Chapter 2

Convexity

By Sariel Har-Peled, January 26, 2023%

DREAM INTERPRETATION

Simplified. Everything’s either concave or convex, so whatever you dream will be something with sex.
— Piet Hein.

Version: 0.1

2.1. Some properties of convex sets

We here introduce three theorems about convex sets and convexity, which turns out to be quite useful.

Theorem 2.1.1 (Radon’s Theorem). Let P € R be a set of n > d +2 points in RY. Then one can
partition P into to two disjoint sets X,Y, such that P=XUY, XUY =0, and CH(X)NCH(Y) # 0.

Proof: Proof by drawing of the 2d case. Higher dimension is proved in Section 2.2. [ ]

Theorem 2.1.2 (Carathéodory’s Theorem). Let P be a set of n points in RY, and let p € CH (P)
be an arbitrary point. Then P can be written as the convex combination of d +1 points of P.

Proof: We prove the 2d case. Let X = CH(P). Since X is a convex polygon, let v its bottom vertex.
Connect v to all the other vertices of X. This partitions X into triangles, and one of them contains p.
As such, the point p is in the convex hull of the three vertices of this triangle, which means that p can
be written as a convex combination of only these three points.

The result for higher dimensions follows from Radon’s Theorem, and is omitted here. |

2.1.1. Helly’s theorem

Lemma 2.1.3. Let ¥ be a set of four convex sets S1, S2, S3, Sy in the plane, such that any three of them
have a non-empty intersection. Then, all the convex sets have a non-empty intersections.

Proof: Let p_; (or simply —i) denote any point that lies in Nge1.2,3.4}-:Sk. The four points p_1, p_2, p_3, p—a,
by Radon’s theorem, can be decomposed into two sets X and Y, such that CH(X) NCH (YY) # 0.
There are two possibilities:
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Figure 2.1

(A) |X| =1Y| = 2. For concreteness, let X = p_1,p_3 and X = p_g, p_4. Observe that p_; € S9 and
p-3 € Sg. So the segment p_1p_3 = CH(X) C S, by the convexity of So. Similarly, CH(X) C S,.
Namely, CH(X) C S2 N S4. The same argument implies that CH(Y) C §1 N Ss.

We conclude that CH(X) N CH(Y) (which is not empty) is contained in S; N Sy N S3 N Sy, as
claimed.

(B) X ={-1,-2,-4} and Y = {-3}. But then S3 must contain the triangle Ap_jp_op_4, which in turn
implies that p_3 € Ap_1p_ap_4 C S3. Namely, p_3 is contained in all the four convex objects. m

With an easy trick (which one?), this leads to the following.

Lemma 2.1.4 (Helly’s theorem in the plane). Let ¥ be a set of n > 4 convex sets in the plane,
such that any three of them have a mon-empty intersection. Then, all the convexr sets in F have a
non-empty intersections.

Proof: The proof is by induction on n. The above lemma proves the claim for n = 4. So, let ¥ =
{81,...,8,}, withn > 5. Let T; = §; N UZ:5 Sk, for i = 1,...,4. The intersection of convex regions is
convex, which implies that the T;s are convex.

Observe that the intersection of any three of the T;s corresponds to an intersection of n — 1 of the
original objects of ¥. By induction on n, any such intersection of n—1 objects it not empty. Lemma 2.1.3
now implies that ﬂleT,- =N, S #0. |

The above proof can be generalized in a straightforward fashion to higher dimensions (using Radon’s
higher dimension variant), yielding the following.

Theorem 2.1.5 (Helly’s Theorem). Let F be a set of n > d+2 convex sets in RY, such that any d+1
of them have a non-empty intersection. Then, all the convex sets in F have a non-empty intersections.

2.2. Proof of Radon’s Theorem in higher dimensions

Claim 2.2.1. Let P ={p1,...,pa+2} be a set of d+2 points in Re. There are real numbers Bi, ..., Ba+2,
not all of them zero, such that ); Bipi =0 and }; i = 0.

Proof: Indeed, set ¢; = (p;, 1), for i = 1,...,d +2. Now, the points qi,..., g4z € R¥! are linearly
dependent, and there are coefficients B, ..., B4+2, not all of them zero, such that Zfl:f :qi = 0. Con-
sidering on e first d coordinates of these points implies that "% B;p; = 0. Similarly, by considerin

idering only the first d coordinates of th ints implies that Y2 8;p; = 0. Similarly, by idering
only the (d + 1)st coordinate of these points, we have that Zf:f Bi=0. (]

Theorem 2.2.2 (Radon’s theorem). Let P = {p1,...,pas2} be a set of d +2 points in RY. Then,
there exist two disjoint subsets C and D of P, such that CH(C) NCH (D) #® and CUD = P.
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Proof: By Claim 2.2.1 there are real numbers 1, ..., B4+2, not all of them zero, such that ), Bip; =0
and ), B = 0.

Assume, for the sake of simplicity of exposition, that B1,..., 8 = 0 and Bi41, . . ., Basz < 0. Further-
more, let u = Y5, B; = — 22 ;. We have that

k d+2
Z:Bipi == Z Bipi
i=1 i=k+1

In particular, v = Zle (Bi/p)p; is a point in CH({p1,...,px}). Furthermore, for the same point v we
have v = fl:,?ﬂ —(Bi/)pi € CH({pi+1>--->Pa+2}). We conclude that v is in the intersection of the two
convex hulls, as required. ]

2.3. Bibliographical notes

The material here is pretty standard — see Chapter 1 in Matousek [Mat02].
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