
Chapter 15

Delaunay Triangulations
By Sariel Har-Peled, March 3, 2023 

①
 

“See? Genuine-sounding indignation. I
programmed that myself. It’s the first thing you
need in a university environment: the ability to
take offense at any slight, real or imagined.”

Robert Sawyer, Factoring Humanity,

15.1. Delaunay triangulations
Given a set P of n points in the plane (in general position), a triangulation is a maximal planar graph
having the points of P as vertices, and edges as segments. The outer face of a triangulation of P is the
convex-hull of P , and all other faces are triangles.

Figure 15.1.1: A point set, and two triangulations of the point set.

The following is an immediate consequence of Euler’s formula.

Lemma 15.1.1. Let P be a set of n points in the plane, and let k be the number of vertices of CH(P ).
Let △△△ be any triangulation of P . Then △△△ has 3n − 3 − k edges, and 2n − k − 2 (regular) triangles.

Proof: Consider the planar graph G formed by adding a fake point to P outside its convex-hull and
connecting it by (not necessarily) straight edges to the vertices of CH(P ). This results in a triangulation
of the plane. As proved already from Euler’s formula, for a triangulation, we have e(G) = 3v(G) − 6.
We thus have

e(△△△) = e(G) − k = 3v(G) − 6 − k = 3(n + 1) − 6 − k = 3n − 3 − k.

Similarly, since 3f(G) = 2e(G), we have

f(△△△) = f(G) − k + 1 = 2
3e(G) − k + 1 = 2

3(3n + 3 − 6) − k + 1 = 2n − 2 − k + 1 = 2n − k − 1.

Of course, the outer face is not counted as a regular triangle.
①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
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The circumcircle of three points p, q, s in the plane is the unique circle that passes through the
three points. The center of the circumcircle is the unique point in the plane that is in equal distance to
all three points. That is, the center is a vertex in the Voronoi diagram of the three sites.

Let m be the number of triangles in a triangulation △△△ = △△△(P ). Consider the 3m angles in the
triangles of △△△ and sort them by increasing order, and let ���△△△ = (α1, α2, . . . , α3m) be the resulting
vector, where αi ≤ αi+1, for all i. The vector ���△△△ is the signature of △△△. Given two triangulations
△△△ and ∇∇∇ of P , let ���△△△ = (α1, . . . , α3m) and ���∇∇∇ = (β1, . . . , β3m) be their corresponding signatures.
We use ≻ to denote the lexicographical order on the signatures – that is, ���△△△ ≻ ���∇∇∇ ⇐⇒ ���△△△ is
lexicographically larger than ���∇∇∇. Specifically, there is an index k, such that

αi = βi, for i = 1, . . . , k − 1, and αk > βk.

Given two points p, q the locus of all points seeing the two points in a certain fixed angle α is the
union of two circular arcs. To see this, consider a point s seeing the p and q in angle α, and recall that
the center of the circumcircle sees the two points in angle 2α (this follows from elementary geometric
arguments). It is not hard to see that any point in this circular arc sees the point in the same angle.
See  Figure 15.1.2 . The interior of the region formed by these two circular arcs is the set of all points
that sees p, q with angle strictly larger than α. All points outside this region sees the pair of points with
angle strictly smaller than α.
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Figure 15.1.2: The circle supporting the points that see p, q with angle α. On the right is the region of
all the points that sees p and q with angle ≥ α.

To get a handle of this entity, it is useful to consider the set of circles that have p and q on its
boundary. Such a set of circles is a pencil. See  Figure 15.1.3 for an illustration. A pencil is a one
dimensional family of shapes parameterized by the location of the center of the disk along the bisector
line. One can continuously move between two circles in the pencil by continuously moving the center
from the starting circle center to the target circle center.

An edge s in a triangulation is illegal if two triangles adjacent to it form a convex quadrilateral, and
furthermore, the circumcircle of the one of the triangles contains the other vertex of the quadrilateral
in it. So consider a convex quadrilateral with points psqt, such that circumcircle of △psq contains t
in its interior. By continuous pencil argument, it is easy to see that the circumcircle of △ptq contains

Figure 15.1.3: The portion of the pencil defined by circles that lie on a Voronoi edge.

