Chapter 2

Convexity

By Sariel Har-Peled, January 26, $2023{ }^{(1)}$

DREAM INTERPRETATION
 Simplified. Everything's either concave or convex, so whatever you dream will be something with sex. - Piet Hein.

Version: 0.1

2.1. Some properties of convex sets

We here introduce three theorems about convex sets and convexity, which turns out to be quite useful.
Theorem 2.1.1 (Radon's Theorem). Let $P \subseteq \mathbb{R}^{d}$ be a set of $n \geq d+2$ points in \mathbb{R}^{d}. Then one can partition P into to two disjoint sets X, Y, such that $P=X \cup Y, X \cup Y=\emptyset$, and $C \mathcal{H}(X) \cap C \mathcal{H}(Y) \neq \emptyset$.

Proof: Proof by drawing of the 2d case. Higher dimension is proved in Section 2.2.
Theorem 2.1.2 (Carathéodory's Theorem). Let P be a set of n points in \mathbb{R}^{d}, and let $p \in \mathcal{C H}(P)$ be an arbitrary point. Then P can be written as the convex combination of $d+1$ points of P.

Proof: We prove the 2 d case. Let $X=C \mathcal{H}(P)$. Since X is a convex polygon, let v its bottom vertex. Connect v to all the other vertices of X. This partitions X into triangles, and one of them contains p. As such, the point p is in the convex hull of the three vertices of this triangle, which means that p can be written as a convex combination of only these three points.

The result for higher dimensions follows from Radon's Theorem, and is omitted here.

2.1.1. Helly's theorem

Lemma 2.1.3. Let \mathcal{F} be a set of four convex sets $S_{1}, S_{2}, S_{3}, S_{4}$ in the plane, such that any three of them have a non-empty intersection. Then, all the convex sets have a non-empty intersections.

Proof: Let p_{-i} (or simply $-i$) denote any point that lies in $\cap_{k \in\{1,2,3,4\}-i} S_{k}$. The four points $p_{-1}, p_{-2}, p_{-3}, p_{-4}$, by Radon's theorem, can be decomposed into two sets X and Y, such that $C \mathcal{H}(X) \cap C \mathcal{H}(Y) \neq \emptyset$.

There are two possibilities:

[^0]

Figure 2.1
(A) $|X|=|Y|=2$. For concreteness, let $X=p_{-1}, p_{-3}$ and $X=p_{-2}, p_{-4}$. Observe that $p_{-1} \in S_{2}$ and $p_{-3} \in S_{2}$. So the segment $p_{-1} p_{-3}=C \mathcal{H}(X) \subseteq S_{2}$, by the convexity of S_{2}. Similarly, $C \mathcal{H}(X) \subseteq S_{4}$. Namely, $\mathcal{C H}(X) \subseteq S_{2} \cap S_{4}$. The same argument implies that $\mathcal{C H}(Y) \subseteq S_{1} \cap S_{3}$.
We conclude that $\mathcal{C H}(X) \cap \mathcal{C H}(Y)$ (which is not empty) is contained in $S_{1} \cap S_{2} \cap S_{3} \cap S_{4}$, as claimed.
(B) $X=\{-1,-2,-4\}$ and $Y=\{-3\}$. But then S_{3} must contain the triangle $\Delta p_{-1} p_{-2} p_{-4}$, which in turn implies that $p_{-3} \in \Delta p_{-1} p_{-2} p_{-4} \subseteq S_{3}$. Namely, p_{-3} is contained in all the four convex objects.

With an easy trick (which one?), this leads to the following.
Lemma 2.1.4 (Helly's theorem in the plane). Let \mathcal{F} be a set of $n \geq 4$ convex sets in the plane, such that any three of them have a non-empty intersection. Then, all the convex sets in \mathcal{F} have a non-empty intersections.

Proof: The proof is by induction on n. The above lemma proves the claim for $n=4$. So, let $\mathcal{F}=$ $\left\{S_{1}, \ldots, S_{n}\right\}$, with $n \geq 5$. Let $T_{i}=S_{i} \cap \bigcup_{k=5}^{n} S_{k}$, for $i=1, \ldots, 4$. The intersection of convex regions is convex, which implies that the $T_{i} \mathrm{~s}$ are convex.

