
Chapter 9

The Power of Grids: Closest Pair
By Sariel Har-Peled, February 8, 2023  
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The Peace of Olivia. How sweat and peaceful it
sounds! There the great powers noticed for the
first time that the land of the Poles lends itself
admirably to partition.

The tin drum, Gunter Grass

In this chapter, we are going to discuss two basic geometric algorithms. The first one computes the
closest pair among a set of n points in linear time. This is a beautiful and surprising result that exposes
the computational power of using grids for geometric computation. Next, we discuss a simple algorithm
for approximating the smallest enclosing ball that contains k points of the input. This at first looks like
a bizarre problem but turns out to be a key ingredient to our later discussion.

9.1. Preliminaries
For a real positive number α and a point p = (x, y) in R2, define the grid point

Gα(p) =
(
⌊x/α⌋ α, ⌊y/α⌋ α

)
.

The number α is the width or sidelength of the grid Gα. Observe that Gα partitions the plane into
square regions, which are grid cells. Formally, for any i, j ∈ Z, the intersection of the halfplanes x ≥ αi,
x < α(i + 1), y ≥ αj, and y < α(j + 1) defines a grid cell. Further we define a grid cluster as a block
of 3 × 3 contiguous grid cells.

Note that every grid cell □ of Gα has a unique ID.

Definition 9.1.1. Let p = (x, y) be any point in a grid cell □ ∈ Gα, and consider the pair of integer
numbers id(□) = id(p) = (⌊x/α⌋ , ⌊y/α⌋). The pair id(p) is the grid ID of p.

Clearly, only points inside □ are going to be mapped to id(□). We can use this to store a set P of
points inside a grid efficiently. Indeed, given a point p, compute its id(p). We associate with each unique
id a data-structure (e.g., a linked list) that stores all the points of P falling into this grid cell (of course,
we do not maintain such data-structures for grid cells which are empty). So, once we have computed
id(p), we fetch the data-structure associated with this cell by using hashing. Namely, we store pointers
to all those data-structures in a hash table, where each such data-structure is indexed by its unique id.
Since the ids are integer numbers, we can do the hashing in constant time.

Assumption 9.1.2. Throughout the discourse, we assume that every hashing operation takes (worst case)
constant time. This is quite a reasonable assumption when true randomness is available (using for
example perfect hashing [ CLRS01 ]).

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit  http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.
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Assumption 9.1.3. Our computation model is the unit cost RAM model,
where every operation on real numbers takes constant time, including log
and ⌊·⌋ operations. We will (mostly) ignore numerical issues and assume
exact computation.

Definition 9.1.4. For a point set P and a parameter α, the partition of
P into subsets by the grid Gα is denoted by Gα(P). More formally, two
points p, q ∈ P belong to the same set in the partition Gα(P) if both
points are being mapped to the same grid point or equivalently belong
to the same grid cell; that is, id(p) = id(q).

N≤r(p)

p
r

α

Figure 9.1.1

Definition 9.1.5. For a number r ≥ 0, and a point p let N≤r(p) denote the set of grid cells of Gα in
distance ≤ r from p, which is the neighborhood of p. Note, that the neighborhood also includes the
grid cell containing p itself, and if α = Θ(r) then |N≤r(p)| = Θ

(
(2 + ⌈2r/α⌉)d

)
= Θ(1).

See  Figure 9.1.1 for an example of N≤r(p).

9.2. Closest pair in linear time
Definition 9.2.1. For a set P of n points in the plane, let dmin(P) denote the minimum distance between
a pair of points in P. Formally, we have

dmin(P) = min
p ̸=q, p,q∈P

∥pq∥ .

The pair of points realizing this minimum, is the closest pair in P, and it is denoted by CP(P).

We are interested in solving the following problem:

Problem 9.2.2. Given a set P of n points in the plane, find the closest pair of points in P.

The following is an easy standard packing argument that underlines, under various disguises,
many algorithms in computational geometry.

