CS 498CG: Discrete \& Computational Geometry, Spring 2023
Version: 3.0
Instructions: As in previous homeworks.

15 (100 PTS.) Luney lune.
Do problem 9.14 in [dBCvKO08, page 217].
16 (100 PTS.) Report the points.
Do problem 10.12 in [dBCvKO08, page 241].
17 (100 PTs.) Heavy time.
Let P be a set of n points in the plane in general position. A circumcircle $C(p, q, r)$ of points $p, q, r \in P$ is k-heavy if it contains k points of P in its interior. Let $T_{\leq k}$ be the set of all circumcircles of points of P of weight at most k.
17.A. (30 PTs.)Let $C=C(p, q, r) \in T_{\leq k}$ be a given circumcircle. Let R be a random sample from P of size n / k (without repetitions). Consider the event that the triangle $\triangle=\triangle p q r$ is in the Delaunay triangulation of R (denoted by $\mathcal{D}(R)$), and let

$$
\alpha(C)=\mathbb{P}[\triangle p q r \in \mathcal{D}(R)]
$$

be this probability. Prove that $\alpha(C) \geq c / k^{3}$, for some absolute constant $c>0$.
17.B. (30 PTS.) Prove that $\sum_{C=C(p, q, r) \in T_{\leq k}} \alpha(C)=O(n / k)$.
17.C. (40 PTs.) Combining the above two parts, prove that $\left|T_{\leq k}\right|=O\left(n k^{2}\right)$.

References

[dBCvKO08] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational Geometry: Algorithms and Applications. Springer, Santa Clara, CA, USA, 3rd edition, 2008.

