
Chapter 1

Introduction and Convex Hulls
By Sariel Har-Peled, January 26, 2023①

The events of 8 September prompted Foch to draft the later legendary signal: “My centre is giving way, my
right is in retreat, situation excellent. I attack.” It was probably never sent.

– – The first world war, John Keegan..
Version: 0.1

1.1. Introduction
(I) Administrivia.

(A) https://courses.engr.illinois.edu/cs498sh3/sp2023/.
(B) Book: The four marks.
(C) At least one midterm.
(D) Weekly homeworks.

(II) Examples:
(A) Convex-hulls. Mixing things.
(B) Robot motion planning. Shortest path.
(C) Where am I anyway? Voronoi diagrams?
(D) What am I seeing anyway? Ray shooting.
(E) Will I get flooded? GIS.
(F) Self driving cars.
(G) CAD/CAM.

1.2. Convex hull
Let 𝑃 = {𝑝1, . . . , 𝑝𝑛} be a set of points (say in the plane). The span of 𝑃 is the linear subspace

span(𝑃) =
{

𝑛∑︁
𝑖=1

𝛼𝑖𝑝𝑖

����� 𝛼1, . . . , 𝛼𝑛 ∈ R
}
.

The affine hull of a set of points in the plane is the set

affine-hull(𝑃) =
{

𝑛∑︁
𝑖=1

𝛼𝑖𝑝𝑖

����� 𝛼1, . . . , 𝛼𝑛 ∈ R, and
𝑛∑︁
𝑖=1

𝛼𝑖 = 1
}
.

①This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.
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The affine hull of two points in the plane is the line that passes through them. The affine hull of three
points in the plane in general position is the whole plane.

The convex-hull of 𝑃 is the set

CH(𝑃) =
{

𝑛∑︁
𝑖=1

𝛼𝑖𝑝𝑖

����� 𝛼1, . . . , 𝛼𝑛 ≥ 0, and
𝑛∑︁
𝑖=1

𝛼𝑖 = 1
}
.

The convex-hull of two points in the plane is the close segment connecting them. The convex-hull
of three points in the plane is the close triangle segment they form. But what is the convex-hull of four
points, or more?

A set 𝑋 ⊆ R𝑑 is convex, if for any two points 𝑝, 𝑞 ∈ 𝑋, we have that the segment 𝑝𝑞 ⊆ 𝑋, where
𝑝𝑞 = CH({𝑝, 𝑞}).

Claim 1.2.1. For any set 𝑃 ⊆ R𝑑, the set 𝑋 = CH(𝑃) is convex.

Proof: Let 𝑃 = {𝑝1, . . . , 𝑝𝑛}, and let 𝑥 =
∑𝑛

𝑖=1 𝛼𝑖𝑝𝑖 and 𝑦 =
∑𝑛

𝑖=1 𝛽𝑖𝑝𝑖 any two points in 𝑋. That is
𝛼1, . . . , 𝛼𝑛 ≥ 0,

∑
𝑖 𝛼𝑖 = 1, 𝛽1, . . . , 𝛽𝑛 ≥ 0, and

∑
𝑖 𝛽𝑖 = 1. Let 𝛾𝑖 (𝑡) = 𝑡𝛼𝑖 + (1− 𝑡)𝛽𝑖, and consider the point

𝑧(𝑡) = ∑
𝑖 𝛾𝑖 (𝑡)𝑝𝑖. Clearly, for all 𝑡 ∈ [0, 1], we have

𝛾𝑖 (𝑡) ≥ 0 and
𝑛∑︁
𝑖=1

𝛾𝑖 (𝑡) =
∑︁
𝑖

(𝑡𝛼𝑖 + (1 − 𝑡)𝛽𝑖) = 𝑡
∑︁
𝑖

𝛼𝑖 + (1 − 𝑡)
∑︁
𝑖

𝛽𝑖 = 𝑡 + (1 − 𝑡) = 1.

This implies that 𝑧(𝑡) ∈ CH (𝑃). Namely, for any 𝑡 ∈ [0, 1], the point 𝑧(𝑡) ∈ 𝑥𝑦 = CH(𝑥, 𝑦) has the
property that 𝑧(𝑡) ∈ CH (𝑃).

