Chapter 16

Data-structures: Interval trees

By Sariel Har-Peled, March 7, 2023

We cover here Chapter 10 in [BCKO08]

16.1. Interval trees

Consider an interval \(I = [\alpha, \beta] \). It contains a point \(q \in \mathbb{R} \) if \(\alpha \leq q \leq \beta \). Given a set of \(n \) interval \(\mathcal{I} \), consider the problem of building a data-structure such that given a query point, one can report all the intervals that contain it in \(O(\log n + k) \) time.

Theorem 16.1.1. Given a set \(\mathcal{I} \) of \(n \) intervals, one can build a data-structure in \(O(n \log n) \) time, such that given a query point one can report all the interval containing \(q \) in \(O(\log n + k) \) time. The data-structure, called interval tree, uses \(O(n) \) space.

A natural extension is to consider horizontal segments. We would like to report all the segments that intersect a vertical query segment \(q \). The idea it to build a top-level interval-tree as above on the \(x \)-axis. For an internal node, we have all the horizontal segments intersecting a vertical line. We now preprocess the end points of these segments to orthogonal range searching. Using fractional cascading and the same recursive approach, we get the following.

Theorem 16.1.2. Let \(S \) be a set of \(n \) horizontal segments in the plane. One can preprocess them in \(O(n \log n) \) time, such that given a vertical segment \(q \), one can report all the segments of \(S \) intersecting \(q \) in \(O(\log^2 n + k) \) time. The data-structure uses \(O(n \log n) \) space.

16.2. Priority search trees

The above required us to answer three-sided queries on a set of points. We solve this problem directly.

Lemma 16.2.1. Given a set \(P \) of \(n \) points in the plane, one can preprocess it in \(O(n \log n) \) time, such that given a query region \(R = [-\infty, x_0] \times [y_1, y_2] \), one can report all the points in \(P \cap R \) in \(O(\log n + k) \) time.

Proof: The idea is to build a binary search tree. At the root, we put the point \(p_{\min} \) with minimum \(x \) coordinate in \(P \). We then split \(P - p_{\min} \) “equally” according to the \(y \)-axis order median – say...
this value is β. We recursively construct a tree for $P_{>\beta} = \{(x, y) \in P - p_{\min} \mid y > \beta\}$ and $P_{\leq \beta} = \{(x, y) \in P - p_{\min} \mid y \leq \beta\}$ and hang it from the root. This can be interpreted as building a binary hierarchy of three sided rectangles.

The query process is now quite natural – given the three sided rectangle R, you do a recursive traversal of the tree recursing into a node only if its associated region intersects R. It is not hard to argue that the query time is $O(\log n + k)$.

16.3. Segment trees

For a set $P \subseteq \mathbb{R}$, an atomic interval is a maximal closed continuous subset of \mathbb{R} that does not contain any point of P in its interior. Let $I_A(P)$ be the set of atomic intervals defined by P. By building a balanced binary tree on the atomic intervals of P (here the atomic intervals are sorted from left to right), we get a balanced binary tree T, where each node v corresponds to an interval I_v on the real line.

Given a set of intervals \mathcal{I}, let P be the set of endpoints of the intervals of \mathcal{I}, and let T be the above tree constructed over $I_A(P)$. We store an interval $I \in \mathcal{I}$ in all the nodes v such that $I_v \subseteq I$, but $I_{p(v)}$ is not contained in I, where $p(v)$ is the parent of v in the tree. It is straightforward to argue that every interval is stored in $O(\log n)$ nodes. Given a query point $q \in \mathbb{R}$, it is straightforward to locate the $m = O(\log n)$ nodes v_1, \ldots, v_m of T that contains q. The set $I(v_1) \cup \cdots \cup I(v_m)$ then is all the input intervals that contains q. The query time is $O(\log n)$. This tree is known as segment tree.

Theorem 16.3.1. Given a set of n intervals on the line, one can build a data-structure using $O(n \log n)$ space, such that given a query point q, one can report all the intervals containing q, by reporting $O(\log n)$ precomputed sets. The disjoint union of the sets is the set of all intervals containing q.

This readily leads to the following data-structure.

Theorem 16.3.2. Given a set of n interior disjoint segments S in the plane, one can build a data-structure using $O(n \log n)$ space, such that given a vertical query segment s, one can report all the segments intersecting s in $O(\log^2 n + k)$ time, where $k = |s \cap S|$. This data-structure can be built in $O(n \log n)$ time.

\[\text{This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit } \text{http://creativecommons.org/licenses/by-nc/3.0/} \text{ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.}\]
The naive construction time in the above algorithm is $O(n \log^2 n)$. However, the construction time can be improved to $O(n \log n)$ by computing partial order on the segments by y order using sweeping. Then, we insert the segments into the tree in bottom to top order. Now, all the segments registered in a node, are registered in their correct y-order.

16.4. Bibliographical notes

Our presentation more or less follows Chapter 10 in [BCKO08]

References