
Chapter 2

Convexity
By Sariel Har-Peled, January 26, 2023①

DREAM INTERPRETATION
Simplified. Everything’s either concave or convex, so whatever you dream will be something with sex.

– Piet Hein.

Version: 0.1

2.1. Some properties of convex sets
We here introduce three theorems about convex sets and convexity, which turns out to be quite useful.

Theorem 2.1.1 (Radon’s Theorem). Let 𝑃 ⊆ R𝑑 be a set of 𝑛 ≥ 𝑑 + 2 points in R𝑑. Then one can
partition 𝑃 into to two disjoint sets 𝑋,𝑌 , such that 𝑃 = 𝑋 ∪ 𝑌 , 𝑋 ∪ 𝑌 = ∅, and CH(𝑋) ∩ CH (𝑌 ) ≠ ∅.

Proof: Proof by drawing of the 2d case. Higher dimension is proved in Section 2.2.

Theorem 2.1.2 (Carathéodory’s Theorem). Let 𝑃 be a set of 𝑛 points in R𝑑, and let 𝑝 ∈ CH(𝑃)
be an arbitrary point. Then 𝑃 can be written as the convex combination of 𝑑 + 1 points of 𝑃.

Proof: We prove the 2d case. Let 𝑋 = CH(𝑃). Since 𝑋 is a convex polygon, let 𝑣 its bottom vertex.
Connect 𝑣 to all the other vertices of 𝑋. This partitions 𝑋 into triangles, and one of them contains 𝑝.
As such, the point 𝑝 is in the convex hull of the three vertices of this triangle, which means that 𝑝 can
be written as a convex combination of only these three points.

The result for higher dimensions follows from Radon’s Theorem, and is omitted here.

2.1.1. Helly’s theorem
Lemma 2.1.3. Let F be a set of four convex sets 𝑆1, 𝑆2, 𝑆3, 𝑆4 in the plane, such that any three of them
have a non-empty intersection. Then, all the convex sets have a non-empty intersections.

Proof: Let 𝑝−𝑖 (or simply −𝑖) denote any point that lies in ∩𝑘∈{1,2,3,4}−𝑖𝑆𝑘 . The four points 𝑝−1, 𝑝−2, 𝑝−3, 𝑝−4,
by Radon’s theorem, can be decomposed into two sets 𝑋 and 𝑌 , such that CH(𝑋) ∩ CH (𝑌 ) ≠ ∅.

There are two possibilities:
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Figure 2.1

(A) |𝑋 | = |𝑌 | = 2. For concreteness, let 𝑋 = 𝑝−1, 𝑝−3 and 𝑋 = 𝑝−2, 𝑝−4. Observe that 𝑝−1 ∈ 𝑆2 and
𝑝−3 ∈ 𝑆2. So the segment 𝑝−1𝑝−3 = CH(𝑋) ⊆ 𝑆2, by the convexity of 𝑆2. Similarly, CH(𝑋) ⊆ 𝑆4.
Namely, CH(𝑋) ⊆ 𝑆2 ∩ 𝑆4. The same argument implies that CH(𝑌 ) ⊆ 𝑆1 ∩ 𝑆3.
We conclude that CH(𝑋) ∩ CH (𝑌 ) (which is not empty) is contained in 𝑆1 ∩ 𝑆2 ∩ 𝑆3 ∩ 𝑆4, as
claimed.

(B) 𝑋 = {−1,−2,−4} and 𝑌 = {−3}. But then 𝑆3 must contain the triangle △𝑝−1𝑝−2𝑝−4, which in turn
implies that 𝑝−3 ∈ △𝑝−1𝑝−2𝑝−4 ⊆ 𝑆3. Namely, 𝑝−3 is contained in all the four convex objects.

With an easy trick (which one?), this leads to the following.

Lemma 2.1.4 (Helly’s theorem in the plane). Let F be a set of 𝑛 ≥ 4 convex sets in the plane,
such that any three of them have a non-empty intersection. Then, all the convex sets in F have a
non-empty intersections.

