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Duality, Inversion and Polarity
By Sariel Har-Peled, February 21, 2023  
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“I think you’re insane,” he said.
“I am just outspoken. I simply say, ‘A man is a
sperm’s way to producing another sperm.’
That’s merely practical.”

A maze of death, Philip K. Dick

Duality is a transformation that maps lines and points into points and lines, respectively, while
preserving some properties in the process. Despite its relative simplicity, it is a powerful tool that can
dualize what seem like “hard” problems into easy dual problems. There are several alternative definitions
of duality, but they are essentially similar, and we present one that works well for our purposes.

13.1. Duality of lines and points
Consider a line ℓ ≡ y = ax+ b in two dimensions. It is parameterized by two constants a and b, which
we can interpret, paired together, as a point in the parametric space of the lines. Naturally, this also
gives us a way of interpreting a point as defining the coefficients of a line. Thus, conceptually, points
are lines and lines are points.

Formally, the dual point to the line ℓ ≡ y = ax+ b is the point ℓ⋆ = (a,−b). Similarly, for a point
p = (c, d) its dual line is p⋆ ≡ y = cx− d. Namely,

p = (a, b) =⇒ p⋆ ≡ y = ax− b,

ℓ ≡ y = cx+ d =⇒ ℓ⋆ = (c,−d).

We will consider a line ℓ ≡ y = cx+ d to be a linear function in one dimension and let ℓ(x) = cx+ d.
A point p lies above a line ℓ if p lies vertically above ℓ. Formally, for a point p = (a, b) and a line

ℓ ≡ y = cx+ d we have

p ≻ ℓ ≡ p above ℓ ≡ b > ℓ(a) = ca+ d,

and p ≺ ℓ ≡ p below ℓ ≡ b < ℓ(a).

A line ℓ supports a convex set S ⊆ R2 if it intersects S but the interior of S lies completely on one
side of ℓ.

Basic properties. For a point p = (a, b) and a line ℓ ≡ y = cx+ d, we have the following:

(P1) p⋆⋆ = (p⋆)⋆ = p.

Proof: Indeed, p⋆ ≡ y = ax− b and (p⋆)⋆ = (a,−(−b)) = p.
①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
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(P2) The point p lies above (resp. below, on) the line ℓ if and only if the point ℓ⋆ lies above (resp.
below, on) the line p⋆. (Namely, a point and a line change their vertical ordering in the dual.)

Proof: Indeed, p ≻ ℓ(a) if and only if b > ca+ d. Similarly, (c,−d) = ℓ⋆ ≻ p⋆ ≡ y = ax− b if and
only if

−d > ac− b ⇐⇒ b > ca+ d,

and this is the above condition.

(P3) The vertical distance between p and ℓ is the same as that between p⋆ and ℓ⋆.

Proof: Indeed, the vertical distance between p and ℓ is |b − ℓ(a)| = |b − (ca + d)|. The vertical
distance between ℓ⋆ = (c,−d) and p⋆ ≡ y = ax−b is |(−d)−p⋆(c)| = |−d−(ac−b)| = |b−(ca+d)|.

(P4) The vertical distance δ(ℓ, ℏ) between two parallel lines ℓ and ℏ is the same as the length of the
vertical segment ℓ⋆ℏ⋆.

Proof: The vertical distance between ℓ ≡ y = ax+ b and ℏ ≡ y = ax+ e is |b− e|. Similarly, since
ℓ⋆ = (a,−b) and ℏ⋆ = (a,−e), we have that the segment ℓ⋆ℏ⋆ is indeed vertical and the vertical
distance between its endpoints is |(−b) − (−e)| = |b− e|.

The missing lines. Consider the vertical line ℓ ≡ x = 0. Clearly, ℓ does not have a dual point
(specifically, its hypothetical dual point has an x-coordinate with infinite value). In particular, our
duality cannot handle vertical lines. To visualize the problem, consider a sequence of non-vertical lines
ℓi that converges to a vertical line ℓ. The sequence of dual points ℓ⋆

i is a sequence of points that diverges
to infinity.

13.1.1. Examples
13.1.1.1. Segments and wedges

Consider a segment s = pq that lies on a line ℓ. Observe, that the dual
of a point t ∈ ℓ is a line t⋆ that passes through the point ℓ⋆ (by  (P2) 

above). Specifically, the two lines p⋆ and q⋆ define two double wedges.
Let W be the double wedge that does not contain the vertical line that
passes through ℓ⋆; see the figure on the right.
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Consider now the point t as it moves along s. When it is equal to p (resp. q), then its dual line
t⋆ is the line p⋆ (resp. q⋆). As t moves along s from p to q, its x-coordinate changes continuously,
and hence the slope of its dual changes continuously from that of p⋆ to that of q⋆. Furthermore, all
these dual lines must all pass through the point ℓ⋆. As such, as t moves from p to q, the dual line t⋆
sweeps over the double wedge W . Note that the x-coordinate of t during this process is in the interval
[min(x(p), x(q)),max(x(p), x(q))]; namely, it is bounded. As such, the double wedge being swept over is
the one that does not include the vertical line through ℓ⋆.

