Instructions: As in previous homeworks.

4 (100 PTS.) Shallow triangulation.
Do question 3.14 from [dBCvKO08] - page 61.
5 (100 PTS.) Point location in a triangulation of a star polygon.
5.A. (50 PTS.) A star polygon is a polygon P that has a point $p \in \Pi$, such that for any point $q \in P$, we have that $p q \subseteq P$. Describe a linear time algorithm for deciding if a given polygon is a star polygon.
5.B. (50 PTS.) Show how to preprocess a star polygon Π into a data-structure, such that given a query point q, one can decide in $O(\log n)$ time if $q \in \Pi$.

6 (100 PTS.) Linear programming in 2d
Given a set H of n halfplanes in two dimensions (in general position), extend the algorithm seen in class (for finding a vertex about a set of lines), to compute a point that belong to all these halfplanes, if such a point exists. In particular, you have to describe a deterministic linear time algorithm to compute such a point. To this end, answer the following:

Formally, let $\Pi=\cap_{h \in H} h$ be the polygon forming the feasible region.
6.A. (30 PTs.) Let H^{+}and H^{-}be the partition of H into halfplanes containing the positive and negative infinite y-axis (i.e., halfplanes above the lines that bounds them, and the ones below), respectively. Let L^{+}and L^{-}be the set of lines bounding the halfplanes of H^{+}and H^{-}, respectively. Let

$$
f^{+}(x)=\max _{\ell \in L^{+}} \ell(x) \quad \text { and } \quad f^{-}(x)=\min _{\ell \in L^{-}} \ell(x)
$$

Prove that $g(x)=f^{-}(x)-f^{+}(x)$ is a concave function, and one can compute $g(\alpha)$ and $g^{\prime}(\alpha)$ in linear time, for a specified value α. Furthermore, the vertical line $x=\beta$ intersects $\Pi \Longleftrightarrow$ $g(x) \geq 0$.
6.B. (40 PTs.) (Prune.) Present a linear time algorithm that either computes (i) A feasible point $p \in \Pi$, or (ii) a subset $H^{\prime} \subseteq H$, such that the lowest point (in the y value) in $\cap_{h \in H^{\prime}} h$ and Π is the same, and $\left|H^{\prime}\right| \leq c n$, where $c<1$.
6.C. (30 PTS.) Using previous parts, present a deterministic linear time algorithm for computing a point $p \in \Pi$ with minimum y-value or output that Π is empty.

References

[dBCvKO08] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational Geometry: Algorithms and Applications. Springer, Santa Clara, CA, USA, 3rd edition, 2008.