1.2.1. Convex hull in the plane
What is the convex-hull of a set of 𝑃 points in the plane? Consider its boundary – it is formed by
segments of 𝑃. Clearly if for 𝑝 ∈ 𝑃, we have that 𝑝 ∈ CH(𝑃 − 𝑝), then CH(𝑃) = CH(𝑃 − 𝑝), where
𝑃 − 𝑝 = 𝑃 \ {𝑝}.

A point 𝑝 ∈ 𝑃 is a vertex of CH(𝑃) if CH(𝑃) ≠ CH(𝑃 − 𝑝). Informally, it is a corner of the
convex-hull of 𝑃.

Claim 1.2.2. If 𝑝 is a vertex of CH(𝑃) ⇐⇒ there exists a line that separates 𝑝 from 𝑃 − 𝑝.

So if you traverse the convex-hull of 𝑃 (say counterclockwise), then it is a close sequence of vertices
and segments connecting them. Such a region is a polygon. In our case it is a convex polygon.

Q; How to compute the convex-hull?

1.2.2. Algorithms for the convex-hull in two dimensions
The input is a set of 𝑃 of 𝑛 points in the plane. The output is a convex polygon 𝐶 that its vertices
are from 𝑃. Specifically, 𝐶 is represented as a circular list of its vertices, say, counterclockwise as
we traverse the vertices. Thus, if the input is specified an array 𝑃[1 . . . 𝑛], the output is a sequence
of integers 𝑖1, 𝑖2, . . . , 𝑖ℎ (i.e., 13, 7, . . .), where the polygon forming the convex hull have the vertices
𝑃[𝑖1], 𝑃[𝑖2], . . . , 𝑃[𝑖𝑘 ].

We start with the gift wrapping algorithm for computing convex-hull.
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Lemma 1.2.3 (Jarvis march). Given a set 𝑃 of 𝑛 points in the plane, one can compute its convex-hull
in 𝑂 (𝑛ℎ) time, where ℎ is the number of vertices of the convex-hull.

Proof: Starting with the point with minimum 𝑥-coordinate, repeatedly find the clockwise-most neighbor,
and use it as the next edge in the convex-hull. Repeat this process till you get back to the original starting
point. Since finding the clockwise point takes 𝑂 (𝑛) time, this takes 𝑂 (𝑛ℎ) overall.

The above result is disappointing as the convex-hull might have many vertices (i.e., ℎ might be equal
to 𝑛).

Lemma 1.2.4 (Graham scan). Given a set 𝑃 of 𝑛 points in the plane, one can compute its convex-hull
in 𝑂 (𝑛 + 𝑇sort(𝑛)) time, where 𝑇sort(𝑛) is the time to sort 𝑛 numbers.

Proof: We sort the points from left to right by their 𝑥-coordinates (by general position assumption, all
points have distinct 𝑥-coordinates values). Let 𝑃 = ⟨𝑝1, . . . , 𝑝𝑛⟩ be the points in this sorted order. Let
𝐿𝑖 be the lower convex chain of 𝐶𝑖 = CH({𝑝1, . . . , 𝑝𝑖}) – that is it is the polygonal curve starting at 𝑝1
and ending at 𝑝𝑖, including only vertices of 𝐶𝑖 that form the bottom part of 𝐶𝑖. Assume that 𝐿𝑖 is stored
in a stack 𝑆. We now handle the point 𝑝𝑖+1. The stack 𝑆 have 𝑛𝑖 = |𝐿𝑖 | points before handling 𝑝𝑖+1. If
𝑆[top − 1] → 𝑆[top] → 𝑝𝑖+1 form a right turn, then 𝑆[top] can not be a vertex of 𝐶𝑖+1. We pop it from
the top of 𝑆. We repeat this process till 𝑆[top − 1] → 𝑆[top] → 𝑝𝑖+1 form a left turn. The algorithm
then pushes 𝑝𝑖+1 to 𝑆, and moves to the next point.