Lemma 9.2.3. Let P be a set of points contained inside a square □, such that
the sidelength of □ is α = CP(P). Then |P| ≤ 4.

Proof: Partition □ into four equal squares □1, . . . ,□4, and observe that each
of these squares has diameter

√
2α/2 < α, and as such each can contain at

most one point of P; that is, the disk of radius α centered at a point p ∈ P
completely covers the subsquare containing it, see  Figure 9.2.1 .
Note that the set P can have four points if it is the four corners of □.

α
p

Figure 9.2.1

Lemma 9.2.4. Given a set P of n points in the plane and a distance α, one can verify in linear time
whether CP(P) < α, CP(P) = α, or CP(P) > α.

Proof: Indeed, store the points of P in the grid Gα. For every non-empty grid cell, we maintain a linked
list of the points inside it. Thus, adding a new point p takes constant time. Specifically, compute id(p),
check if id(p) already appears in the hash table, if not, create a new linked list for the cell with this ID
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number, and store p in it. If a linked list already exists for id(p), just add p to it. This takes O(n) time
overall.

Now, if any grid cell in Gα(P) contains more than, say, 4 points of P, then it must be that the
CP(P) < α, by  Lemma 9.2.3  .

D
p

α

Figure 9.2.2

Thus, when we insert a point p, we can fetch all the points of P that were already inserted in the
cell of p and the 8 adjacent cells (i.e., all the points stored in the cluster of p); that is, these are the
cells of the grid Gα that intersects the disk D = disk(p, α) centered at p with radius α; see  Figure 9.2.2 .
If there is a point closer to p than α that was already inserted, then it must be stored in one of these
9 cells (since it must be inside D). Now, each one of those cells must contain at most 4 points of P
by  Lemma 9.2.3 (otherwise, we would already have stopped since the CP(·) of the inserted points is
smaller than α). Let S be the set of all those points, and observe that |S| ≤ 9 · 4 = O(1). Thus, we
can compute, by brute force, the closest point to p in S. This takes O(1) time. If d(p, S) < α, we stop;
otherwise, we continue to the next point.

Overall, this takes at most linear time.
As for correctness, observe that the algorithm returns ‘CP(P) < α’ only after finding a pair of points

of P with distance smaller than α. So, assume that p and q are the pair of points of P realizing the closest
pair and that ∥pq∥ = CP(P) < α. Clearly, when the later point (say p) is being inserted, the set S
would contain q, and as such the algorithm would stop and return ‘CP(P) < α’. Similar argumentation
works for the case that CP(P) = α. Thus if the algorithm returns ‘CP(P) > α’, it must be that CP(P)
is not smaller than α or equal to it. Namely, it must be larger. Thus, the algorithm output is correct.

Remark 9.2.5. Assume that CP(P \ {p}) ≥ α, but CP(P) < α. Furthermore, assume that we use
 Lemma 9.2.4 on P, where p ∈ P is the last point to be inserted. When p is being inserted, not only do
we discover that CP(P) < α, but in fact, by checking the distance of p to all the points stored in its
cluster, we can compute the closest point to p in P \ {p} and denote this point by q. Clearly, pq is the
closest pair in P, and this last insertion still takes only constant time.

Slow algorithm.  Lemma 9.2.4  provides a natural way of computing CP(P). Indeed, permute the
points of P in an arbitrary fashion, and let P = ⟨p1, . . . , pn⟩. Next, let αi−1 = CP({p1, . . . , pi−1}). We
can check if αi < αi−1 by using the algorithm of  Lemma 9.2.4 on Pi and αi−1. In fact, if αi < αi−1, the
algorithm of  Lemma 9.2.4 would return ‘CP(Pi) < αi−1’ and the two points of Pi realizing αi.

So, consider the “good” case, where αi = αi−1; that is, the length of the shortest pair does not change
when pi is being inserted. In this case, we do not need to rebuild the data-structure of  Lemma 9.2.4 to
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store Pi = ⟨p1, . . . , pi⟩. We can just reuse the data-structure from the previous iteration that was used
by Pi−1 by inserting pi into it. Thus, inserting a single point takes constant time, as long as the closest
pair does not change.

