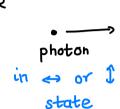
## LECTURE 1, Jan 21st, 2025

## What is a qubit?


A bit : {0,1} two discrete values

How can we physically represent a bit?

Low voltage | Spin of an electron: up | Polarization of a photon: 

A horizontal tigh voltage | 1 yertical 0> 117

> Only way to know the state via measuring device





tells you whether photon is  $\iff$  or  $\Gamma$ 

Z = x + iy complex number where  $i = \sqrt{-1}$  $|Z| = \sqrt{x^2 + y^2}$ 

length

If a "particle" can be in one of 2 basic states 10) or 117 then it can also be in a superposition state, meaning Recall

> "  $\alpha$  amplitude on 107,  $\beta$  amplitude on 117" where  $\alpha, \beta$  are complex numbers satisfying  $|\alpha|^2 + |\beta|^2 = 1$

Simplest quantum system with two degrees of freedom

Such a state is called a qubit.

We can represent it by a vector  $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$   $\leftarrow$  unit vector since  $|\alpha|^2 + |\beta|^2 = 1$ 

E.g. a photon may have the state " $\frac{1}{\sqrt{2}}$  amplitude on 107,  $\frac{1}{\sqrt{2}}$  amplitude on 117"  $\begin{pmatrix} \frac{7}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$ OR  $\left(\frac{1}{J_2}\right)^2 + \left(\frac{1}{J_2}\right)^2 = \frac{1}{2} + \frac{1}{2} = 1$ "  $\frac{1}{\sqrt{2}}$  amplitude on 107,  $-\frac{1}{\sqrt{2}}$  amplitude on 117"  $\begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$  $\left|\frac{i}{15}\right|^2 + \left(-\frac{1}{12}\right)^2 = \frac{1}{2} + \frac{1}{2} = 1$ 

> 1 amplitude on 107, 0 amplitude on 117" called "10>"

You cannot read a quantum state, i.e., access a, B directly Only way to extract information is via measurement LECTURE

