P. Madhusudan

Logic in Computer Science

Rough course notes

November 5, 2020

Draft. Copyright P. Madhusudan

Contents

1 Logic over Structures: A Single Known Structure, Classes of

Structures, and All Structures
1.1 Logic on a Fixed Known Structure
1.2 Logic on a Fixed Class of Structuresccooven...
1.3 Logicon All Structures. ...ttt ..
1.4 Logics over structures: Theories and Questions
2 Propositional Logic............
2.1 Propositional Logic.......... ... i
201 Syntax ... e
2.1.2 What does the above mean with ::=,etc?.................
2.2 Some definitions and theorems
2.3 Compactness Theoremcoiiiiiniiiiniiineenn..
24 ResOIutionoiiiii
3 Quantifier Elimination and Decidability
3.1 Quantifiier Elimination
3.2 Dense Linear Orders without Endpoints
3.3 Quantifier Elimination for rationals with addition:
(Q,0, 1,4, =, <, =) oee e
3.4 The Theory of Reals with Addition............................
34.1 Aside: Axiomatizations i
3.4.2 Other theories that admit quantifier elimination
4 Validity of FOL is undecidable and isr.e.-hard
4.1 Validity of FOLisre.-hard
4.2 Trakhtenbrot’s theorem: Validity of FOL over finite models is
undecidable, and co-re.hard
5 Quantifier-free theory of equality
5.1 Decidability using Bounded Models

vi

Contents

5.2 An Algorithm for Conjunctive Formulas 44

521 Computing CC(E) .ottt 47
5.3 Axioms for The Theory of Equality 49
Completeness Theorem: FO Validityisre. 53
6.1 PrenexNormalForm............ 55
6.2 Skolemization / Herbrandization 55
6.3 Herbrand’stheorem........... i 57
6.4 Some consequences of Herbrand’s theorem 62
6.5 Godel’s completeness theorem: FO Validity is recursively

enuUMErable e 63

6.5.1 The case of finite sets of formulas 66

6.5.2 The case for infinite sets of formulas 67

6.5.3 Completeness Theoremciiviinn... 68
6.6 Observations and CONSEqUENCEeSouveeruneenneenn.. 70
Number Theory and Correctness of Programs: Incompleteness. 73
7.1 Program Verification.......... ... it 75
7.2 Incompleteness of the theory of natural numbers with additional

and multiplication 75

7.3 FurtherRemarks i, 79

Chapter 1

Logic over Structures: A Single Known
Structure, Classes of Structures, and All
Structures

1.1 Logic on a Fixed Known Structure

You are already familiar with logic on a fixed structure (or context or world). For
example, you know what this statement means:

VxeN3dJyeNx<y

It says “for every natural number x, there exists a natural number y such that x < y.
You have learned this in courses in discrete mathematics.

If you haven’t or need a primer, I recommend reading it from the following
sources:

e Madhu’s primer for CS173: https://courses.grainger.illinois.edu/cs173/fa2017/B-
lecture/NotesByMadhu/Notes- 1.pdf

The main thing to note here is that you know the structure/universe/context you
are talking about— in this case natural numbers.
You should make sure you know several things about such logical notation:

¢ You should know the Boolean connectives A, V, and —.

* You should know the meaning of V (“forall”’) and 3 (“exists”), which are quanti-
fiers.

* You should know that « = B (read « implies) has a formal meaning that is
precisely the same as (—a) V 3, and not some other uses in English. For example,
"Goldilocks is the president of the United States implies all gorillas are green" is
a statement that is true in the current world, since Goldilocks is not the president
of the United States (I am assuming this is true when you read this as well).

* One really needs only the connectives V and —; the rest can be derived or defined
as shortcuts:

— «a A Bis logically equivalent to —(—a V —f3)
— a = Bis logically equivalent to (-a) V 8
— a © Bislogically equivalent to (& = B) A (8 = a).

2 1 Logic over Structures: A Single Known Structure, Classes of Structures, and All Structures

* You should know the de Morgan laws and how negation goes into quantifiers:

—(a V B) is equivalent to (—a) A (=)
— =(a A B) is equivalent to (—=a) V (=)
— =(3x. @) is equivalent to Vx.(—a)
— =(Vx. @) is equivalent to 3x.(—a)

Using the above, you should know that you you can “push” the negations all the
way in so that they are applied only to atomic symbols/formulae.

As a concrete example, let us discuss logics over a fixed structure— the set of
natural numbers N.

In propositional logic over a fixed structure (or universe or world), you would have
a mapping between propositional symbols and statements. For example, p could be
the statement “there are finitely many primes” and g could be the statement “all
primes other than 2 are odd”. Then p is false in this world, and g is true in this world,
etc.

First order logic over natural numbers is more powerful and useful. Over natural
numbers we have several functions and relations that we know. For example, + is
a (binary) function, X is a (binary) function, and square is a (unary) function. And
<, < are all (binary) relations. In fact, another relation that we overlook sometimes
is the equality relation =, since it’s so common.

Now, let us fix this signature of symbols for functions and relations. Let us also
fix a set of symbols to denote variables, called Var. And define a first order logic
formally:

Terms: t,t' :=x|c|+(x,y) | X(x,y) | square(x)
Formulas: ¢, ¢" i=t=t"|t<t'|t<t'| oV |@oA@ |- |Vx. 0| Tx.p

where ¢ € N, x € Var.

We have here two kinds of expressions— terms and formulas. Terms are obtained
from constants and variables by applying functions, recursively, and intuitively “eval-
uate” to some number. For example, +(5, 8) is a term. Note that we write functions
like + with the symbol in front, rather than in infix notation; i.e., we write +(5, 8)
instead of 5+8. But as you are familiar with computer science, you can think of + as a
function that you “call”, and so +(5, 8) should make sense. +(9, x) is a term as well.
And square(x(13384398, square(y))) is a term too. Clearly there are infinitely
many terms.

We don’t really need all constants in the grammar. 0 and 1 are sufficient, as any
other constant can be expressed as an appropriate sum of 1s.

