Introduction to Quantum Computing **CS 498QC (Spring 2025) Makrand Sinha and Fernando Granha Jeronimo**

*Based on Henry Yuen's introductory slides from a course at Columbia University

Makrand Sinha

Fernando Jeronimo

Yuchen Pang

TA

QUANTUM

QUANTUM

Organization

Mathematics of Quantum Information

How to represent information?

How to represent information?

How to perform basic computation?

How to represent information?

How to perform basic computation?

algorithms

How to design algorithms?

Quantum Computation

algorithm

Computation based on the principles of quantum mechanics

Quantum Mechanics

Developed in 1920s

• Explains fundamental properties of nature at atomic and sub-atomic scales

 Classical physical theories follow from approximations at macroscopic scales

Quantum Mechanics

Developed in 1920s

• Explains fundamental properties of nature at atomic and sub-atomic scales

 Classical physical theories follow from approximations at macroscopic scales

vdrogen atom

Superconductivity

Quantum Mechanics

Showed wave-particle duality

Interference

Observing which slit the electron passes through changes the outcome

Why use Quantum Mechanics for computation?

Exponentially of Quantum Mechanics

State of *n* particles is described by 2^n complex numbers

"....Nature isn't classical, damnit, and if you want to make a simulation of nature, you'd better make it quantum mechanical. By golly, it's a wonderful problem, because it doesn't look so easy."

Richard Feynman (1981)

 $|\psi\rangle = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_{2^n} \end{pmatrix} \in \mathbb{C}^{2^n}$

Quantum Computation

- R. Feynman, David Deutsch, Paul Benioff, Yuri Mann came up with the idea of computing based on quantum mechanical principles
- Quantum computation is about orchestrating interference in such a way that the "interference pattern" tells us something useful, e.g. the solution to a problem!

Early Days

- simulating quantum systems
- 1984: Deutsch found example of a (non-physics) problem with a constant factor speedup on a quantum computer
- with super-polynomial speedups on a quantum computer

• Feynman's motivation for quantum computers is the most obvious one:

But to computer scientists in the 80s, this was probably a strange idea

1992: Bernstein-Vazirani and Dan Simons found examples of problems

Quantum Algorithm for Factoring

Peter Shor in 1994 came up with an algorithm for factoring

Given an *n*-bit integer, find its prime factorization

• Modern crypto systems such as RSA are based on the assumption that factoring large integers (512-1024 bit) is hard for classical computers

Quantum Algorithm for Factoring

• Peter Shor in 1994 came up with an algorithm for factoring

Given an *n*-bit integer, find its prime factorization

 Modern crypto systems such as RSA are based on the assumption that factoring large integers (512-1024 bit) is hard for classical computers

Quantum Algorithm for Factoring

• Peter Shor in 1994 came up with an algorithm for factoring

Given an *n*-bit integer, find its prime factorization

 Modern crypto systems such as RSA are based on the assumption that factoring large integers (512-1024 bit) is hard for classical computers

Are quantum computers more powerful than classical computers?

Present day

- Engineering primitive quantum computers are being built
- Theoretical developments new algorithms, new cryptographic protocols, new insights into how quantum computing compares to classical computing
- Connections to other sciences
 - condensed matter physics, quantum gravity, materials science, chemistry, computer science, pure mathematics

Emerging Quantum Computers

- Until 2017 or so, quantum devices were very small ~10 qubits
- New developments in hardware in the last 5 years: Superconducting qubits, ion traps, photonic systems, topological qubits, ...
- Many companies racing to build large-scale quantum computers

Emerging Quantum Computers

• Present day

quantum computers with ~100 qubits

• Problem

devices are very noisy and not capable of running Shor's algorithm

• "NISQ" era

Noisy Intermediate-Scale Quantum Computers

Emerging Quantum Computers

• Present day

quantum computers with ~100 qubits

• Problem

devices are very noisy and not capable of running Shor's algorithm

• "NISQ" era

Noisy Intermediate-Scale Quantum Computers

Can we solve classically intractable tasks with NISQ devices?

"Quantum Advantage" or "Quantum Supremacy"

 In 2019, Google announced that they had achieved "Quantum Supremacy" using their 53-qubit Sycamore quantum processor

Quantum supremacy: a convincing real-world demonstration of a quantum computer accomplishing a task that cannot feasibly be performed by a classical computer.

Quantum vs Classical

- Google's processor took 200 seconds and they estimated that a state-of-the-art supercomputer would require ~10,000 years
- Clever classical algorithms by various groups showed that the task is feasible on classical super-computers

Most recent estimates by Google itself suggests that it would take 6.18s with classical supercomputers to do the 2019 experiments

Quantum vs Classical

- Google in 2023 proposed a 70 qubit experiment which they estimate would require 47 years on a classical supercomputer
- Other research groups have also announced quantum advantage results based on other computational tasks
- The quest to find clever algorithm and provably demonstrate quantum advantage continues...

Summary of Hardware Efforts

- We are in the "**NISQ**" era
- There is a qubit-race going on, but qubit count is not everything!
- Scaling up (i.e. more qubits, better qubits) is a tough engineering challenge, but no fundamental obstacles to building QCs with 10^6 noiseless qubits
- Still, large-scale fault-tolerant QCs look like they are many years away

Summary of Hardware Efforts

- We are in the "**NISQ**" era
- There is a qubit-race going on, but qubit count is not everything!
- Scaling up (i.e. more qubits, better qubits) is a tough engineering challenge, but no fundamental obstacles to building QCs with 10^6 noiseless qubits
- Still, large-scale fault-tolerant QCs look like they are many years away

What interesting problems can be solved with near-term quantum computers?