Things become problematic when αi < αi−1, because then we need to rebuild the grid data-structure
and reinsert all the points of Pi = ⟨p1, . . . , pi⟩ into the new grid Gαi

(Pi). This takes O(i) time.
In the end of this process, we output the number αn, together with the two points of P that realize

the closest pair.

Observation 9.2.6. If the closest pair distance, in the sequence α1, . . . , αn, changes only t times, then
the running time of our algorithm would be O(nt + n). Naturally, t might be Ω(n), so this algorithm
might take quadratic time in the worst case.

Linear time algorithm. Surprisingly 

②
 , we can speed up the above algorithm to have linear running

time by spicing it up using randomization.
We pick a random permutation of the points of P and let ⟨p1, . . . , pn⟩ be this permutation. Let

α2 = ∥p1p2∥, and start inserting the points into the data-structure of  Lemma 9.2.4  . We will keep the
invariant that αi would be the closest pair distance in the set Pi, for i = 2, . . . , n.

In the ith iteration, if αi = αi−1, then this insertion takes constant time. If αi < αi−1, then we know
what is the new closest pair distance αi (see  Remark 9.2.5 ), rebuild the grid, and reinsert the i points
of Pi from scratch into the grid Gαi

. This rebuilding of Gαi
(Pi) takes O(i) time.

Finally, the algorithm returns the number αn and the two points of Pn realizing it, as the closest
pair in P.

Lemma 9.2.7. Let t be the number of different values in the sequence α2, α3, . . . , αn. Then E[t] =
O(log n). As such, in expectation, the above algorithm rebuilds the grid O(log n) times.

Proof: For i ≥ 3, let Xi be an indicator variable that is one if and only if αi < αi−1. Observe that
E[Xi] = P[Xi = 1] (as Xi is an indicator variable) and t = ∑n

i=3 Xi.
To bound P[Xi = 1] = P[αi < αi−1], we (conceptually) fix the points of Pi and randomly permute

them. A point q ∈ Pi is critical if CP(Pi \ {q}) > CP(Pi). If there are no critical points, then αi−1 = αi

and then P[Xi = 1] = 0 (this happens, for example, if there are two pairs of points realizing the closest
distance in Pi). If there is one critical point, then P[Xi = 1] = 1/i, as this is the probability that this
critical point would be the last point in the random permutation of Pi.

Assume there are two critical points and let p, q be this unique pair of points of Pi realizing CP(Pi).
The quantity αi is smaller than αi−1 only if either p or q is pi. The probability for that is 2/i (i.e.,
the probability in a random permutation of i objects that one of two marked objects would be the last
element in the permutation).

Observe that there cannot be more than two critical points. Indeed, if p and q are two points that
realize the closest distance, then if there is a third critical point s, then CP(Pi \ {s}) = ∥pq∥, and hence
the point s is not critical.

Thus, P[Xi = 1] = P[αi < αi−1] ≤ 2/i, and by linearity of expectations, we have that E[t] =
E[∑n

i=3 Xi] = ∑n
i=3 E[Xi] ≤ ∑n

i=3 2/i = O(log n).

 Lemma 9.2.7  implies that, in expectation, the algorithm rebuilds the grid O(log n) times. By
 Observation 9.2.6 , the running time of this algorithm, in expectation, is O(n log n). However, we can

②Surprise in the eyes of the beholder. The reader might not be surprised at all and might be mildly annoyed by the
whole affair. In this case, the reader should read any occurrence of “surprisingly” in the text as being “mildly annoying”.
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do better than that. Intuitively, rebuilding the grid in early iterations of the algorithm is cheap, and
only late rebuilds (when i = Ω(n)) are expensive, but the number of such expensive rebuilds is small
(in fact, in expectation it is a constant).

