PART I Fundamental Concepts in Quantum Information
This lecture Measurements in different basis & Global vs Relative Phase.
Eliteur-Vaidman Bomb Tester
Unitary Transformations or Quantum Gates
QM Law 1 Qubit can be in superposition of 100 k 12)

$$(\psi) = \alpha 100 + \beta 12$$
 $(\psi) = 100^{1} + |\beta|^{2} = 1$
 $(\psi) = \alpha 100 + \beta 12$ $(\psi) = 100^{1} + |\beta|^{2} = 1$
 $(\psi) = \alpha 100 + \beta 12$
 $(\psi) = \alpha 100 + \beta 12$
 $(0) (\psi) = \alpha 100 + \beta 12$
 $(0) (\psi) = projection of 100 on 100 = cos (angle b/w 100 & 100))$
measurement outcome is "100" and similarly for "110"
 ψ state "callapses" to 107
Measurement outcome is "160" and similarly for "162"
 ψ state "callapses" to 107
 $(\psi) = \alpha 100 + \beta 101^{2}$
 $(\psi) = \alpha 100^{2} + \beta 101^{2}$
 $(\psi) = \alpha 100^{2} + \beta 101^{2}$
 $(\psi) = \alpha 100^{2} + \beta 100^{2}$
 $(\psi) = 0^{2} + 0^{2}$

"(+)" w.p. 1 1+7 t ה

LECTURE 3 January 28th, 2025

$$|1\rangle$$
 $|+\rangle = \frac{1}{1}|0\rangle$

Can distinguish orthogonal states with probability 1

Outcome
"(+)" w.p.
$$\frac{1}{2}$$
 or "(-)" w.p. $\frac{1}{2}$
10)
 $(+)$ " w.p. $\frac{1}{2}$ or "(-)" w.p. $\frac{1}{2}$
 $(+)$ " $(+)$ "

If outcome in Hadamard basis is determined, then outcome in standard basis is uniform and vice versa

Filter Revisit

No measurement can distinguish them

For any basis {16,>, 16,>} in which we measure

$$|\psi\rangle = \alpha |b_0\rangle + \beta |b_1\rangle$$
 so prob. of outcomes is identical
- $|\psi\rangle = -\alpha |b_0\rangle - \beta |b_1\rangle$

2

In general, for any
$$\theta \in \mathbb{R}$$

If ψ and $e^{i\theta}$ If ψ
Can not be distinguished

<u>Relative Phase</u> Are $|+\rangle = \frac{1}{J_2}|_0\rangle + \frac{1}{J_2}|_1\rangle$ and $|-\rangle = \frac{1}{J_2}|_0\rangle - \frac{1}{J_2}|_1\rangle$ the same? No! They can be distinguished w/prob 1 since they are orthogranal

Elitzur-Vaidman Bomb Tester

Suppose you are given a box which can be in one of two states

Case Dud: read 1+> always

Case Bomb: 1+> measured in {10), 1273 basis

w.p.
$$\frac{1}{2}$$
 11) \longrightarrow explosion
w.p. $\frac{1}{2}$ 10) \longrightarrow 1+) w.p. $\frac{1}{2}$
 $(-)$ w.p $\frac{1}{2}$ \longrightarrow if you see this, you know it's a bomb

Later we will see how to improve it to 99% chance of detecting the bomb

Measurement gives us classical information and collapses the state For quantum computing, we also need to be able to transform quantum states

Consider a qubit with real amplitudes

FACT For any θ , one can build a physical device that rotates its state by θ''

E.g. by passing photon through a slab whose length depends on Q or by shooting laser at an electron for time that depends on O

The linear transformation that rotates by O is given by the matrix

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
Same operation works
for complex amplitudes
where $\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ goes

Next time Unitary Transformations & A better strategy for the bomb puzzle