Formulas, on the other hand, evaluate to a Boolean, i.e., true or false. The atomic
formulas are those that are formed from terms— those of the form ¢ = ¢/, t < ¢’ and
t < t’. Formulas are basically atomic formulas closed under Boolean operations and
quantification.

Note that we write Vx. dy. x < y, rather than Vx € N. 9y € N. x < y, since
the universe over which variables are quantified are assumed to be natural numbers
anyway. If there are multiple sorts of objects that we want to quantify over, we would

1.2 Logic on a Fixed Class of Structures 3

introduce the more general syntax where every time we quantify, we will say which
sort it is over (or designate different sets of variables for each sort). This is similar
to programming, where we declare variables to be of different sorts— like integers
or strings.

You should be able to read and write FO formulas over natural numbers. For
instance, the formula Vx. (x > 2) = square(x) > x says “the square of any number
greater than two is larger than it”, which is happens to be true over natural numbers.
Similarly, if we wanted to say “every number other than 0 has a smaller number”,
we would write this as Vx.=(x = 0) = (Jy. (y < x)), which also happens to be true
over natural numbers.

Now consider the formula Vx.(x > y). Is it true over natural numbers? It’s hard
to imagine how to interpret the statement as its unclear what y is. This leads us to
define something called sentences.

A sentence is a formula where every variable is quantified, We will define this
formally later, but it should be clear to you what this means.... any variable that
occurs in the formula must have a quantification “outside” it such that the variable
is in scope of that quantifier. This is similar to programming— we may require all
variables used in a program to be declared, i.e., every use of a variable should be in
the scope of a declaration of it. Sentences evaluate to true or false on a structure.

The first-order theory of the structure N is the set of FO sentences that hold in
that model, denoted T/h(N). Note that since any sentence a must either be true or
false in the structure, and hence either @ or —a must be in the theory. More generally,
a theory is just a set of sentences. And a theory is said to be complete if for every
sentence «, either @ or -« belongs to it. So Th(N) is complete (indeed, the theory
of any fixed structure is complete).

1.2 Logic on a Fixed Class of Structures

In mathematics and computer science, we often want to express properties that hold
on a class of structures, not just a single structure. For example, we may ask what
formulas/sentences are true over groups, or over finite graphs, or over trees, or over
linked lists, or over recursively defined datatypes, or over SOL (relational) databases,
or about objects in a class.

Unlike a single structure, like N or Z or R, we are interested in a class of structures.

Groups

Let us take groups. A group is defined as a set S endowed with a binary relation
o: 8§ xS — S that satisfies the following properties:

Associativity: forevery a,b,c € S,(aob)oc=ao (boc)
Identity: There is an element e € S such that foreverya € S,ace =e¢oa =a.
Inverse: For every a € S, there exists ana’ € S suchthataoa’ =a’oca =e.

4 1 Logic over Structures: A Single Known Structure, Classes of Structures, and All Structures

For example, the set of integers Z with the operator + forms a group (0 is the
identity, and for every i € Z, —i is its inverse. Another class of examples of groups
is obtained by taking a finite set £ and considering the set of elements consisting of
permutations of E, with the binary operation being composition of permutations (a
composition of permutations is a permutation as well). The identity permutation is
the identity element, and every permutation has an inverse, of course, which “reverts”
the permutation.

Now, there are of course properties that hold on all groups. For instance, the
identity element must be unique. Here’s a proof: Assume e, f € S are both identity
elements. Then e. f = e (since f is an identity) and e. f = f (since e is an identity).
Hence e = f.

Similarly, one can show that every element’s inverse is unique.

The above proof shows that the fact that O is the unique identity element for +
over Z is not a particular property satisfied only on integers, but rather is a property
shared among all groups. The field of group theory studies groups in their own right,
since they occur commonly in many areas and applications.

We can now define the first order theory of groups as the set of all FO sentences
that hold over groups. The signature could include a special constant e to denote the
identity element. The sentence Va,b,c.(aob=eAboa=eANaoc=eAcoa=
e) = b = ¢, which says that every element has a unique inverse, is hence a theorem
in this theory.

Note however that the theory of groups is not a complete theory. For example, the
sentence Yx, y.x oy = y ox is not a theorem nor is its negation a theorem. There are
some groups where this property is true (like + over integers) and some where it’s
not true (like permutations of a fixed finite set of elements).

Graphs

Graphs are ubiquitous in computer science. Each graph can be seen as a model where
there is a set/universe which is finite and that has a binary relation E over it, which
models the set of edges. We would expect E to be symmetric (if E (u, v) holds, then
E(v,u) also holds). And we don’t want “self-edges” (for any u, E(u,u) does not
hold).

One can then defined the theory of graphs— which consists of all FO sentences
true over graphs. This FO theory is not terribly interesting, as there are very few
properties about graphs you can express using just FO theory on graphs. Note that
this theory is not complete, again, of course— the sentence Yu, v.E (u, v) is neither
true in all graphs nor false in all graphs.

One can of course define any subclass of graphs— such as planar graphs or
bipartite graphs— and talk about the theory of such subclasses as well. How does
the theory of graphs, TG, and the theory of planar graphs, TPG, compare? Is one
a subset of the other? It is easy to see that any sentence that holds for all graphs is
certainly true for all planar graphs as well. Hence TG C TPG.

1.3 Logic on All Structures 5

In general, if C and D are two classes of structures with C a subclass of D, then
the theory of 9 would be a subset of the theory of C. The smaller the class, the
larger its theory! In the limit, when there is only one structure, the theory becomes
complete (and of course cannot get any larger without containing contradictions).

One can now ask— do we really need to have a single structure in order to obtain
a complete theory? In other words, is there a class of structures/models C that has at
least two structures such that its first order theory is complete? Strangely, the answer
is yes! We will see examples of this in the course. For example:

* The theory of rationals with only the relations = and < is the same as the theory

of reals with the relations = and <! In other words, there is no first-order sentence
that can distinguish between these structures.
Note that the above is very specific to the fact that we have only FOL and only
the fixed signature involving <. For example, if we had the function symbol
square that returns the square of a rational/real, then we can distinguish the two
structures. (Can you come up with one? If you have in addition constants such as
0,1,2,...,it would be simpler.)

e More generally, the theory of dense linear orders without endpoints (no least or
largest element) is complete. No matter which dense linear order you pick, you
will find that the theory is the same! So here is an example of an infinite class
of structures which no first order formula (with only < in the signature) can
distinguish.