What about the other double wedge? It represents the two rays forming ℓ \ s. The vertical line
through ℓ⋆ represents the singularity point at infinity where the two rays are “connected” together.
Thus, as t travels along one of the rays of ℓ \ s (say starting at q), the dual line t⋆ becomes steeper and
steeper, till it becomes vertical. Now, the point t “jumps” from the “infinite endpoint” of this ray to
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the “infinite endpoint” of the other ray. Now, as t travels down the other ray, the dual line t⋆ continues
to rotate from its current vertical position, sweeping over the rest of the double wedge, till t reaches
p. 

②
 (The reader who feels uncomfortable with notions like “infinite endpoint” can rest assured that the

author feels the same way. As such, this should be taken as an intuitive description of what’s going on
and not as a formally correct one. This argument can be formalized by using the projective plane.)

13.1.1.2. Convex hull and upper/lower envelopes

Consider a set L of lines in the plane. The minimization diagram of L, known as the lower envelope
of L, is the function LL : R → R, where we have L(x) = minℓ∈L ℓ(x), for x ∈ R. Similarly, the upper
envelope of L is the function U(x) = maxℓ∈L ℓ(x), for x ∈ R. The extent of L at x ∈ R is the vertical
distance between the upper and lower envelopes at x; namely, EL(x) = U(x) − L(x).

x
lower envelope

upper envelope

EL(x)

Computing the lower and/or upper envelopes can be useful. A line
might represent a linear constraint, where the feasible solution must lie
above this line. Thus, the feasible region is the region of points that lie
above all the given lines. Namely, the region of the feasible solution is
defined by the upper envelope of the lines.

The upper (and lower) envelope is a polygonal chain made out of two
infinite rays and a sequence of segments, where each segment/ray lies on
one of the given lines. As such, the upper envelop can be described as
the sequence of lines appearing on it and the vertices where they change.

Developing an efficient algorithm for computing the upper envelope of a set of lines is a tedious but
doable task. However, it becomes trivial if one uses duality.

Lemma 13.1.1. Let L be a set of lines in the plane. Let α ∈ R be any number, and let β− = LL(α)
and β+ = UL(α). Let p = (α, β−) and q = (α, β+). Then:

(i) The dual lines p⋆ and q⋆ are parallel, and they are both perpendicular to the direction (α,−1).
(ii) The lines p⋆ and q⋆ support CH(L⋆).

(iii) The extent EL(α) is the vertical distance between the lines p⋆ and q⋆.

Proof: (i) We have p⋆ ≡ y = αx−β− and q⋆ ≡ y = αx−β+. These two lines are parallel since they have
the same slope. In particular, they are parallel to the direction (1, α). But this direction is perpendicular
to the direction (α,−1).

(ii) By property (P2), we have that all the points of L⋆ are below (or on) the line p⋆. Furthermore,
since p is on the lower envelope of L, it follows that p⋆ must pass through one of the points L⋆. Namely,
p⋆ supports CH(L⋆) and it lies above it. A similar argument applies to q⋆.

(iii) This is a restatement of  (P4) .

`
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CH(L?)Thus, consider a vertex p of the upper envelope of the set of lines L.
The point p is the intersection point of two lines ℓ and ℏ of L (for the sake
of simplicity of exposition, assume no other line of L passes through p).
Consider the dual set of points L⋆ and the dual line p⋆. Since p lies above (or on) all the lines of L, by
property  (P2) , it must be that the line p⋆ lies below (or on) all the points of L⋆. On the other hand
(again by property  (P2) ), the line p⋆ passes through the two points ℓ⋆ and ℏ⋆. Namely, p⋆ is a line that

②At this point t rests for awhile from this long trip of going to infinity and coming back.
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supports the convex hull of L⋆ and it passes through its vertices ℓ⋆ and ℏ⋆. (The reader should verify
that ℓ⋆ and ℏ⋆ are indeed vertices of the convex hull.)

The convex hull of L⋆ is a convex polygon Π which can be broken into two convex chains by breaking
it at the two extreme points in the x direction (we are assuming here that L does not contain parallel
lines, and as such the extreme points are unique). Note that such an endpoint is shared between the
two chains and corresponds to a line that defines two asymptotes (one of the upper envelope and one,
on the other side, for the lower envelope).

lower convex chain

upper convex chain

p
q

q? p?