The algorithm then repeats the above process to compute the upper chain of the convex-hull.
The correctness is hopefully clear. As for running time, we charge every iteration that performs a

pop, to the point being thrown away. Since every point can be thrown away at most once, it follows
that the running time of the above algorithm is linear, ignoring the initial sorting.

Graham scan also works if you sort the points radially around one of the input points. Then one
can compute the whole convex-hull in one go, instead of doing two different scans for the lower/upper
chains.

1.2.2.1. Equivalence to sorting

Lemma 1.2.5. If the convex-hull of 𝑛 points in the plane can be computed in 𝑇ch(𝑛), then one can sort
𝑛 real numbers in 𝑂 (𝑛 + 𝑇ch(𝑛)).

Proof: Given number 𝑥1, . . . , 𝑥𝑛, lift the numbers to points 𝑃 = {𝑝1, . . . , 𝑝𝑛}, where 𝑝𝑖 = (𝑥𝑖, 𝑥2
𝑖
). Clearly,

the convex-hull 𝐶 = CH(𝑃) would include all the points of 𝑃, as the lifted points lie on the convex curve
formed by the parabola 𝑦 = 𝑥2. The order in which the vertices of 𝐶 are listed in the output polygon
is the same order of the corresponding numbers 𝑥1, . . . , 𝑥𝑛 in sorted order, up to maybe rotation of
the circular list (and maybe reversing it if one wants increasing order). Clearly, extracting the sorted
numbers from 𝐶 can be done in 𝑂 (𝑛) time.

It follows that sorting and computing the convex-hull of 𝑛 points in the plane, are equivalent as
far as running time. In particular, since sorting (in general) takes Ω(𝑛 log 𝑛) time, it follows that the
convex-hull can not be computed faster.
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1.3. Some properties of convex sets

Theorem 1.3.1 (Radon’s Theorem). Let 𝑃 ⊆ R𝑑 be a set of 𝑛 ≥ 𝑑 + 2 points in R𝑑. Then one can
partition 𝑃 into to two disjoint sets 𝑋,𝑌 , such that 𝑃 = 𝑋 ∪ 𝑌 , 𝑋 ∪ 𝑌 = ∅, and CH(𝑋) ∩ CH (𝑌 ) ≠ ∅.

Proof: Proof by drawing of the 2d case. Higher dimension is somewhat harder and we omit it here.

Theorem 1.3.2 (Carathéodory’s Theorem). Let 𝑃 be a set of 𝑛 points in R𝑑, and let 𝑝 ∈ CH(𝑃)
be an arbitrary point. Then 𝑃 can be written as the convex combination of 𝑑 + 1 points of 𝑃.

Proof: Proof by drawing of the triangulation of 2d convex-hull. Higher dimension follows from Radon’s
Theorem, and is omitted here.

1.3.1. Helly’s theorem
Lemma 1.3.3. Let F be a set of four convex sets 𝑆1, 𝑆2, 𝑆3, 𝑆4 in the plane, such that any three of them
have a non-empty intersection. Then, all the convex sets have a non-empty intersections.

Proof: Let 𝑝−𝑖 (or simply −𝑖) denote any point that lies in ∩𝑘∈{1,2,3,4}−𝑖𝑆𝑘 . The four points 𝑝−1, 𝑝−2, 𝑝−3, 𝑝−4,
by Radon’s theorem, can be decomposed into two sets 𝑋 and 𝑌 , such that CH(𝑋) ∩ CH (𝑌 ) ≠ ∅.
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Figure 1.1

There are two possibilities:
(A) |𝑋 | = |𝑌 | = 2. For concreteness, let 𝑋 = 𝑝−1, 𝑝−3 and 𝑋 = 𝑝−2, 𝑝−4. Observe that 𝑝−1 ∈ 𝑆2 and

𝑝−3 ∈ 𝑆2. So the segment 𝑝−1𝑝−3 = CH(𝑋) ⊆ 𝑆2, by the convexity of 𝑆2. Similarly, CH(𝑋) ⊆ 𝑆4.
Namely, CH(𝑋) ⊆ 𝑆2 ∩ 𝑆4. The same argument implies that CH(𝑌 ) ⊆ 𝑆1 ∩ 𝑆3.
We conclude that CH(𝑋) ∩ CH (𝑌 ) (which is not empty) is contained in 𝑆1 ∩ 𝑆2 ∩ 𝑆3 ∩ 𝑆4, as
claimed.