2



p

t

s
p

t

s

Figure 15.1.4: Illegal edge.

s in its interior. Thus, the above definition of illegal edge is consistent – if one triangle testifies the
edge is illegal, so does the adjacent triangle. See  Figure 15.1.4  . To get rid of an illegal edge, instead
of deporting it, we flip the illegal diagonal of the quadrilateral, replacing it by the other quadrilateral.
It is easy to verify that the new diagonal is now legal. Furthermore, the smallest angle in the two new
triangles is bigger than it was before. See  Figure 15.1.4 .

Lemma 15.1.2. Let P = {p, s, q, t} be a set of four points in the plane in convex position, and let △△△
be the triangulation of P having pq as a diagonal, which is illegal. Let ∇∇∇ be the triangulation of P that
has st as a diagonal. Then st is a legal diagonal, and furthermore, ���∇∇∇ ≻ ���△△△.

Corollary 15.1.3. Let P be a set of n points in the plane, and let △△△ be a triangulation. Let ∇∇∇ be the
result of flipping an illegal diagonal in △△△. We have that ���∇∇∇ ≻ ���△△△.

Proof: Follows readily from the above lemma, as the flip effects only the angles involved in the flip.

A legal triangulation is a triangulation that all its edges are legal. Observe that the set of
triangulation is finite, and have an ordering on the signatures, which strictly increases after every flip.
It follows that the greedy algorithm that starts with arbitrary triangulation and repeatedly flips illegal
edges, ends up with a legal triangulation.

Lemma 15.1.4. Let △△△ be a legal triangulation of P . Then, for all triangles △ ∈ △△△, their associated
circumcircle contains no points of P in its interior.

Proof: Assume for contradiction that this is false, and let △ ∈ △△△ be the offending triangle, with p ∈ P
being the point lying in the interior of its circumcircle. Set △1 = △. In the following, let Ci denote the
circumcircle of △i.

In the ith iteration, for i ≥ 1, we have that p is contained in the interior of Ci, and must be separated
from the interior of △i by one of its edges, say ei. Let △i+1 be the triangle adjacent to △i through ei in
△△△. If p is a vertex of △i+1 then we found an illegal edge (i.e., ei), which is a contradiction to △△△ being
a legal triangulation. See  Figure 15.1.5 .

Otherwise, observe that △i and △i+1 both belong to the pencil defined by the endpoints of ei. In
particular, Ci+1, the circumcircle of △i+1, fully contains the portion of Ci that is on the same side of ei as
p. That is, p is contained in Ci+1. We now continue the argument to the next iteration – arguing about
△i+1, Ci+1 and p. We claim that this “walk” in the triangulation can not cycle – indeed, we replaced
△i by a triangle △i+1 that is strictly closer to p (i.e., d(p, △i) = minq∈△i

∥pq∥ is strictly decreasing as a
function of i). Since the triangulation △△△ is finite, this process must stop, which implies that there is an
illegal edge in the triangulation △△△. Ludicrous! A contradiction.
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Figure 15.1.5: Walking like an Egyptian in a Delaunay triangulation.

Lemma 15.1.5. Assuming general position on P , and that |P | > 2, consider a legal triangulation △△△ of
P , and consider an edge pq ∈ △△△. Then, there is circle C that contains only p, q on its boundary, and
no points of P in its interior.

Proof: The case that pq is an edge of the convex-hull of P is immediate. Otherwise, there are two
triangles △, △′ ∈ △△△ that share the edge pq. Clearly, the circumcircles C, C ′ of these two triangles
belong to the pencil of p, q. Pick any circle C ′′ in between C and C ′ in this pencil. Clearly, C ′′ is the
desired circle.

Lemma 15.1.6. Assuming general position, the legal triangulation of P is unique.

Proof: Assume for contradiction that there are two different legal triangulations △△△ and △△△′ of P . Then
there must be an edge e ∈ △△△ and an edge e′ ∈ △△△′ such that they intersect in their interior (as otherwise,
the two triangulations are the same). By  Lemma 15.1.5 , there is a circle C (resp. C ′) that have the
endpoints of e (resp. e′) on its boundary, and no other point of P either on its boundary or its interior.

e

e′

C ′

C

Figure 15.1.6

The situation is depicted in  Figure 15.1.6 – we have two distinct circles that supports two distinct
segments that intersect. This in turn implies that these two circles must have four intersections, which
is impossible. A contradiction.

This unique legal triangulation is the Delaunay triangulation of P , and let D(P ) denote this
triangulation.

Lemma 15.1.7. The dual graph of the Delaunay triangulation △△△ of P is the Voronoi diagram of P .

