CS 498CG: Discrete & Computational Geometry, Spring 2023

Version: 2.1

Instructions: As in previous homeworks.

24 (100 PTS.) Brunn-Minkowski and caps

Let $\mathbb{S}^{(n-1)}$ be the unit radius sphere in \mathbb{R}^n . For positive t < 1/2, the *t*-cap *B* is a set of all points on the sphere such that their *x*-coordinate (say) is $\geq t$. An upper bound on the measure of *B* follows readily from the theorem showing measure concentration on the sphere (the bound is $\mathbb{P}[B] \leq 2 \exp(-nt^2/2)$) applying it to *A*, where *A* is the hemisphere made out of all points with negative *x*-coordinate. Prove an improved bound, by repeating the proof, but applying it to *B* and -B instead.

25 (100 PTS.) All point set are lanky in high dimensions.

Let P be a set of n points in (say) \mathbb{R}^n such that the diameter of P is at most 1. As a reminder, the **diameter** of P is diam(P) = max_{p,q\inP} ||pq||. Let v be a random direction taken from the unit sphere in (say) |n/4| dimensions, and consider the **projection width** of P:

$$w_v(P) = \max_{p \in P} \langle p, v \rangle - \min_{p \in P} \langle p, v \rangle.$$

Geometrically, this is the distance between two hyperplanes enclosing P between them with their normal being v.

Prove that $\mathbb{P}[w_v(P) \ge f(n)] \le 1/n^{20}$. Here, you should provide an explicit function f(n) that is as small as possible as a function of n (e.g., the claim definitely holds for $f(n) = 1/\ln n$, for n sufficiently large, but one can do much better).

Conclude that the width of P is at most f(n).

26 (100 PTS.) Many points, same distance in high dimensions

Consider picking uniformly and independently a set P of m points from the unit sphere $\mathbb{S}^{(n-1)} \subseteq \mathbb{R}^n$, where $\mathbb{S}^{(n-1)}$ is the unit radius sphere in \mathbb{R}^n . Let $\varepsilon \in (0, 1/10)$ be a fixed constant. Since the mass of the sphere concentrates near its equator, it is not hard to show that for all points $p, q \in P$, we have that $\|pq\| \in [\sqrt{2} - \varepsilon, \sqrt{2} + \varepsilon]$. Using only material seen in class, prove a lower bound (as large as possible) on the number m (as a function of n and ε) such that this property holds with probability $\geq 1/2$.