γ′) < #3(Γ) and ⟨Γ′⟩ > ⟨Γ⟩.

Theorem 18.2.6. Given a set Γ of n pseudodisks in the plane, their union complexity is at most 6n−12.

Proof: As long as #3(Γ) > 0, we apply  Lemma 18.2.5 to get a new family of curves of the same size
that has the same or bigger union complexity, but fewer intersections of triples of regions. After a finite
number of such redraws we end up with a family of pseudodisks with no triple intersection. But then
the bound follows from  Lemma 18.2.2 .
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Figure 18.2.4: Reducing the number of triple intersecting by snapping one of the pseudodisks outside.

18.3. Bibliographical notes
Our presentation more or less follows the original proof of Kedem et al. [ KLPS86 ]. Arguably our
presentation is somewhat simpler.
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