
Chapter 16

Data-structures: Interval trees
By Sariel Har-Peled, March 7, 2023 

①
 

“See? Genuine-sounding indignation. I
programmed that myself. It’s the first thing you
need in a university environment: the ability to
take offense at any slight, real or imagined.”

Robert Sawyer, Factoring Humanity,We cover here Chapter 10 in [ BCKO08 ]

16.1. Interval trees
Consider an interval I = [α, β]. It contains a point q ∈ R if α ≤ q ≤ β. Given a set of n interval I,
consider the problem of building a data-structure such that given a query point, one can report all the
intervals that contain it in O(log n + k) time.

Theorem 16.1.1. Given a set I of n intervals, one can build a data-structure in O(n log n) time,
such that given a query point one can report all the interval containing q in O(log n + k) time. The
data-structure, called interval tree, uses O(n) space.

A natural extension is to consider horizontal segments. We would like to report all the segments
that intersect a vertical query segment q. The idea it to build a top-level interval-tree as above on the
x-axis. For an internal node, we have all the horizontal segments intersecting a vertical line. We now
preprocess the end points of these segments to orthogonal range searching. Using fractional cascading
and the same recursive approach, we get the following.

Theorem 16.1.2. Let S be a set of n horizontal segments in the plane. One can preprocess them in
O(n log n) time, such that given a vertical segment q, one can report all the segments of S intersecting
q in O(log2 n + k) time. The data-structure uses O(n log n) space.

16.2. Priority search trees
The above required us to answer three-sided queries on a set of points. We solve this problem directly.

Lemma 16.2.1. Given a set P of n points in the plane, one can preprocess it in O(n log n) time, such
that given a query region R = [−∞, x0] × [y1, y2], one can report all the points in P ∩ R in O(log n + k)
time.

Proof: The idea is to build a binary search tree. At the root, we put the point pmin with minimum
x coordinate in P . We then split P − pmin “equally” according to the y-axis order median – say

1



Figure 16.2.1

this value is β. We recursively construct a tree for P>β = {(x, y) ∈ P − pmin | y > β} and P≤β =
{(x, y) ∈ P − pmin | y ≤ β} and hang it from the root. This can be interpreted as building a binary
hierarchy of three sided rectangles.

The query process is now quite natural – given the three sided rectangle R, you do a recursive
traversal of the tree recursing into a node only if its associated region intersects R. It is not hard to
argue that the query time is O(log n + k).

16.3. Segment trees
For a set P ⊆ R, an atomic interval is a maximal closed continuous subset of R that does not contain
any point of P in its interior. Let IA(P ) be the set of atomic intervals defined by P . By building
a balanced binary tree on the atomic intervals of P (here the atomic intervals are sorted from left to
right), we get a balanced binary tree T, where each node v correspond to an interval Iv on the real line.

Given a set of intervals I, let P be the set of endpoints of the intervals of I, and let T be the above
tree constructed over IA(P ). We store an interval I ∈ I in all the nodes v such that Iv ⊆ I, but Ip(v)
is not contained in I, where p(v) is the parent of v in the tree. It is straightforward to argue that
every interval is stored in O(log n) nodes. Given a query point q ∈ R, it is straightforward to locate the
m = O(log n) nodes v1, . . . , vm of T that contains q. The set I(v1) ∪ · · · ∪ I(vm) then is all the input
intervals that contains q. The query time is O(log n). This tree is known as segment tree

|

Theorem 16.3.1. Given a set of n intervals on the line, one can build a data-structure using O(n log n)
space, such that given a query point q, one can report all the intervals containing q, by reporting O(log n)
precomputed sets. The disjoint union of the sets is the set of all intervals containing q.

This readily leads to the following data-structure.

Theorem 16.3.2. Given a set of n interior disjoint segments S in the plane, one can build a data-
structure using O(n log n) space, such that given a vertical query segment s, one can report all the
segments intersecting s in O(log2 n + k) time, where k = |s ∩ S|. This data-structure can be built in
O(n log n) time.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit  http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

2

http://creativecommons.org/licenses/by-nc/3.0/


The naive construction time in the above algorithm is O(n log2 n). However, the construction time
can be improved to O(n log n) by computing partial order on the segments by y order using sweeping.
Then, we insert the segments into the tree in bottom to top order. Now, all the segments registered in
a node, are registered in their correct y-order.

16.4. Bibliographical notes
Our presentation more or less follows Chapter 10 in [  BCKO08 ]

References
[BCKO08] M. de Berg, O. Cheong, M. J. van Kreveld, and M. H. Overmars.  Computational Geometry:

Algorithms and Applications  . 3rd. Santa Clara, CA, USA: Springer, 2008.

3

http://dx.doi.org/10.1007/978-3-540-77974-2
http://dx.doi.org/10.1007/978-3-540-77974-2