Observe that the intersection of any three of the T_{i} s corresponds to an intersection of $n-1$ of the original objects of \mathcal{F}. By induction on n, any such intersection of $n-1$ objects it not empty. Lemma 2.1.3 now implies that $\cap_{i=1}^{4} T_{i}=\cap_{i=1}^{n} S_{i} \neq \emptyset$.

The above proof can be generalized in a straightforward fashion to higher dimensions (using Radon's higher dimension variant), yielding the following.
Theorem 2.1.5 (Helly's Theorem). Let \mathcal{F} be a set of $n \geq d+2$ convex sets in \mathbb{R}^{d}, such that any $d+1$ of them have a non-empty intersection. Then, all the convex sets in \mathcal{F} have a non-empty intersections.

2.2. Proof of Radon's Theorem in higher dimensions

Claim 2.2.1. Let $P=\left\{p_{1}, \ldots, p_{d+2}\right\}$ be a set of $d+2$ points in \mathbb{R}^{d}. There are real numbers $\beta_{1}, \ldots, \beta_{d+2}$, not all of them zero, such that $\sum_{i} \beta_{i} p_{i}=0$ and $\sum_{i} \beta_{i}=0$.

Proof: Indeed, set $q_{i}=\left(p_{i}, 1\right)$, for $i=1, \ldots, d+2$. Now, the points $q_{1}, \ldots, q_{d+2} \in \mathbb{R}^{d+1}$ are linearly dependent, and there are coefficients $\beta_{1}, \ldots, \beta_{d+2}$, not all of them zero, such that $\sum_{i=1}^{d+2} \beta_{i} q_{i}=0$. Considering only the first d coordinates of these points implies that $\sum_{i=1}^{d+2} \beta_{i} p_{i}=0$. Similarly, by considering only the $(d+1)$ st coordinate of these points, we have that $\sum_{i=1}^{d+2} \beta_{i}=0$.

Theorem 2.2.2 (Radon's theorem). Let $P=\left\{p_{1}, \ldots, p_{d+2}\right\}$ be a set of $d+2$ points in \mathbb{R}^{d}. Then, there exist two disjoint subsets C and D of P, such that $\mathcal{C H}(C) \cap C \mathcal{H}(D) \neq \emptyset$ and $C \cup D=P$.

Proof: By Claim 2.2.1 there are real numbers $\beta_{1}, \ldots, \beta_{d+2}$, not all of them zero, such that $\sum_{i} \beta_{i} p_{i}=0$ and $\sum_{i} \beta_{i}=0$.

Assume, for the sake of simplicity of exposition, that $\beta_{1}, \ldots, \beta_{k} \geq 0$ and $\beta_{k+1}, \ldots, \beta_{d+2}<0$. Furthermore, let $\mu=\sum_{i=1}^{k} \beta_{i}=-\sum_{i=k+1}^{d+2} \beta_{i}$. We have that

$$
\sum_{i=1}^{k} \beta_{i} p_{i}=-\sum_{i=k+1}^{d+2} \beta_{i} p_{i}
$$

In particular, $v=\sum_{i=1}^{k}\left(\beta_{i} / \mu\right) p_{i}$ is a point in $\mathcal{C H}\left(\left\{p_{1}, \ldots, p_{k}\right\}\right)$. Furthermore, for the same point v we have $v=\sum_{i=k+1}^{d+2}-\left(\beta_{i} / \mu\right) p_{i} \in \mathcal{C H}\left(\left\{p_{k+1}, \ldots, p_{d+2}\right\}\right)$. We conclude that v is in the intersection of the two convex hulls, as required.

2.3. Bibliographical notes

The material here is pretty standard - see Chapter 1 in Matoušek [Mat02].

References

[Mat02] J. Matoušek. Lectures on Discrete Geometry. Vol. 212. Grad. Text in Math. Springer, 2002.

[^0]: ${ }^{(1)}$ This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