* One extremely surprising result is that there are structures that are non-isomorphic
to natural numbers and yet satisfy the same first-order properties of natural
numbers! You can imagine an alien species having such a non-standard model of
arithmetic in their head (though I wonder what kind of evolutionary circumstance
would give rise to such models in their psyche), and yet we would agree with
them about all theorems in FOL over arithmetic!

1.3 Logic on All Structures

Finally, we can consider logics on all structures. This may sound a bit unnatural
and not very useful. But as we shall see, it is quite useful, as it gives a way to study
general metatheorems in logic that are independent of a particular structure or class
of structures.

One reason why logics over all possible structures is that one can carve out
useful and natural fragments using axiomatizations. Axiomatizations are logical
mechanisms of specifying a class of structures that you want to study.

Axiomatizations are, in a certain sense, the purest form of reasoning about a class
of structures. If we want to reason about a class of structures {C}, then it remains
how to define them formally so that we can reason with them. For instance, you and I
may think we know what natural numbers and arithmetic are, but to formally reason
with arithmetic, we must be able to state our assumptions clearly. If you start an
argument with “There are infinitely many even numbers, and ...” and I interrupt you

6 1 Logic over Structures: A Single Known Structure, Classes of Structures, and All Structures

and ask you why that is so and I don’t believe it, then you may provide a proof of it.
But every proof you give will make assumptions (hopefully simpler assumptions),
till at some point you give up and say that those are self obvious. For example, you
may refuse to give a proof of why “x + 0 = x”. So it is natural to ask whether there
are some fundamental and simple assumptions about natural numbers that we all can
agree upon (and people who don’t believe them can go climb a gum tree) such that
all arguments can be made only using such assumptions.

Presburger arithmetic is a particular set of axioms that characterize natural num-
bers with addition only. The axioms are:

(A1) Vx.—=(x+1=0)

(A2) Vx,y.(x+1l=y+1)=>x=y

(A3) Vxx+0=x

(Ad) Vx,yx+(y+1)=x+y) +1

(AS) For any first order formula P with a free variable x, the following holds:

(P(0) AVx.(P(x) = P(x+1))) = Vy.P(y)

The meaning and soundness of axioms (A1)—(A4) should be obvious. (AS) is
actually a set of axioms, called an axiom schema. It says that for any property P
of natural numbers expressible in FOL, induction is a sound way of proving that P
holds on all natural numbers. More precisely, if it was true that P holds for 0 and
for every x, if P holds for x then P holds for x + 1, then P must hold for all natural
numbers.

Itis an amazing fact that all first-order properties of natural numbers with addition
can be proved just using the axioms above. We will not show this in this course,
however, but argue a related theorem to show that the theory of natural numbers with
addition is decidable. (It will become clear later why these are related.)

Perhaps a more natural example of axiomatizations is the characterization of
groups. Recall that groups satisfy a specific set of properties (associativity, existence
of identity, and existence of inverses). This is the definition of groups— we do not
have some other “natural” model of groups in our minds. And furthermore it turns
out that we can characterize the properties of groups in FOL, with the signature
containing = and the sole binary function o, and an identity element (constant
symbol) e:

(A1) Associative law: Vx,y,z.xo(yoz)=(xoy)oz
(A2) Identity: Vx. (xoe=xAeox=x)
(A3) Existence of inverses: Vx.dy. (xoy=eAyox=e)

Note that in the above, the set of axioms is finite as opposed to Presburger
arithmetic. Similar to the above, we can characterize many classes of algebraic
structures— abelian groups, rings, fields, Boolean algebras, etc.

Given a set of axioms A, we can think of it as culling out a class of structures
from the class of all structures, namely those that satisfy the axioms. We can then
talk about the theory of the axioms— the set of sentences that are satisfied in every

1.4 Logics over structures: Theories and Questions 7

structure in this culled out class of structures. Let Th(:A) denote the theory defined
by the structures that satisfy the axioms A.

For example, for the set of axioms defining groups above, its theory contains the

statement: Vx,y,z. (xoy=eAyox=eAxoz=eAzox=e¢) = (y=2)

1.4 Logics over structures: Theories and Questions

Given the above discussion, we have four kinds of theories:

The theory of a single structure M, denoted Th(M).

The theory of a class of structures C, denoted Th(C).

The theory of all structures, which we will call tautologies or valid sentences,
denoted Th(FOL).

The theory of a set of axioms Th(A), which the the theory of the class of
structures that satisfy A.

Given the above, one can ask many interesting questions and make some simple

observations:

Let us call a theory complete if for every sentence a, either « is in the theory or
- is in the theory.

Note that the theory of a single structure M is always complete. However, the
theory of a class of structures need not be complete. (For example, over groups,
the sentence Vx, y.x = y is neither in the theory nor is its negation in the theory).
Similarly, the theory of a set of axioms need not be complete.

The theory of a structure or a nonempty class of structures can never have a
contradiction— i.e., it cannot have both @ and —a. You can have one only or the
other or neither, but not both. The theory of the empty class of structures contains
all sentences, and hence contradictions.

The theory of a set of axioms can have a contradiction. But this happens only
if they define an empty class of structures. Otherwise, the theory will have no
contradiction. (For example, if axioms include Vx.P(x) and x.—P(x), then the
set of structures defined by these axioms is empty, and its theory contains all
sentences.)

If a (nonempty) class of structures C is a subclass of a class of structures D, then
Th(D) € Th(C). So as the class of structures get smaller, its theory gets larger.
(In the limit, the class of structures is a single structure and the theory becomes
largest and is complete.

What is the complexity of deciding whether a sentence is valid (on all structures)?
Isitdecidable? If not, is it recursively enumerable? What is its precise complexity?
Is there a set of axioms (some regular simple set of axioms) that characterize
natural numbers with addition? Integers with addition? Natural numbers or inte-
gers with addition and multiplication? What about rationals with addition and/or
multiplication? Reals?