We will refer to this upper polygonal chain of the convex hull as the
upper convex chain and to the lower one as the lower convex chain.
In particular, two consecutive segments of the upper envelope correspond to
two consecutive vertices on the lower chain of the convex hull of L⋆.

The lower chain of CH(L⋆) corresponds to the upper envelope of L, and
the upper chain corresponds to the lower envelope of L. Of special interest
are the two x extreme points p and q of the convex hull. They are the dual
of the two lines with the smallest/largest slopes in L. These two lines appear
on both the upper and lower envelopes of the lines and they contain the four
infinite rays of these envelopes.

Lemma 13.1.2. Given a set L of n lines in the plane, one can compute its lower and upper envelopes
in O(n log n) time.

Proof: One can compute the convex hull of n points in the plane in O(n log n) time. Thus, computing the
convex hull of L⋆ and dualizing the upper and lower chains of CH(L⋆) results in the required envelopes.

13.2. Higher dimensions
The above discussion can be easily extended to higher dimensions. We provide the basic properties
without further proof, since they are easy extensions of the two-dimensional case. A hyperplane h ≡
xd = b1x1 + · · · + bd−1xd−1 + bd in Rd can be interpreted as a function from Rd−1 to R. Given a point
p = (p1, . . . , pd), let h(p) = b1p1 + · · ·+bd−1pd−1 +bd. In particular, a point p lies above the hyperplane h
if pd > h(p). Similarly, p lies below the hyperplane h if pd < h(p). Finally, a point is on the hyperplane
if h(p) = pd.

The dual of a point p = (p1, . . . , pd) ∈ Rd is a hyperplane p⋆ ≡ xd = p1x1 + · · · pd−1xd−1 −pd, and the
dual of a hyperplane h ≡ xd = a1x1 + a2x2 + · · · + ad−1xd−1 + ad is the point h⋆ = (a1, . . . , ad−1,−ad).
Summarizing:

p = (p1, . . . , pd) =⇒ p⋆ ≡ xd = p1x1 + · · · + pd−1xd−1 − pd

h ≡ xd = a1x1 + · · · + ad−1xd−1 + ad =⇒ h⋆ = (a1, . . . , ad−1,−ad).

In the following we will slightly abuse notation, and for a point p ∈ Rd we will refer to (p1, . . . , pd−1,LH(p))
as the point LH(p). Similarly, UH(p) would denote the corresponding point on the upper envelope of H.

The proof of the following lemma is an easy extension of the proof of  Lemma 13.1.1 and is left as an
exercise.

Lemma 13.2.1. For a point p = (b1, . . . , bd), we have the following:
(A) p⋆⋆ = p.
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(B) The point p lies above (resp. below, on) the hyperplane h if and only if the point h⋆ lies above
(resp. below, on) the hyperplane p⋆.

(C) The vertical distance between p and h is the same as that between p⋆ and h⋆.
(D) The vertical distance δ(h, g) between two parallel hyperplanes h and g is the same as the length of

the vertical segment h⋆g⋆.
(E) Computing the lower and upper envelopes of H is equivalent to computing the convex hull of the

dual set of points H⋆.

13.3. Application: Upper/lower envelopes in 3d of planes
Let H be a set of n plane in 3d (in general position, with no vertical planes, etc). We are interested in
computing the upper or lower envelope of H. As a reminder, the lower envelope LH and upper envelope
UH are the functions:

∀p ∈ R2 L(p) = min
h∈H

h(p) and U(p) = max
h∈H

h(p).

By duality H⋆ is a set of points, and arguing as above, the upper/lower envelope of H corresponds
to the lower/upper parts of the convex-hull in 3d. Since the convex-hull in 3d can be computed in
O(n log n) time, we readily get the following.

Theorem 13.3.1. The upper/lower envelopes of a set of n planes in 3d can be computed in (expected)
O(n log n) time.

13.4. Inversion
Another useful transformation is inversion. We quickly overview its properties (without proving
anything). This is a useful to know transformation – not necessarily something we will be directly
using.

For a point p ̸= o, its inversion, through the unit circle, is the point p−1 = p/ ∥p∥2, where o denotes
the origin. Observe that p, p−1, o are collinear, ∥p∥ ∥p−1∥ = 1, and p and p−1 are on the same side of the
origin on this line.

More generally, inversion can be defined in relation to any circle in the plane. If the circle C is
centered at s and has radius r, then the inversion of a point p is the point p−1 lying on the line between
p and s, such that ∥p−1s∥ ∥ps∥ = r2.