Proof: The proof is by induction on 𝑛. The above lemma proves the claim for 𝑛 = 4. So, let F =

{𝑆1, . . . , 𝑆𝑛}, with 𝑛 ≥ 5. Let 𝑇𝑖 = 𝑆𝑖 ∩
⋃𝑛

𝑘=5 𝑆𝑘 , for 𝑖 = 1, . . . , 4. The intersection of convex regions is
convex, which implies that the 𝑇𝑖s are convex.

Observe that the intersection of any three of the 𝑇𝑖s corresponds to an intersection of 𝑛 − 1 of the
original objects of F . By induction on 𝑛, any such intersection of 𝑛−1 objects it not empty. Lemma 2.1.3
now implies that ∩4

𝑖=1𝑇𝑖 = ∩𝑛
𝑖=1𝑆𝑖 ≠ ∅.

The above proof can be generalized in a straightforward fashion to higher dimensions (using Radon’s
higher dimension variant), yielding the following.

Theorem 2.1.5 (Helly’s Theorem). Let F be a set of 𝑛 ≥ 𝑑+2 convex sets in R𝑑, such that any 𝑑+1
of them have a non-empty intersection. Then, all the convex sets in F have a non-empty intersections.

2.2. Proof of Radon’s Theorem in higher dimensions

Claim 2.2.1. Let 𝑃 = {𝑝1, . . . , 𝑝𝑑+2} be a set of 𝑑+2 points in R𝑑. There are real numbers 𝛽1, . . . , 𝛽𝑑+2,
not all of them zero, such that

∑
𝑖 𝛽𝑖𝑝𝑖 = 0 and

∑
𝑖 𝛽𝑖 = 0.

Proof: Indeed, set 𝑞𝑖 = (𝑝𝑖, 1), for 𝑖 = 1, . . . , 𝑑 + 2. Now, the points 𝑞1, . . . , 𝑞𝑑+2 ∈ R𝑑+1 are linearly
dependent, and there are coefficients 𝛽1, . . . , 𝛽𝑑+2, not all of them zero, such that

∑𝑑+2
𝑖=1 𝛽𝑖𝑞𝑖 = 0. Con-

sidering only the first 𝑑 coordinates of these points implies that
∑𝑑+2

𝑖=1 𝛽𝑖𝑝𝑖 = 0. Similarly, by considering
only the (𝑑 + 1)st coordinate of these points, we have that

∑𝑑+2
𝑖=1 𝛽𝑖 = 0.

Theorem 2.2.2 (Radon’s theorem). Let 𝑃 = {𝑝1, . . . , 𝑝𝑑+2} be a set of 𝑑 + 2 points in R𝑑. Then,
there exist two disjoint subsets 𝐶 and 𝐷 of 𝑃, such that CH(𝐶) ∩ CH (𝐷) ≠ ∅ and 𝐶 ∪ 𝐷 = 𝑃.
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Proof: By Claim 2.2.1 there are real numbers 𝛽1, . . . , 𝛽𝑑+2, not all of them zero, such that
∑

𝑖 𝛽𝑖𝑝𝑖 = 0
and

∑
𝑖 𝛽𝑖 = 0.

Assume, for the sake of simplicity of exposition, that 𝛽1, . . . , 𝛽𝑘 ≥ 0 and 𝛽𝑘+1, . . ., 𝛽𝑑+2 < 0. Further-
more, let ` =

∑𝑘
𝑖=1 𝛽𝑖 = −∑𝑑+2

𝑖=𝑘+1 𝛽𝑖. We have that

𝑘∑︁
𝑖=1

𝛽𝑖𝑝𝑖 = −
𝑑+2∑︁
𝑖=𝑘+1

𝛽𝑖𝑝𝑖 .

In particular, 𝑣 =
∑𝑘

𝑖=1(𝛽𝑖/`)𝑝𝑖 is a point in CH({𝑝1, . . . , 𝑝𝑘 }). Furthermore, for the same point 𝑣 we
have 𝑣 =

∑𝑑+2
𝑖=𝑘+1 −(𝛽𝑖/`)𝑝𝑖 ∈ CH({𝑝𝑘+1, . . . , 𝑝𝑑+2}). We conclude that 𝑣 is in the intersection of the two

convex hulls, as required.

2.3. Bibliographical notes
The material here is pretty standard – see Chapter 1 in Matoušek [Mat02].
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