8

1 Logic over Structures: A Single Known Structure, Classes of Structures, and All Structures

Is it possible to decide if a set of axioms has a contradiction? I.e., whether there
is at least one structure satisfying it?

For each of the above theories, independent of whether they can be axiomatized
or not, are the theories decidable? (Can we build programs that check whether a
theorem is true or not, i.e., belongs to the theory or not, completely automatically?)
How do we know that proofs even exist? Can it be the case that there are (natural)
classes of structures for which some theorems do not have proofs?

If we fix a set of axioms, is it true that every theorem (statement in its theory) has
a proof, always, that follow from the axioms? Maybe first we need to define what
a proof is? What’s a proof?

I encourage you to think of all such combinations of questions. Some will be

trivial and you will be able to answer them. Most others you will be able to answer
at the end of the course. These questions that will occupy us for roughly half of this
course.

Here is a sample of the remarkable theorems in logic you will learn in this course:

The set of all valid sentences (the set of sentences that are true in all structures)
is not decidable. However, it is recursively enumerable!

One can in fact set up a formal proof mechanism for proving valid sentences.
Proofs are syntactic objects that (a) are finite and (b) can be verified easily using
syntactic rules. And then we can show that any valid sentence has a proof! (This
is Godel’s completeness theorem.) It then follows that a Turing machine/program
can simply look for such proofs, and hence the set of valid formulas is recursively
enumerable.

More remarkably, if I have a set of axioms A where A is a finite set of axioms,
then the theory of A is also recursively enumerable. This even holds if A is
infinite and is a computable (or even recursively enumerable set). In fact, one can
set up generic proof systems that work by assuming any set of axioms that can
prove any theorem in the theory of the set of axioms. This is remarkable as it
shows that any axiomatizable theory has proofs and a computer can just look for
such proofs!

If a set of axioms define a complete theory, then the theory is even decidable!
There is a program that can take a statement and decide whether it is a theorem
or not. (Don’t ask me how long this will take, though!)

There are several specific structures and signatures where you can ask whether
its theory is decidable (naturals, integers, rationals, reals with addition and/or
multiplication, etc.). Most of these have been settled. Note that a complete ax-
iomatization of them also implies decidability, and hence undecidability of the
theory means there is no complete axiomatization.

Four remarkable results are:

— The theory of natural numbers with addition is decidable (Presburger arith-
metic above is a complete axiomatization).

— The theory of natural numbers with addition and multiplication is not decid-
able. It follows that this theory hence does not have a complete axiomatization.

1.4 Logics over structures: Theories and Questions 9

This is essentially one of Godel’s incompleteness theorems. It turns out that
even validity of purely universally quantified formulas or purely existentially
quantified formulas is undecidable.

— The theory of reals with addition and multiplication is decidable!

— The theory of rationals with addiion and multiplication is undecidable.

* Checking whether a set of axioms has no contradiction is undecidable.

Chapter 2
Propositional Logic

Abstract Propositional logic; satisfiability; validity; satisfiability in decidable and
NP-complete; compactness

2.1 Propositional Logic

Use the template chapter.tex together with the document class SVMono (monograph-
type books) or SVMult (edited books) to style the various elements of your chapter
content conformable to the Springer Nature layout.

2.1.1 Syntax

Fix a countable set of proposition symbols 7.
The set of propositional formulas over # is defined as:

o, 9" i=p (V)| (-p)
where p € P

2.1.2 What does the above mean with ::=, etc?

Define the following sets, parameterized by i € N:
So=P

Sivt =S; U{(¢V phi’) | ¢,¢" € Si} U{(=¢) | ¢ € S}

11

12 2 Propositional Logic

S=USi

ieN

Now set S to be:

Note that the above is an infinite union. You can think of S as the set Sy U S; U
S> U Or think of S as the set of elements e such that there is some i € N such
that e € §;:

S={e|JieN.ecS;}

In any case, S is well-defined as a set. This set S of expressions is what the grammar
defines. Each S; denotes the expressions that can be derived by the grammar in i
steps. And the set of expressions are those that can be derived in some finite number
of steps.

Given the above meaning, it’s natural to prove properties about the set of expres-
sions S using induction on i. More precisely, if we want to show a property P is true
about S, then we:

» Establish P to be true for every expression in Sp.
» Foreveryi > 0, we assume that P holds for every expression in S;_; and prove it
holds for all expressions in S;.

The above is clearly a valid proof that P holds on §;, for every i € N, and hence P
holds on every expression in S.

2.1.2.1 Aside: Other ways to define the set

Another way to define the set defined by the grammar is that it is the smallest set T
that satisfies the following properties:

(a) T contains p, for every p € P,
(b) If ¢ and ¢’ belong to T (they need not be different, of course), then so does

(¢ V'), and
(¢c) If ¢ belongs to T, then so does (—¢).

Why is the above well-defined? In other words, why is there a unique single
minimal set that satisfies the above conditions? Remember, sets can be incomparable
(with respect to the C relation).

First, is there even one set that satisfies it? Sure, take all possible “strings”
involving propositions, and the symbols “(”, “)”, vV and —... that surely satisfies all
the conditions, trivially! Second, why should there be a smallest? Well, first convince
yourself that if a set of sets satisfy the above conditions, then the intersection will
satisfy the conditions as well. (Why?) Clearly, the intersection of all sets that satisfy
the conditions is a set that satisfies the conditions and is also the smallest set (with
respect to inclusion). So the “smallest set satisfying the conditions” exists and is
unique. That is why it is well-defined. There is a minimal set satisfying the above
conditions and there is only one minimal set satisfying the above conditions.

Let us give a formal proof that the smallest set 7" as defined above is in fact the set
of expressions S defined using the sets S;. In other words, let us prove that S satisfies

2.1 Propositional Logic 13

the required properties and is also the smallest set amongst all sets that satisfy the
required properties.

