Chapter 2
Convexity

By Sariel Har-Peled, January 26, 2023

DREAM INTERPRETATION
Simplified. Everything’s either concave or convex, so whatever you dream will be something with sex.
– Piet Hein.

Version: 0.1

2.1. Some properties of convex sets

We here introduce three theorems about convex sets and convexity, which turns out to be quite useful.

Theorem 2.1.1 (Radon’s Theorem). Let \(P \subseteq \mathbb{R}^d \) be a set of \(n \geq d + 2 \) points in \(\mathbb{R}^d \). Then one can partition \(P \) into two disjoint sets \(X, Y \), such that \(P = X \cup Y \), \(X \cup Y = \emptyset \), and \(\text{CH}(X) \cap \text{CH}(Y) \neq \emptyset \).

Proof: Proof by drawing of the 2d case. Higher dimension is proved in Section 2.2.

Theorem 2.1.2 (Carathéodory’s Theorem). Let \(P \) be a set of \(n \) points in \(\mathbb{R}^d \), and let \(p \in \text{CH}(P) \) be an arbitrary point. Then \(P \) can be written as the convex combination of \(d + 1 \) points of \(P \).

Proof: We prove the 2d case. Let \(X = \text{CH}(P) \). Since \(X \) is a convex polygon, let \(v \) its bottom vertex. Connect \(v \) to all the other vertices of \(X \). This partitions \(X \) into triangles, and one of them contains \(p \). As such, the point \(p \) is in the convex hull of the three vertices of this triangle, which means that \(p \) can be written as a convex combination of only these three points.

The result for higher dimensions follows from Radon’s Theorem, and is omitted here.

2.1.1. Helly’s theorem

Lemma 2.1.3. Let \(F \) be a set of four convex sets \(S_1, S_2, S_3, S_4 \) in the plane, such that any three of them have a non-empty intersection. Then, all the convex sets have a non-empty intersections.

Proof: Let \(p_{-i} \) (or simply \(-i \)) denote any point that lies in \(\cap_{k \in \{1,2,3,4\} \setminus \{i\}} S_k \). The four points \(p_{-1}, p_{-2}, p_{-3}, p_{-4} \), by Radon’s theorem, can be decomposed into two sets \(X \) and \(Y \), such that \(\text{CH}(X) \cap \text{CH}(Y) \neq \emptyset \).

There are two possibilities:

\[\text{This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this}\]
\[\text{license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second}\]
\[\text{Street, Suite 300, San Francisco, California, 94105, USA.}\]
Claim 2.2.1. Let \(P = \{p_1, \ldots, p_{d+2}\} \) be a set of \(d+2 \) points in \(\mathbb{R}^d \). There are real numbers \(\beta_1, \ldots, \beta_{d+2} \), not all of them zero, such that \(\sum \beta_i p_i = 0 \) and \(\sum \beta_i = 0 \).

Proof: Indeed, set \(q_i = (p_i, 1) \), for \(i = 1, \ldots, d+2 \). Now, the points \(q_1, \ldots, q_{d+2} \in \mathbb{R}^{d+1} \) are linearly dependent, and there are coefficients \(\beta_1, \ldots, \beta_{d+2} \), not all of them zero, such that \(\sum_{i=1}^{d+2} \beta_i q_i = 0 \). Considering only the first \(d \) coordinates of these points implies that \(\sum_{i=1}^{d+2} \beta_i p_i = 0 \). Similarly, by considering only the \((d+1)\)st coordinate of these points, we have that \(\sum_{i=1}^{d+2} \beta_i = 0 \).

Theorem 2.2.2 (Radon’s theorem). Let \(P = \{p_1, \ldots, p_{d+2}\} \) be a set of \(d+2 \) points in \(\mathbb{R}^d \). Then, there exist two disjoint subsets \(C \) and \(D \) of \(P \), such that \(\mathcal{CH}(C) \cap \mathcal{CH}(D) \neq \emptyset \) and \(C \cup D = P \).
Proof: By Claim 2.2.1 there are real numbers $\beta_1, \ldots, \beta_{d+2}$, not all of them zero, such that $\sum_i \beta_i p_i = 0$ and $\sum_i \beta_i = 0$.

Assume, for the sake of simplicity of exposition, that $\beta_1, \ldots, \beta_k \geq 0$ and $\beta_{k+1}, \ldots, \beta_{d+2} < 0$. Furthermore, let $\mu = \sum_{i=1}^{k} \beta_i = -\sum_{i=k+1}^{d+2} \beta_i$. We have that

$$\sum_{i=1}^{k} \beta_i p_i = -\sum_{i=k+1}^{d+2} \beta_i p_i.$$

In particular, $v = \sum_{i=1}^{k} (\beta_i/\mu) p_i$ is a point in $C\mathcal{H}(\{p_1, \ldots, p_k\})$. Furthermore, for the same point v we have $v = \sum_{i=k+1}^{d+2} -((\beta_i/\mu)) p_i \in C\mathcal{H}(\{p_{k+1}, \ldots, p_{d+2}\})$. We conclude that v is in the intersection of the two convex hulls, as required. \blacksquare

2.3. Bibliographical notes

The material here is pretty standard – see Chapter 1 in Matoušek [Mat02].

References