- **Exponential speedups** for structured, algebraic problems
 - Factoring (Shor's algorithm) Hidden subgroup problem
- Polynomial speedups for unstructured search problems Grover search
- Hope: Exponential speedups for simulating quantum systems Design materials Understand quantum phenomena

- **Exponential speedups** for structured, algebraic problems N = pqFactoring (Shor's algorithm)
 - Hidden subgroup problem
- Polynomial speedups for unstructured search problems Grover search
- Hope: Exponential speedups for simulating quantum systems Design materials Understand quantum phenomena

- **Exponential speedups** for structured, algebraic problems
 - Factoring (Shor's algorithm) Hidden subgroup problem
- Polynomial speedups for unstructured search problems Grover search
- Hope: Exponential speedups for simulating quantum systems Design materials Understand quantum phenomena

N = pq

- **Exponential speedups** for structured, algebraic problems
 - Factoring (Shor's algorithm) Hidden subgroup problem
- Polynomial speedups for unstructured search problems Grover search
- Hope: Exponential speedups for simulating quantum systems Design materials Understand quantum phenomena

N = pq

- Near-term quantum algorithms
 - Variational Quantum Eigensolvers
 - Classical-quantum hybrid algorithms
- Quantum Machine Learning
 Solving linear systems/SDPs/Convex programs
 Recommendation systems

- Near-term quantum algorithms
 - Variational Quantum Eigensolvers
 - Classical-quantum hybrid algorithms
- **Quantum Machine Learning** Solving linear systems/SDPs/Convex programs Recommendation systems

- **Near-term** quantum algorithms
 - Variational Quantum Eigensolvers
 - Classical-quantum hybrid algorithms
- **Quantum Machine Learning** Solving linear systems/SDPs/Convex programs Recommendation systems

What types of problems admit a quantum advantage?

Quantum Gravity

The key to a theory of Quantum Gravity could be quantum entanglement, and quantum error correcting codes.

• Black Holes

The "**Blackhole Firewall Paradox**" is an issue about quantum information, and possible resolutions involve quantum cryptography.

Quantum Gravity

The key to a theory of Quantum Gravity could be quantum entanglement, and quantum error correcting codes.

Black Holes

The "Blackhole Firewall Paradox" is an issue about quantum information, and possible resolutions involve quantum cryptography.

Quantum Gravity

The key to a theory of Quantum Gravity could be quantum entanglement, and quantum error correcting codes.

Black Holes

The "Blackhole Firewall Paradox" is an issue about quantum information, and possible resolutions involve quantum cryptography.

Quantum Gravity

The key to a theory of Quantum Gravity could be quantum entanglement, and quantum error correcting codes.

Black Holes

The "Blackhole Firewall Paradox" is an issue about quantum information, and possible resolutions involve quantum cryptography.

What can quantum computing tell us about nature?

What you can hope to learn from this class

- Learn the basic principles of quantum information and computation
- Learn fundamental quantum algorithms and quantum protocols
- Get an idea of the current state of the field
- Get an idea of what the big questions are

Target Audience

Who this class is intended for

- Computer Scientists
- People with a solid background in linear algebra and probability People who want to learn about the theory of quantum computing

• Who this class is NOT intended for

- People who want to learn how to build a quantum computer
- People who want to learn quantum programming
- People who want to learn quantum physics

Prerequisites

Basic Linear Algebra Important

Vector space (subspaces, orthogonal complements, dimension, linear independence, basis, span,...). Inner products. Row vs column vectors. Linear operators (invertibility, matrix representation, composition of linear operators, transpose, adjoint). Eigenvalues and eigenvectors. Trace.

Basic Probability Theory Important

Bayes' rule, conditional distributions. Joint probability spaces. Independent random

variables. Mean, variance, etc.

Theoretical Computer Science Ve

Analysis and design of algorithms. Complexity theory. Discrete math.

Very helpful

Organization

Mathematics of Quantum Information

Grading

Homeworks 30%

Homework 0 due on Jan 30th, 9pm

- Midterm and Final
 Exam 30% each
- Group
 Participation 10%

- Homework 0 (5% of your grade, cannot be dropped),
 - each non-dropped homework 5% of your grade)
- Homework 0 submitted individually, afterwards submission in groups of up to three
- 3 late submission tokens: extend deadline by 24 hours
- No collaboration on homework 0. For later homeworks, free to collaborate with anyone in the class but not allowed to look up solutions online or use tools like GPT

Homeworks 1-6 (lowest scoring homework dropped,

Class Resources

- Course Webpage: https://courses.grainger.illinois.edu/cs498qcg
- Course Announcements, Policies, Homework, Q&A posted on Ed Discussion

Use the **chat feature** on Ed Discussion to send a direct message to the course staff instead of email

- Homework submission: Gradescope
- Office Hours: Makrand (Thursdays 10:45am-noon in Siebel 3222)

Basic Information

Lecture Notes

Additional Resources

Yuchen (Tuesdays 1-2pm in Siebel Basement, starting January 28th)

Textbook and Other Resources

Recommended Textbook

- <u>Course by Andrea Coladangelo at</u> <u>University of Washington</u>
- <u>Course by Henry Yuen at Columbia</u>
- <u>Course by Ryan O'Donnell at CMU</u>
- Lecture Notes by Scott Aaronson at UT Austin
 - Lecture Notes by Ronald de Wolf at <u>University of Amsterdam</u>

*Some of the material in this course will be based on the above courses You are encouraged to check them out for different perspectives

Mathematics of Quantum Information