Proof: The dual graph of the Voronoi diagram is clearly a triangulation, as all vertices in the Voronoi
diagram have degree three (assuming general position). An edge e of the Voronoi diagram encodes a
pencil of circles passing through the two sites defining the edge. The two Voronoi vertices of this Voronoi
edge corresponds in the dual to two triangles that form a quadrilateral, and the dual edge e⋆ is legal.
Namely, the dual triangulation to the Voronoi diagram is the unique legal triangulation of P .
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Definition 15.1.8. The triangulation △△△ of P such that all circumcircle associated with a triangle of △△△
contains no other points of P is well-defined and unique, and is the Delaunay triangulation of P .

Consider the triangulation △△△ of P that maximizes the signature. Observe that △△△ must be legal, as
otherwise we can flip and increase the angles vector. It follows that the triangulation maximizing the
angles vector is the Delaunay triangulation.

Corollary 15.1.9. For a set P of points, the Delaunay triangulation of P maximizes the minimum
angle among all triangulations of P .

Thus, in this sense, the Delaunay triangulation is the one yields the “fattest” possible triangles.
Another important consequence of the duality of the Voronoi diagram/Delaunay triangulation is the
following characteristic.

The above implies the following much more convenient characterization of Delaunay triangulation
– the original definition is cumbersome. One can of course start from the following as the definition
of Delaunay triangulation, but then one needs to prove that it indeed from a triangulation, which is
effectively what we did above.

Lemma 15.1.10. Let P be a set of points in the plane. The points pq form an edge in the Delaunay
triangulation D(P ) ⇐⇒ there exists disk that contains p, q, and no other point of P .

Similarly, △pqs is a triangle in D(P ) ⇐⇒ the circumcircle of p, q.s contains no other points of P
in it.

15.2. Computing Delaunay triangulation via lifting
Consider the paraboloid z = x2 + y2 and a hyperplane h ≡ z = αx + βy + γ. The intersection of these
two surfaces is the set of points complying with the equation

x2 + y2 = αx + βy + γ ⇐⇒
(

x2 − αx + α2

4

)
+
(

y2 − βx + β2

4

)
= α2

4 + β2

4 + γ

⇐⇒
(

x − α

2

)2
+
(

y − β

2

)2

= α2

4 + β2

4 + γ.

Namely, the projection of the intersection to the xy-plane is a circle centered at (α/2, β/2) and is of
radius

√
α2

4 + β2

4 + γ. Clearly, the points inside the disk are below h when lifted to the paraboloid, and
the points outside are above the hyperplane.

Note that this mapping is bijective – given any circle in the plane, we can compute the plane in three
dimensions that its intersection with the paraboloid when projected to the xy-plane is this circle.

So, consider a point set P ⊆ R2. Let Q =
{
(x, y, x2 + y2)

∣∣∣ (x, y)
}

be the point set lifted to the
paraboloid. Clearly, any disk that has three points of q, s, t ∈ P on its boundary, corresponds to a plane
that passes through the corresponding three points of Q, the projection of the intersection of this plane
to the xy plane is the boundary circle of this disk, and all the other points of Q are above this plane. In
particular, the Delaunay triangle △qst corresponds to a face of the convex-hull of Q that has the three
lifted points as its vertices. We thus proved the following amazing result (we argued about it in two
dimensions, but the argumentation holds in any dimension).

Lemma 15.2.1. The Delaunay triangulation of a set of points P in Rd, can be computed by:
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(A) Lifting the points of P to the paraboloid in Rd+1, resulting in a point set Q.
(B) Computing the convex hull of Q.
(C) Projecting down the “down” faces of the convex-hull results in the Delaunay triangulation of P.

What about flipping? The current triangulation can be interpreted as a surface in 3d. As long as
this surface is not convex, we can locally perform a flip – this is equivalent to two replacing two adjacent
triangles, by the two bottom triangles that form the convex hull of the four points in three dimensions.
Visually, we are filling a cavity in the surface by filling in a simple. We can repeat this process till we
arrive to the convex-hull.

Since we already seen how to compute the convex-hull of n points in 3d in O(n log n) time, we readily
get the following.

Theorem 15.2.2. The Delaunay triangulation of n points in 3d can be computed in O(n log n) (ex-
pected) time.

15.3. Bibliographical notes
Our presentation more or less follows Chapter 9 in [  BCKO08 ]
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