First, let us show that § satisfies the required properties. Observe that for any 7,
S; € Si+1, since the definition of S;,; explicitly includes S;. Hence the sets increase
with index, and hence S; C §; for any i < j (we won’t prove this formally here; but
you should! Use induction.). Now,

* Note that for any p € P, p € Sy, and hence p € S.

* Next, assume «, 8 € S. Then it must be the case that @ € S; and g € §; for some
i,j € N. Let k = max(i,). Then Sy includes both @ and 8. Hence Sy, will
contain (@ V B). Hence (a V B) € S.

¢ Now, assume @ € S. Then a € S;, for some i € N. Hence (-a) € S;,;. Hence
(ﬂa') es.

QED.

Now let us prove that S is the minimal set that satisfies the required properties.
Let U be any set that satisfies the required properties. We want to prove that S C U.
We will prove by induction on i that S; C T for every i € N. This clearly establishes
that S C U.

The base case is when i = 0. Clearly So = $ C U since U is required to contain
. Now, for the induction step. Let i € N and i > 0. The induction hypothesis is that
S; € U forany j < t. Now, let ¢ € S; be an arbitrary element int S;. Then there
are three cases, by the definition of S;. The first is that ¢ € S;_;: then clearly by the
induction hypothesis, ¢ € U. The second case is that ¢ = (a V 8), where @, B € S;.
Then, again by induction hypothesis, @, 8 € U. But since U satisfies the required
properties, (@ V 8) € U, i.e., ¢ € U. The third case is when ¢ = (—=a), where @ € S;.
By the induction hypothesis, @ € U. Since U satisfies the required closure property
with respec to -, ¢ = (=) € U. QED.

The above show that S, as defined above, exists, satisfies the required properties,
and is the least set satisfying the required properties. Hence the two definitions, S
and 7, coincide. You can easily generalize this argument to any formal grammar (not
just context-free grammars).

In general, if one defines a set as the smallest set S that satisfies conditions of the
form “if these elements belong to S than these other elements must belong to S,
then the smallest set is well-defined. But if you have conditions also saying “if these
elements belong to S, these elements should rot belong to S,” then that may not be
a well-defined set.

Further notes: (okay to ignore for now

The above way of defining sets or other thingamies recursively is very useful in

computer science, in general. Reasoning about these sets/thingamies is done naturally

using some form of induction. In fact, the reason why induction is useful in computer

science is perhaps because many interesting classes can be defined using recursion.
Here are some other recursive definitions:

14 2 Propositional Logic

* Consider the operational semantics of a program— which states/configurations
can a program reach? This set is best defined recursively. It is the smallest set .S
of states such that (a) S contains the initial states of the program, and (b) if a state
s is in S and the program can transition in one step from s to s’, then s’ € S.

» Consider lists. Lists support a cons operator that constructs an element onto a list
(adds the element as the first element of the list). Lists over the elements E can
then be defined as the smallest set S such that (a) S contains Nil, the empty list,
and (b) if / € S and e € E, then cons(e,) is in S as well.

e The set of natural numbers can itself be defined recursively. Let us denote by
succ, the successor function (intuitively, given a number n, its successor is the
next number, i.e., n + 1; however, this interpretation is only in our minds; succ is
just some function). Then the set of natural numbers is the smallest set S such
that (a) S contains 0, and (b) for every n € S, succ(n) belongs to S as well.

Indeed, the induction proof technique is heavily used to prove properties of all the
above objects. For example, when showing a program does not throw an exception,
one needs to prove that all reachable states of the program are states where exceptions
don’t happen, and we prove these typically in program verification using induction.

There are more general ways of defining sets or other thingamies such that there
is a notion of “least” set/thingamie always exists, and hence gives a well-defined
definition. One way we will see later is the notion of monotonic functions on a
lattice, which always have least fixpoints, due to a general theorem called the Tarski-
Knaster theorem.

The reason the former always gives a well-defined set is because the conditions
can be seen as “monotonic functions” and a general theorem, called the Tarski-
Knaster theorem, which says that least fixpoints always exist. We will return to such
a concept later in the course.

The above is the reason why we define grammars in computer science using the
above notation. The Backus-Naur Form (BNF) is often used in computer science
to give well-formed expressions (like all well-formed programs in a programming
language). These ways of defining grammars go back to Panini, who defined it for
Sanskrit, in 5th century BCE!

Note that the grammar could have said (¢ V ¢), instead of (¢ V ¢’); that will still
define the same set. Just because we repeat ¢ doesn’t mean that it must be the same.
In formal context free grammars, ¢ is a nonterminal generating a language.

2.2 Some definitions and theorems

Fix a set of propositions # (finite or countably infinite).

A model or valuation is a function v : P — {T, F}.

The notion of whether a formular ¢ holds in a model/valuation v is denoted v = ¢.
(And v [£ ¢ denotes that the formula ¢ does not hold under the valuation v). This
notion is the natural one you know, and is defined formally as follows, recursively:

2.3 Compactness Theorem 15

e v Epiffv(p) =T, forany p € P
e vE(avp)iffviraorv ER
e vE-aiffvEa

Satisfiability and Validity:

A formula « is said to be satisfiable if there is some valuation v such that v = a.

A formula « is said to be valid if for every valuation v, v | @ holds. We write
E a to denote « is valid.

The following is easy to see:

Lemma 2.1 A formula « is valid iff —« is not satisfiable.
Also, of course, a formula « is satisfiable iff —« is not valid.

Two formulas @ and § are said to be equivalent, denoted @ = G, if for every
valuation v, v E a iff v | S.

Relevance Lemma:

The relevance lemma says that whether ¢ holds under a valuation depends only on
how the valuation maps the propositions that occur in the formula. This is intuitively
obvious; surely, whether (p A ¢) V r holds is independent of whether the proposition
s is mapped to true/false.

Let us define this formally. Let’s first define which propositional occur in a
formula, recursively, as occ : F — 2% where F denotes the set of all well-formed
formulae:

* occ(p) ={p}
e occ((aV B)) =occ(a)Uocc(B)
e occ((—a)) = occ(a)

We can now state the relevance lemma:

Lemma 2.2 (Relevance Lemma) Let @ be a formula and let O = occ(a) be the set
of propositions that occur in it. Let v, v’ be two valuations such that for every p € O,

v(p) =v'(p). Then
vEa iff vV Ea

Proof Proof is fairly easy and is left as an exercise. Prove by induction on structure
of a. O

2.3 Compactness Theorem

Let S be a (finite or infinite) set of propositional formulas.

