Chapter 16

Data-structures: Interval trees

By Sariel Har-Peled, March 7, $2023^{\left({ }^{(}\right.}$

We cover here Chapter 10 in [BCKO08]
"See? Genuine-sounding indignation. I
programmed that myself. It's the first thing you need in a university environment: the ability to take offense at any slight, real or imagined."

Robert Sawyer, Factoring Humanity,

16.1. Interval trees

Consider an interval $I=[\alpha, \beta]$. It contains a point $q \in \mathbb{R}$ if $\alpha \leq q \leq \beta$. Given a set of n interval \mathcal{I}, consider the problem of building a data-structure such that given a query point, one can report all the intervals that contain it in $O(\log n+k)$ time.

Theorem 16.1.1. Given a set \mathcal{I} of n intervals, one can build a data-structure in $O(n \log n)$ time, such that given a query point one can report all the interval containing q in $O(\log n+k)$ time. The data-structure, called interval tree, uses $O(n)$ space.

A natural extension is to consider horizontal segments. We would like to report all the segments that intersect a vertical query segment q. The idea it to build a top-level interval-tree as above on the x-axis. For an internal node, we have all the horizontal segments intersecting a vertical line. We now preprocess the end points of these segments to orthogonal range searching. Using fractional cascading and the same recursive approach, we get the following.

Theorem 16.1.2. Let S be a set of n horizontal segments in the plane. One can preprocess them in $O(n \log n)$ time, such that given a vertical segment q, one can report all the segments of S intersecting q in $O\left(\log ^{2} n+k\right)$ time. The data-structure uses $O(n \log n)$ space.

16.2. Priority search trees

The above required us to answer three-sided queries on a set of points. We solve this problem directly.
Lemma 16.2.1. Given a set P of n points in the plane, one can preprocess it in $O(n \log n)$ time, such that given a query region $R=\left[-\infty, x_{0}\right] \times\left[y_{1}, y_{2}\right]$, one can report all the points in $P \cap R$ in $O(\log n+k)$ time.

Proof: The idea is to build a binary search tree. At the root, we put the point $p_{\min }$ with minimum x coordinate in P. We then split $P-p_{\min }$ "equally" according to the y-axis order median - say

Figure 16.2.1
this value is β. We recursively construct a tree for $P_{>\beta}=\left\{(x, y) \in P-p_{\min } \mid y>\beta\right\}$ and $P_{\leq \beta}=$ $\left\{(x, y) \in P-p_{\text {min }} \mid y \leq \beta\right\}$ and hang it from the root. This can be interpreted as building a binary hierarchy of three sided rectangles.

The query process is now quite natural - given the three sided rectangle R, you do a recursive traversal of the tree recursing into a node only if its associated region intersects R. It is not hard to argue that the query time is $O(\log n+k)$.

16.3. Segment trees

For a set $P \subseteq \mathbb{R}$, an atomic interval is a maximal closed continuous subset of \mathbb{R} that does not contain any point of P in its interior. Let $\mathcal{I}_{A}(P)$ be the set of atomic intervals defined by P. By building a balanced binary tree on the atomic intervals of P (here the atomic intervals are sorted from left to right), we get a balanced binary tree T , where each node v correspond to an interval I_{v} on the real line.

Given a set of intervals \mathcal{I}, let P be the set of endpoints of the intervals of \mathcal{I}, and let T be the above tree constructed over $\mathcal{I}_{A}(P)$. We store an interval $I \in \mathcal{I}$ in all the nodes v such that $I_{v} \subseteq I$, but $I_{\overline{\mathrm{p}}(v)}$ is not contained in I, where $\overline{\mathrm{p}}(v)$ is the parent of v in the tree. It is straightforward to argue that every interval is stored in $O(\log n)$ nodes. Given a query point $q \in \mathbb{R}$, it is straightforward to locate the $m=O(\log n)$ nodes v_{1}, \ldots, v_{m} of T that contains q. The set $\mathcal{I}\left(v_{1}\right) \cup \cdots \cup I\left(v_{m}\right)$ then is all the input intervals that contains q. The query time is $O(\log n)$. This tree is known as segment tree

Theorem 16.3.1. Given a set of n intervals on the line, one can build a data-structure using $O(n \log n)$ space, such that given a query point q, one can report all the intervals containing q, by reporting $O(\log n)$ precomputed sets. The disjoint union of the sets is the set of all intervals containing q.

This readily leads to the following data-structure.
Theorem 16.3.2. Given a set of n interior disjoint segments S in the plane, one can build a datastructure using $O(n \log n)$ space, such that given a vertical query segment s, one can report all the segments intersecting s in $O\left(\log ^{2} n+k\right)$ time, where $k=|s \cap \mathrm{~S}|$. This data-structure can be built in $O(n \log n)$ time.

[^0]The naive construction time in the above algorithm is $O\left(n \log ^{2} n\right)$. However, the construction time can be improved to $O(n \log n)$ by computing partial order on the segments by y order using sweeping. Then, we insert the segments into the tree in bottom to top order. Now, all the segments registered in a node, are registered in their correct y-order.

16.4. Bibliographical notes

Our presentation more or less follows Chapter 10 in [BCKO08]

References

[BCKO08] M. de Berg, O. Cheong, M. J. van Kreveld, and M. H. Overmars. Computational Geometry: Algorithms and Applications. 3rd. Santa Clara, CA, USA: Springer, 2008.

[^0]: ${ }^{(1)}$ This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

