
Chapter 2

Introduction to Planar Graphs
By Sariel Har-Peled, January 31, 2023①

The Party told you to reject the evidence of your eyes and ears. It was their final, most essential command.
– 1984, George Orwell.

Version: 0.1

2.1. Planar graphs
A graph G = (V, E) is planar if it can be drawn in the plane. In a drawing of a graph, a vertex is
mapped to a point, and an edge is a simple curve – specifically, a curve is the image of a continuous
one-to-one mapping from [0, 1] to the plane, where the two endpoints are vertices. This definition of
a curve is somewhat informal (for example, it includes space-filling curves), but formalizing it requires
opening a Pandora box, so lets for the time remain with this definition with the understanding that we
restrict ourselves to well-behaved curves (whatever that means formally).

As such, in a valid planar drawing, not two curves (i.e., edges) can intersect in their interior. Thus,
intuitively, being a planar graph – that is, having a planar drawing – is a restrictive property. It is not
hard to convince oneself, for example, that it is not possible to draw 𝐾5 and 𝐾3,3. See Figure 2.1 for
example.
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Figure 2.1: Attempts to draw 𝐾3,3 in the plane.

Given a drawing of a planar graph, if we cut the plane along the edges of the graph (i.e., the curves
formed by the edges), we break the plane into connected pieces. Each such connected piece is a face.
Thus, a planar graph G, has vertices, edges, and faces.

A graph is simple if it has no parallel edges (i.e., two edges or more with the same endpoints).

Theorem 2.1.1 (Euler’s formula). For a simple connected planar graph G, let 𝑣, 𝑒 and 𝑓 denote the
number of vertices, edges, and faces of G. We have that 𝑓 − 𝑒 + 𝑣 = 2.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.
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Proof: (Informal.) Let 𝑇 be a spanning tree of G. Clearly, in the drawing of G, if we draw only 𝑇 , it
has 𝑛 − 1 edges, one face, and 𝑛 vertices. As such, 𝑓 (𝑇) − 𝑒(𝑇) + 𝑣(𝑇) = 1 − (𝑛 − 1) + 𝑛 = 2, as claimed.
Now, order the edges of G − 𝑇 in an arbitrary order, and add them one by one to the drawing. Each
edge added increases the number of edges by one, and the number of faces by one. Thus implying the
claim. (The more formal way to write this proof is by induction on the number of edges.)

An easy way to remember Euler’s formal is that it alternates the signs between the entities it sums
(i.e., vertices, edges, faces), with the alternation done on the dimension. As for the constant, just draw
a triangle – it has 𝑓 = 2, 𝑒 = 3, and 𝑣 = 3, which implies that the constant is 2, as desired.

A closed Jordan curve is a closed curve, that does not self intersect, that can be continuously
deformed into a circle. The following theorem is deceptively obvious, and has interesting history – it is
the main tool when arguing about planarity.

Theorem 2.1.2 (Jordan curve theorem). A closed Jordan curve 𝐽 partition the plane into two open
connected components – the interior and the exterior. Any curve connecting a point in the interior, to
a point in the exterior must intersect 𝐽.

A natural process when given a drawing of a simple planar graph G, is to try and add edges (i.e.,
curves to it) till no edge can be added. Such a drawing results in a triangulation – as every face in
the drawing has exactly three edges. As such, for this “enriched” planar graph H, we have that 2e = 3f,
where e = |E(H) |, f = |F(H) |, and F(H) denote the faces of H. For v = v(H) = |V(H) | = |V(G) |, Euler’s
formula now implies that

2 = f − e + v = (2/3)e − e + v =⇒ e = 3v − 6.

Since e(G) ≤ e(H), we get the following.

Lemma 2.1.3. In a (simple) planar graph G with v vertices, there are at most 3v − 6 edges.

2.1.1. Degeneracy and colorability
Definition 2.1.4. Consider a graph G = (V, E). A subgraph H of G is a graph such that V(H) ⊆ V
and E(H) ⊆ E.

That is, a subgraph of a graph is what you get from deleting some edges and vertices from the
original graph.

Definition 2.1.5. Consider a graph G = (V, E). For a set 𝑋 ⊆ V, its induced subgraph is G𝑋 =(
𝑋, {𝑢𝑣 | 𝑢𝑣 ∈ E and 𝑢, 𝑣 ∈ 𝑋}

)
Clearly, a subgraph (or induced subgraph) of a planar graph is planar.

Definition 2.1.6. A graph G is 𝑘-degenerate if it has a vertex 𝑢 of degree at most 𝑘, and G − 𝑢 is
𝑘-degenerate.