16 2 Propositional Logic

S is said to be satisfiable if there is a valuation v under which every formula in S
holds.

S is said to be finitely satisfiable if every finite subset T of S is satisfiable.

Note that if S is satisfiable, then it is, of course, finitely satisfiable. Is the converse
true? The compactness theorem says that it is!

Let us first show a lemma, which says that a finitely satisfiable set can always be
extended by a formula or its negation, and at least one of these will result in a finitely
satisfiable set.

Lemma 2.3 Let S be finitely satisfiable. Let a be any formula. Then either S U {a}
is finitely satisfiable or S U {—~a} is finitely satisfiable.

Proof Assume the contrary. Then S U {alpha} and S U {—a} are both not finitely
satisfiable. Since S U {a} is not finitely satisfiable, there is a finite subset U of S that
is unsatisfiable. Similarly, since S U { o} is not finitely satisfiable, there is a finite
subset V of S that is unsatisfiable. Now consider (U U V) \ {a, —~a}. Since UUV C §
and is finite and S is finitely satisfiable, U U V is satisfiable. Let v be a model that
satisfies U U V. Then either v |= @ or v |= —@ must hold. But this means that U is
satisfiable or V is satisfiable. Which contradicts our assumption for U and V. O

Note that the above does not say how we can determine whether S U {a} is
satisfiable or S U {—a} is finitely satisfiable. S can be infinite and deciding anyway
may not make sense. But we know one of these extensions is finitely satisfiable.

We now turn to proving the compactness theorem. Let S be a finitely satisfiable set.
We are going to grow S ever so slowly using propositions or negations of propositions
(which are both formulae), keeping it finitely satisfiable. Once we are done handling
every proposition, we would get an entire valuation for all propositions. We can then
argue that this valuation will satisfy every formula in S, and hence S is satisfiable.

Theorem 2.1 (Compactness of propositional logic) Let S be a set of formulas.
Then S is satisfiable iff S is finitely satisfiable.

Proof The direction showing that if S is satisfiable, then it is finitely satisfiable is
trivial: if S is satisfiable, then there is a valuation v such that all formulas in S are
true under v. Then clearly all finite subsets of S are also true under v, and hence each
such finite subset is satisfiable.

For the other direction, assume S is finitely satisfiable. We are going to build a
valuation v such that all formulas in S are satisfied under v.

Let us fix an enumeration of all propositions: pg, p1, p2, - . .; this is possible since
it is a countable set.

Now, let us define the sets X;, where i € N as follows.

Xo=S

X; = Xi—1 U {p;}, ifX; U{p;} is finitely satisfable

= X;_1 U {=p;}, otherwise

2.3 Compactness Theorem 17

Now let X = U;enX;.

First, we claim that each X; is finitely satisfiable, by induction. Xy = § is finitely
satisfiable. Let i > 0. Then if X;—; U {p;} is finitely satisfiable, then X; is equal to
this set, and is hence finitely satisfiable. If not, X; is set to X;_; U {—p;}, which is
finitely satisfiable by the lemma we proved above (since X;_; is finitely satisfiable
and X;_; U {p;} is not finitely satisfiable.

Second, we claim that X is also finitely satisfiable. Here’s a proof. Let U be a
finite subset of X. Then since each X; is a subset of X;,, and since every element
of U occurs first in some X, we can take the maximum of such indices to argue
that there is some k such that U € Xi. Since Xy is finitely satisfiable (by claim we
proved above), U is finitely satisfiable as well.

We are now ready to pull out the valuation v using X. First, notice that for any p,
both p and —p cannot belong to X (otherwise X won’t be finitely satisfiable). Also,
for any p, either p or —p must belong to X (since at step i, we decided to throw
either p or —p into X;). So we simply have v assign p to true or false depending on
whether p or —p is in X, respectively:

vip) =T iff peX

We are now going to show that v satisfies every formulain S. Let @ € S. Let Q be
the finite set of propositions that occur in @. Let j € N be a large enough index such
that all propositions in Q have been considered when building the X,,, sets. More
precisely, let Q = {p,,, ... pr, }. Then choose j = max{ry,...,rn}.

Let R=(XNQO)U(XN{~qg | g € Q}. In other words, R gathers, for each
propositions in Q, either g or —q, depending on which occurs in X.

Now consider R U {a}. Then R U {a} C X and is finite. Hence R is satisfiable.
Let v’ be some valuation that satisfies R U {a}. But then v/ must map a proposition
qinQ to true iff ¢ € R iff ¢ € X. Hence v’ agrees with v on all propositions in Q.
Hence, by the Relavance Lemma, since a holds under v/, @ holds under v as well. So
we have shown that every formula in § is satisfied under v. Hence S is satisfiable. O

One of the powers of the compactness theorem is that we can apply it when
interpreting every proposition in some way in our head. It roughly says that if we
can formulate a set of propositions (with their true meaning only in our minds) but
capture the relationships between these propositions as an infinite set of propositional
formulae, and if every finite subset is satisfiable then the whole set is satisfiable.

We will apply the compactness theorem in various ways. In one exercise, we will
show that all infinite planar graphs are 4-colorable because every finite planar graph
is 4-colorable. And when dealing with FOL, we will prove crucial theorems there
using the compactness theorem for propositional logic, interpreting propositions as
more complex things in the FO world.

I encourage you to also see the Madhavan-Suresh notes for a proof of compactness
theorem using Konig’s Lemma. It is essentially the same proof, but presented using
a different vocabulary that is worth following.

We can prove a corollary that is important to understand.

18 2 Propositional Logic

For a set of formulas I" (I" can be infinite), we say I" entails a formula «, denoted
I' | a, if for every valuation v such that all formulas in I" hold under v, « also holds
under v.