(B) 𝑋 = {−1,−2,−4} and 𝑌 = {−3}. But then 𝑆3 must contain the triangle △𝑝−1𝑝−2𝑝−4, which in turn
implies that 𝑝−3 ∈ △𝑝−1𝑝−2𝑝−4 ⊆ 𝑆3. Namely, 𝑝−3 is contained in all the four convex objects.

With an easy trick (which one?), this leads to the following.

Lemma 1.3.4 (Helly’s theorem in the plane). Let F be a set of 𝑛 ≥ 4 convex sets in the plane,
such that any three of them have a non-empty intersection. Then, all the convex sets in F have a
non-empty intersections.

More generally, the following is correct.

Theorem 1.3.5 (Helly’s Theorem). Let F be a set of 𝑛 ≥ 𝑑+2 convex sets in R𝑑, such that any 𝑑+1
of them have a non-empty intersection. Then, all the convex sets in F have a non-empty intersections.
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1.3.2. Proof of Radon’s Theorem in higher dimensions
Claim 1.3.6. Let 𝑃 = {𝑝1, . . . , 𝑝𝑑+2} be a set of 𝑑+2 points in R𝑑. There are real numbers 𝛽1, . . . , 𝛽𝑑+2,
not all of them zero, such that

∑
𝑖 𝛽𝑖𝑝𝑖 = 0 and

∑
𝑖 𝛽𝑖 = 0.

Proof: Indeed, set 𝑞𝑖 = (𝑝𝑖, 1), for 𝑖 = 1, . . . , 𝑑 + 2. Now, the points 𝑞1, . . . , 𝑞𝑑+2 ∈ R𝑑+1 are linearly
dependent, and there are coefficients 𝛽1, . . . , 𝛽𝑑+2, not all of them zero, such that

∑𝑑+2
𝑖=1 𝛽𝑖𝑞𝑖 = 0. Con-

sidering only the first 𝑑 coordinates of these points implies that
∑𝑑+2

𝑖=1 𝛽𝑖𝑝𝑖 = 0. Similarly, by considering
only the (𝑑 + 1)st coordinate of these points, we have that

∑𝑑+2
𝑖=1 𝛽𝑖 = 0.

Theorem 1.3.7 (Radon’s theorem). Let 𝑃 = {𝑝1, . . . , 𝑝𝑑+2} be a set of 𝑑 + 2 points in R𝑑. Then,
there exist two disjoint subsets 𝐶 and 𝐷 of 𝑃, such that CH(𝐶) ∩ CH (𝐷) ≠ ∅ and 𝐶 ∪ 𝐷 = 𝑃.

Proof: By Claim 1.3.6 there are real numbers 𝛽1, . . . , 𝛽𝑑+2, not all of them zero, such that
∑

𝑖 𝛽𝑖𝑝𝑖 = 0
and

∑
𝑖 𝛽𝑖 = 0.

Assume, for the sake of simplicity of exposition, that 𝛽1, . . . , 𝛽𝑘 ≥ 0 and 𝛽𝑘+1, . . ., 𝛽𝑑+2 < 0. Further-
more, let 𝜇 =

∑𝑘
𝑖=1 𝛽𝑖 = −∑𝑑+2

𝑖=𝑘+1 𝛽𝑖. We have that

𝑘∑︁
𝑖=1

𝛽𝑖𝑝𝑖 = −
𝑑+2∑︁
𝑖=𝑘+1

𝛽𝑖𝑝𝑖 .

In particular, 𝑣 =
∑𝑘

𝑖=1(𝛽𝑖/𝜇)𝑝𝑖 is a point in CH({𝑝1, . . . , 𝑝𝑘 }). Furthermore, for the same point 𝑣 we
have 𝑣 =

∑𝑑+2
𝑖=𝑘+1 −(𝛽𝑖/𝜇)𝑝𝑖 ∈ CH({𝑝𝑘+1, . . . , 𝑝𝑑+2}). We conclude that 𝑣 is in the intersection of the two

convex hulls, as required.
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