A stronger property that implies that a graph G is 𝑘-degenerate is that for any induced subgraph H
of G, we have the property that H has a vertex of degree 𝑘.

Lemma 2.1.7. Planar graphs are 5-degenerate.
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Proof: Let G be a planar graph, and let H be any induced subgraph of G. Let v = v(H). There is a
vertex 𝑢 in H of degree 2e(H)/v ≤ 2(3v − 6)/v < 6. Namely H has a vertex of degree at most 5, which
implies the claim.

Lemma 2.1.8. A 𝑘-degenerate graph is (𝑘 + 1)-colorable. As such, planar graphs are 6-colorable.

Proof: The proof is by induction. The claim is obvious if the graph G has v ≤ 𝑘 + 1. Otherwise, G is
𝑘-degenerate, and let 𝑢 be any of its vertices of degree at most 𝑘. The graph G−𝑢 is 𝑘-degenerate (since
this is a hereditary property), and recursively color it using 𝑘 + 1 colors. Now, we put 𝑢 back – it has at
most 𝑘 neighbors, which implies that out of our palette of 𝑘 + 1 colors, one of them is not used by the
neighbors of 𝑢. We set the color of 𝑢 to be this color.

Since planar graphs are 5-degenerate the claim follows.

Famously, planar graphs can be colored using only four colors (i.e., the four-color theorem). This
also implies that 𝐾5 is not planar, since it has v = 5, and e =

(5
2
)
= 10 edges, but 10 = e ≰ 3v − 6 = 9.

2.1.2. Drawing planar graphs and separators
Given an a graph without a drawing, a natural task is to decide if it is planar. That is, can it be drawn
in the plane. This can be done in linear time using somewhat involved algorithms that we are not going
to describe here. Maybe the most algorithmically useful property of planar graphs is that they have a
separator.
Theorem 2.1.9. Let G be a planar graph with v vertices. Then, one can compute a set 𝑍 ⊆ V(G) of
𝑂 (

√
𝑛) vertices, such that G − 𝑍 is disconnected, and every connected component has at most (2/3)𝑛

vertices. The set 𝑍 is a separator of G, and it can be computed in linear time.

2.1.3. Kuratowski’s and Wagner’s theorems
We state, without proof, the following beautiful characterization of planar graphs. A subdivision of
a graph is formed by subdividing its edges into paths of one or more edges. A graph H contains a
subdivision of G, if there is a subgraph of H ⊆ H, that is a subdivision of H – formally, H is isomorphic
to some subdivision of G. Here, two graphs G1 and G2 are isomorphic if up to renaming of vertices,
they are the same graph.
Theorem 2.1.10 (Kuratowski’s theorem). A graph G is planar if and only if it does not contain
𝐾3,3 or 𝐾5 as a subdivision.

A closely related and equivalent result is Wagner’s theorem, but before stating it we need a few
definitions. For a graph 𝐺, and an edge 𝑒, the contraction of 𝑒 results in the graph 𝐺/𝑒, which is the
result of merging the two vertices that are the endpoint of 𝑒 into a single vertex. This might result in
self loops, that we remove, and parallel edges, which we merge into a single edge.

It is easy to verify that edge contraction, deletion, and vertex deletion, are operations that preserve
planarity – that is a planar graph after you apply these operation to them remain planar.

A graph H is a minor of G if there is a sequence of edge deletions, vertex deletions, and edge
contractions that transform G to H. Intuitively, having, say 𝐾3,3,, as a minor in a graph 𝐺 implies that
the 𝐾3,3 is “hiding” somewhere inside 𝐺. Not surprisingly, both 𝐾3,3 and 𝐾5 can not hide in a planar
graph.
Theorem 2.1.11 (Wagner’s theorem). A graph G is planar if and only if it does not contain 𝐾3,3
or 𝐾5 as a minor.
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Figure 2.2: Left: A four coloring of the map of the contiguous United States. The edges are the
intersections of boundaries of states, and the vertices are the endpoints of the edges. The states are thus
the faces of this graph. On the right, the associated dual graph (without the outer vertex corresponding
to the outer face of the original graph).

2.1.4. Duality of planar graphs
Given a drawing of a planar graph G, it naturally defines a dual graph, denoted by G∗. The faces are
the vertices, and two vertices (i.e., original faces) have an edge if the original faces share a boundary
edge. Since the dual graph has a natural drawing as a planar graph – the dual graph is also dual. It is
not hard to verify that the dual of the dual graph is the original graph. This is illustrated in Figure 2.2.
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