Note that if I is finite, I" £ a is equivalent to saying (\ger) = « is valid. But
when I is infinite, we can write such a formula as it would be infinite. Also note that
I' E aiff T U {=a} is not satisfiable.

We can now show:

Corollary 2.1 Let T" be a set of formulas and T |= a. Then there is a finite subset
S C I' such that S [a.

Proof LetT' = a. Then I' U {—a} is not satisfiable. By compactness theorem, there
is a finite subset §” of I'U {—a} that is not satisfiable. Let S = S\ {—a}. Then S C T’
and S U {—a} is not satisfiable. But then S = « holds.! O

2.4 Resolution

The material in this section is essentially taken from Uwe Schoning’s book “Logic
for Computer Scientists”, Chapter 1, Section 1.5. Mild modifications were done. We
refer the reader to the above source for a more elaborate introduction to resolution.

Resolution is a mechanical procedure to prove unsatisfiability of propositional
formulas. To prove a propositional formula @ valid, we can take —« and prove it
to be unsatisfiable using resolution. Hence resolution is a mechanical procedure for
validity as well. Instead of traditional proof systems that work directly in showing
validity, resolution works by refutation— showing that the negation of the formula is
not satisfiable. As we will see, resolution is also a complete procedure— if a formula
is unsatisfiable, there is a proof of its unsatisfiability given as a resolution proof.

Given a formula « that we want to show unsatisfiable, we first convert it to CNF
form. We skip details of how to convert to CNF form— see a standard textbook for
this. Note that in practice, it’s best to convert « to an equisatisfiable (not necesarily
equivalent) formula @’ in CNF form so that there is only a polynomial size blow-up
(this is called Tseitin’s construction; again look this up).

We now assume that « is in CNF form, i.e., of the form

CiNnCANCy,
where each C; is of the form
LiVvLV Lri

where each L is a literal-i.e., either a proposition (p) or a negation of a proposition
(=p).

It will be convenient to express CNF formulas as a set of sets of literals. A set of
sets of literals of the form

! Note that this proof works even when —« is not in S’

2.4 Resolution 19

{{p.—q,r}. {r,s,=p}}
represents the formula
(pV=gVr)A(FrVsV-p)

. It should be clear that any formula in CNF can be represented this way, and any

such set of sets of literals corresponds to a CNF formula. Note that the order or

multiplicity of elements in the sets do not matter (as they are sets) and this makes

sense because disjunctions and conjunctions are associative and commutative.
More generally, we represent a formula in CNF as a set of sets of literals:

(Lyy V... Ll,nl) ALy V.. .Lg,nz) A(Lg1 V.. ~L1,nk)

The sets of literals that make up the outer set are called clauses. For instance
{p,—q,r} is a clause in the example given earlier.

For a literal I, let [denote the negation of / obtained by negating [if [is a
proposition, or removing the negation from it if it’s a negated proposition. In other
words, p = —p and =p = p.

Definition 2.1 (Resolvent) Let C and C’ be two clauses. The clause R is said to be
aresolvent of C and C’ if there is a literal / such that/ € C, ! € C’ and

R=(C\{I})u(C'\{I}

Note that two clauses can have multiple resolvents (depending on which literal
you choose to resolve with respect to). Also, note that R can be empty. The empty
clause is an empty disjunction, which is equivalent to false. (Think of a clause as
saying that one of the literals in it must be true; then if the clause is empty, then the
clause can never be satisfied; hence it is equivalent to false. We denote the empty
clause by .

Lemma 2.4 (Resolution Lemma) Let F' be a set of clauses. Let R be a resolvent of
two clauses in F (need not be different clauses). Then F is equivalent to F U {R}.

Proof Let v be a valuation. If v | F U R, then clearly v = F.

Now assume that v = F. Let R be obtained by resolving C and C’ with respect to
aliteral /, where [€ C and [€ C’. We have to argue that v satisfies some literal in R.
Now either v =l or v |£ =l If v | [, then since v makes C” true, it must make some
literal in C” \ {I} true (as it cannot make [true), and hence makes R true. Similarly,
if v [= I, then since v makes C true, it must make some literal in C \ {/} true, and
hence makes R true. O

Definition 2.2 Let F be a set of clauses. Then
Res(F) = FU{R | R is a resolvent of two clauses in F

Also,

20 2 Propositional Logic

Res’(F)=F
Res"" ' (F) = Res(Res" (F))
Res*(F) = U Res" (F)

neN

Theorem 2.2 (Resolution Theorem for Propositional Logic (finite)) A finite set of
clauses F is unsatisfiable iff O € Res*(F).

Proof Let 0 € Res*(F). Then O € Res"(F) for some n. However, note by Res-
olution Lemma that adding resolvents keep the formula equivalent. Hence F is
equivalence to Res|, Res, ... Res,. But clearly Res,, is unsatisfiable as it contains
the empty clause O. So F is unsatisfiable.

The other direction is much more involved. Let F be unsatisfiable. We have to
show that O is in Res™, i.e., O is in Res;, for some i. Let us prove this by induction
on the number of proposition symbols mentioned in F.

Base case: When n = 0, F must be {0}, but then O € Res*(F). Note that F
cannot be 0 as then it is satisfiable.

Induction step: Let n > 0 be an arbitrary positive integer. Let F be a formula
over n propositions, say {pi, ..., pn}. We assume the induction hypothesis, which
is that for any formula G over r propositions, for any r < n, which is unsatisfiable,
O € Res*(G).

Now, we first remove trivial clauses from F to get F’. A clause is trivial if it
contains both a proposition and its negation. Note that such clauses are satisfied
trivially by all valuations. It is easy to see that F is satisfiable iff F’ is satisfiable. So
we work with F’.

We now construct two subsets of F’. The first subset Fj is obtained by taking
only clauses in F’ that do not contain —p,,, and then removing p, from each of
those clauses (if it exists). The second subset F is similarly obtained by taking only
clauses in F’ that do not contain p,, and then removing —p,, from each of those
clauses (if it exists).

(Note: There could be clauses that neither have p,, or —p,. These clauses are
unaffected and are included in both Fy and F;).