Theorem 9.2.8. For set P of n points in the plane, one can compute the closest pair of P in expected
linear time.

Proof: The algorithm is described above. As above, let Xi be the indicator variable which is 1 if
αi ̸= αi−1, and 0 otherwise. Clearly, the running time is proportional to

R = 1 +
n∑

i=3
(1 + Xi · i).

Thus, the expected running time is proportional to

E[R] = E
[
1 +

n∑
i=3

(1 + Xi · i)
]

≤ n +
n∑

i=3
E[Xi] · i ≤ n +

n∑
i=3

i · P[Xi = 1] ≤ n +
n∑

i=3
i · 2

i
≤ 3n,

by linearity of expectation and since E[Xi] = P[Xi = 1] and since P[Xi = 1] ≤ 2/i (as shown in the proof
of  Lemma 9.2.7 ). Thus, the expected running time of the algorithm is O(E[R]) = O(n).

 Theorem 9.2.8 is a surprising result, since it implies that uniqueness (i.e., deciding if n real numbers
are all distinct) can be solved in linear time. Indeed, compute the distance of the closest pair of the
given numbers (think about the numbers as points on the x-axis). If this distance is zero, then clearly
they are not all unique.

However, there is a lower bound of Ω(n log n) on the running time to solve uniqueness, using the
comparison model. This “reality dysfunction” can be easily explained once one realizes that the com-
putation model of  Theorem 9.2.8 is considerably stronger, using hashing, randomization, and the floor
function.

9.3. An alternative closest pair algorithm
We present an alternative linear time algorithm for the closest pair problem. Let algCP(P ) denote the
new algorithm, where P is the point set under consideration.

Some preliminaries. For a point p ∈ P , let

ℓ(p) = d(p, P − p) = min
q∈P −p

∥pq∥

denote the nearest neighbor distance of p to its closest point in P \ {p}. For a parameter r, a point
p ∈ P is r-far if ℓ(p) ≥ r.

Fortunately, we can identify all the r-far points quickly.

Lemma 9.3.1. Let P be a set of n points in the plane. For a parameter r, one can compute the set
P≥r = {ℓ(p) ≥ r | p ∈ P} of all r-far points in O(n) time.
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Proof: Throw the points of P into the grid Gr/2. Clearly, a point can be r-far only if it is the only point
in its grid cell. Indeed, a grid cell has diameter

√
2r/2 < r, and any two points inside the same grid cell

are too close to each other to be r-far. For each such isolated point, we scan all the grid cells in distance
at most r from its cell, and compute its nearest neighbor in these cells. If the computed distance is < r,
then the point is not r-far. Otherwise, we add it to the far point set P≥r.

Observe, that a grid cell has at most O(1) grid cells in distance at most r from it. Furthermore, a
grid cell and the point set stored in it get scanned if it is in distance at most r from a grid cell that
contains a single point. It follows, that a grid cell (and its point set) get scanned at most O(1) time by
the above algorithm, and as such this algorithm has linear running time as stated.

The algorithm. If |P | = O(1), it computes the closest pair using brute force. Otherwise, the algorithm
picks a random point p ∈ P . The algorithm computes r = ℓ(p) by scanning the points of P explicitly –
this takes O(n) time. Next, the algorithm computes P≥r. If P≥r = P , then r is the closest pair distance,
and the algorithm returns p and its nearest neighbor as the desired closest-pair. Finally, the algorithm
call recursively algCP(P \ P≥r) and returns the result as the desired answer.

Correctness. If P≥r = P then clearly r is the closest pair distance, as this distance is the point in P
that realizes the minimum of ℓ(p). Otherwise, P≥r does not contain all the points of P . In particular,
the closest pair q, s ∈ P , has ℓ(q) < r and ℓ(s) < r. Namely, the closet pair in P and in P \ P≥r is
the same. Furthermore, every time the algorithm performs a recursive call, the size of the point set
shrinks, as |P≥r| ≥ 1 as it contains p (it probably contains way more points, as we see next). Namely,
the algorithm terminates and returns the closest pair.

