CS 498CG: Discrete \& Computational Geometry, Spring 2023
Version: $\mathbf{1 . 0}$
Instructions: As in previous homeworks.

7 (100 PTS.) k th distance.
Let P be a set of n points in the plane, and consider the set of distances

$$
D(P)=\{\|p q\| \mid p, q \in P, p \neq q\} .
$$

Assume that all the pairwise distances in P are distinct.
7.A. (80 PTs.) Let $k>0$ be a given integer number (think about k as being small compared to $n)$. Present an algorithm that in $O(n)$ expected time, computes a set $X \subseteq P$ of $O(k)$ points, such that the k th smallest value in $D(P)$ and $D(X)$ is the same.
(Hint: Extend the alternative algorithm seen in class for the closest pair.)
7.B. (20 pts.) Given P and k, show how to compute the k th smallest value in $D(P)$ in $O\left(n+k^{2}\right)$ time (faster algorithms are known, but they are significantly more complicated).

8 (100 PTS.) Approximate cover.
Let C and P be two given sets of points in the plane, such that $k=|C|$ and $n=|\mathrm{P}|$. Let $r=\max _{p \in \mathrm{P}} \min _{c \in C}\|c p\|$ be the covering radius of P by C (i.e., if we place a disk of radius r around each point of C, all those disks cover the points of P).
Give an $O(n+k \log n)$ expected time algorithm that outputs a number α, such that $r \leq \alpha \leq 2 r$.
(Hint: Extend the alternative algorithm seen in class for the closest pair.)

Some other problems

(Not for submission.)

- (100 PTS.) Counting intersections

Do question 5.11 from [dBCvKO08] - page 119.

References

[dBCvKO08] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational Geometry: Algorithms and Applications. Springer, Santa Clara, CA, USA, 3rd edition, 2008.