Let us go back to the simpler inversion through the unit-circle centered at the origin. The inversion
maps a circle going through the origin to a line. It maps a circle that does not go through the origin
to a circle. Note, that inversion maps the interior of the interior of the unit circle to be outside it, and
vise versa.

The most striking property of inversions is that they are conformal. Consider two curves σ, τ that
intersection each other at a point p, and the angle between them at this point p is α. Then, the angle
between the “inversion” curves σ−1 = {q−1 | q ∈ σ} and τ−1 is also α at their intersection point p−1.
Proving this requires some work, so we omit it, as we are on principle against such things.
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13.5. Polarity
An alternative to duality is polarity. It avoids the vertical line goes to infinity issue, and is especially
useful when dealing with bounded sets.

13.5.1. Preliminaries
A direction in R2 can be represented as a unit vector in R2. The set of unit vectors (directions) in R2

is denoted by S =
{
p ∈ R2

∣∣∣∥p∥ = 1
}
.

Definition 13.5.1. For a line ℓ not passing through the origin, let h = h(ℓ) (resp. h = h(ℓ)) be the
(close) halfplane bounded by ℓ and containing (resp. not containing) the origin.

For a direction v ∈ S and a point q ∈ R2, let hv(q) be the halfplane that is bounded by the line
normal to direction v and passing through q, and that contains o.

Definition 13.5.2 (Extremal point, supporting line). For a set P of points in the plane, and a direction
v ∈ S, let pv be the extremal point of P in the direction v. That is pv = arg maxp∈P ⟨v, p⟩ . The point
pv is unique if v is not the outer normal of an edge of CH(P). Similarly, let ℓv be the supporting line of
CH(P) normal to v and passing through pv. Let hv = h(ℓv) and hv = h(ℓv). Observe that CH(P) ⊂ hv.

For a real number ψ, let hv ⊖ ψ and hv ⊖ ψ be the halfplanes formed by translating hv and hv,
respectively, towards the origin by distance ψ.

13.5.2. Back to polarity
We use the polarity transform, which maps a point p = (a, b) ̸= o to the line

p⊙ ≡ ax+ by − 1 = 0 ≡ ⟨p, (x, y)⟩ − 1 = 0 ≡
〈
p, (x, y) − p

∥p∥2

〉
= 0.

Namely, the line p⊙ is orthogonal to the vector op, and the closest point on p⊙ to the origin is p−1. Geo-
metrically, a point p is being mapped to the line passing through the inverted point p−1 and orthogonal
to the vector op−1. Similarly, for a line ℓ, its polar point ℓ⊙ is q−1, where q is the closest point to the
origin on ℓ. Observe that (ℓ⊙)⊙ = ℓ and (p⊙)⊙ = p for any line ℓ and any point p.

If a point p lies on a line ℓ then ℓ⊙ ∈ p⊙. If p lies in the halfplane h(ℓ) (by  Definition 13.5.1 ,
we have o /∈ h(ℓ)) if and only if p⊙ intersects the segment oℓ⊙, see  Figure 13.5.1 (left). Recall that
fo(L) = ⋂

ℓ∈L h(ℓ). Set P⊙ = {p⊙ | p ∈ P} and fo = fo(P⊙). Then the polygon fo is the polar of CH(P),
namely:

(I) If p ∈ P is a vertex of CH(P) then p⊙ contains an edge of fo, see  Figure 13.5.1 (right).
(II) The polar of line ℓ missing (resp. intersecting) CH(P) is a point lying in (resp. out) fo.

(III) For a point p ∈ CH(P), fo ⊂ h(p⊙).
Consider any direction u ∈ S. Let pu be the extremal point of P in direction u, and let ℓu be the

corresponding supporting line, see  Definition 13.5.2 . The point ℓ⊙
u lies on the edge of fo supported by

p⊙
u , and ℓ⊙

u / ∥ℓ⊙
u ∥ = u.
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Figure 13.5.1: Left: A point p lies in the halfplane h(ℓ) ⇐⇒ p⊙ intersects the segment oℓ⊙.
Right: A convex hull of a point set, and the corresponding “polar” polygon formed by the intersection
of halfplanes.

13.6. Exercises
Exercise 13.6.1 (Duality of the extent). Prove  Lemma 13.2.1 

Exercise 13.6.2 (No duality preserves orthogonal distances). Show a counterexample proving that no du-
ality can preserve (exactly) orthogonal distances between points and lines.
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J

Figure 13.5.2: (A) CH(P), I(P⊙), Iε(P⊙). (B) ε-kernel C and its polar C⊙; CH(P) ⊆ IP⊙ ⊆ Iε(C⊙).
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