Running time analysis. Consider the multiset of distances

L = L(P ) = {ℓ(p) | p ∈ P} .

As a reminder, an element x ∈ L has strict rank k, if L<x = {y ∈ L | y < x} is of size k – that is,
there are k − 1 elements smaller than x in L.

The algorithm randomly pick a point p, which is equivalent to randomly picking a value from the
multiset L uniformly. In particular, the algorithm is lucky if the strict rank of p is at most n/2. Clearly,
this happens with probability at least half. If this happens, then the algorithm recurses only on the
points that are in P<r = P \ P≥r (i.e., the points that corresponds to the values in L<r. Namely, the
algorithm calls recursively on a point set of half the size. If the algorithm is not lucky, then it is a big
fat proven loser, and it calls recursively on a set that might be potentially of size as large as n − 1. We
thus, have the following recurrence on the expected running time:

T (n) ≤ O(n) + P[lucky]T (n/2) + P[loser]T (n − 1) ≤ O(n) + 1
2T (n/2) + 1

2T (n),

since T (n − 1) ≤ T (n). Rearranging, we get

T (n) ≤ 2 · O(n) + 2 · 1
2T (n/2) ≤ O(n) + T (n/2).

Clearly, the solution to this recurrence is O(n).

Theorem 9.3.2. Given a set P of n points in the plane, one can compute the closest pair of points in
P in O(n) expected time.
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9.4. Bibliographical notes
Our closest-pair algorithm follows Golin et al. [ GRSS95 ]. This is in turn a simplification of a result
of Rabin [  Rab76 ]. Smid provides a survey of such algorithms [ Smi00 ]. The alternative closest pair
algorithm of  Theorem 9.3.2 is from [hr-nplta-15]. The later also shows that the algorithm can be
modified so that the linear running time holds with high probability.

One can extend the closet pair algorithm to approximate the minimum disk covering k points. See
[ HS05 ].

Beware of the floor function.. In the real RAM model (which is not real, that is the point), then
one can manipulate arbitrarily large floating point numbers to arbitrary precision in constant time per
operation. If you amend this model by allowing it use the floor function, then one can solve PSPACE-
hard problems in polynomial time [ Sch79 ]. Arguably, the operations we do in the algorithms presented
in this chapter are quite reasonable on a real world computer, but it does point out that the real RAM
model falls short in this case.

9.5. Exercises
Exercise 9.5.1 (Packing argument and the curse of dimensionality). One of the reasons why computational
problems in geometry become harder as the dimension increases is that packing arguments (see for
example  Lemma 9.2.3 ) provide bounds that are exponential in the dimension, and even for moderately
small dimension (say, d = 16) the bounds they provide are too large to be useful.

As a concrete example, consider a maximum cardinality point set P contained inside the unit length
cube C in Rd (i.e., the unit hypercube), such that CP(P) = 1.

(A) Prove that 2d ≤ |P| ≤
( ⌈√

d
⌉

+ 1
)d

.

(B) The above lower bound is conservative. for example, in four dimensions, it is easy to pack 17
points into the hypercube. Show such a configuration.

(C) Using the formula for the volume of the ball, and Stirling’s formula, prove that
(√

d/5
)d

≤ |P|,
for d sufficiently large.

Exercise 9.5.2 (Compute clustering radius). Let C and P be two given sets of points in the plane, such
that k = |C| and n = |P|. Let r = maxp∈P minc∈C ∥cp∥ be the covering radius of P by C (i.e., if we
place a disk of radius r around each point of C, all those disks cover the points of P).
(A) Give an O(n + k log n) expected time algorithm that outputs a number α, such that r ≤ α ≤ 10r.
(B) For ε > 0 a prescribed parameter, give an O(n + kε−2 log n) expected time algorithm that outputs

a number α, such that α ≤ r ≤ (1 + ε)α.
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