Intuitively, Fy depicts the formula where we have made the decision to set p, to
false. Any clause that have —p,, is satisfied, and hence is removed. The clauses that
have p,, can be satisfied by only satisfying one of the other literals in the clause; hence
we remove p, from these clauses. Similarly, F; represents the formula obtained after
making the decision to set p,, to true.

In fact, Fyy and F; both must be unsatisfiable. If F;, were satisfiable, we can extend
a satisfying valuation for F{ by mapping p,, to false, and satisfy F. Similarly, F; is
also unsatisfiable.

Since Fp and F; are formulas that do not mention p,, they mention strictly
less than n propositions, and hence we can apply the induction hypothesis. Hence
Res*(Fy) and Res*(F)) both contain O.

This means there is a sequence of clauses Cy, . . ., Cy, such that each C; is in Fy or
is a resolvent of clauses C, and Cj, with a, b < i. We can add the literal p, back to

2.4 Resolution 21

all the clauses that had them to obtain a sequence of clauses resolved using clauses
in F. This will result in a final clause that is either O or {p,, }.

There is a similar sequence of clauses for F, and adding —p,, back to the clauses
where we had removed them results again in a sequence of clauses resolved from F
that yields a final clause that is either O or {-p,}.

If either of the above sequences yielded O, we are done, as then 0O does belong to
Res*(F). If the sequences yielded, p,, and —p,,, then we can stitch the two sequences
one after the other, and then resolve the clauses {p,, } and {=p,,} to obtain O, showing
O € Res*(F). O

The above suggests the following resolution proof procedure. Letres(F, C,C’, p),
where C,C’ € F, p € C, —p € C denote F U {R}, where r is obtained by resolving
C and C’ with respectto p (i.e., R=(C\ {p}) U (C"\ {-p})).

Input: a formula F in CNF
Algorithm:

—_—

while (00 ¢ F and there is C,C' € F, p € P, p € C, -p € C’ and
Res(F,C,C’,p) ¢ F {

2 Pick sucha C,C’, p

3 F :=Res(F,C,C’, p);

4.}

5. If O € F then return “unsat” else return “sat”

The above procedure nondeterministically picks a pair of clauses that can be
resolved to get a new clause, and adds this new clause to the current formula, till
either O is derived or the set stabilizes. Note that there are “only” 4" clauses, and
hence the algorithm must terminate eventually.

We can also prove an analog of the resolution theorem for infinite sets of clauses.

Theorem 2.3 (Resolution Theorem for Propositional Logic (infinite)) A ser of
clauses F is unsatisfiable iff O € Res™(F).

Proof Showing that if 0 € Res*(F), then F is unsatisfiable is easy, similar to the
earlier theorem.

Now, assume that F is unsatisfiable. By compactness theorem, we know that
there is a finite subset G C F that is already unsatisfiable. Consequently, using the
previous theorem, O € Res*(G). But Res*(G) C Res*(F). SoO € Res*(F). O

Chapter 3
Quantifier Elimination and Decidability

3.1 Quantifiier Elimination

Fix a signature and the first order logic L over this signature. Let C be a nonempty
class of structures. The class could consist of just a single structure, like (R, <) or a
class of structures, like all dense linear orders without a max/min element.

We say that L over C admits quantifier elimination if for every formula ¢(x),
there is a quantifier free formula ¢*(x) such that ¢ and ¢* are equivalent over all
structures in C, i.e., for every model M € C and every interpretation s, M, s = ¢ iff
M,s E ¢

Note that we do not say above that ¢* be computable from ¢, but this will often
be the case when L admits quantifier elimination. Notice that we require the above
for formulas, not just sentences. A formula ¢(x) can be seen as a property that
identifies a subset of vectors of elements in a model, and the above demands that the
quantifier-free formula ¢* capture the same subset of vectors.

For example, consider the formula 3x. a - x - x + b - x + ¢ = 0, over reals with
addition and multiplication, where a, b, ¢, x are variables. Then the above formula
identifies the triples (a, b, ¢) such that a (non-imaginary) real root of the equation
ax* + bx + ¢ exists. Then an equivalent quantifier-free formula that identifies the
same set of triples would be b - b —4 - a - ¢ > 0 (which we know from school algebra
on roots of a quadratic equation).

If L over a class C admits (effective) quantifier elimination and if we can decide
formulas quantifier-free formulas without any variables (i.e., terms are built only
from constants), then this leads to a decidability procedure for sentences. Given a
sentence, we can find the equivalent quantifier free formula (which won’t have free
variables, and hence have no variables) equivalent to it, and check to see if it is true
over the class of models. Since it is often true that quantifier elimination is effective
and that deciding sentences without quantifiers is often decidable, it is often the case
that a logic L over a class C admits quantifier instantiation implies decidability of
validity of the logic L over the class of structures C.

23

24 3 Quantifier Elimination and Decidability
Eliminating one quantifier

It is easy to see that if for every formula of the form Jx.¢(x, y), where ¢ is quantifier-
free, there is a quantifier-free formula ¢*(y) that is equivalent to it over all structures
in C, then L over C admits quantifier instantiation. The reason for this is that we can
take any formula, express V quantification using 3 and negation, and starting with the
innermost quantified formulas, systematically eliminate one quantifier at a time in
order to eliminate all quantifiers. Hence eliminating formulas with a single existential
quantifier is all that is needed to show that a logic admits quantifier elimination.

Dealing only with conjunctions of literals

We can make one more simplifying assumption, if convenient. We can assume
that when doing quantifier elimination of a formula Jx.¢, ¢ is a conjunction of
literals, i.e., a conjunction of atomic formulas or their negation. The reason is that
for any arbitrary formula 3x.y, where ¥ is quantifier-free, we can always treat it as a
Boolean formula over atomic formulas, and write it in disjunctive normal form. Then,
we notice that 3 quantifier distributes over disjunctions, and hence we can write the
formula as a disjunction of formulae of the form 3x.C, where C is a conjunction of
literals. If we can do quantifier elimination on such formulae, we can simply do this
for each disjunct to obtain a quantifier-free formula.

3.2 Dense Linear Orders without Endpoints

In this section, we will show that FOL over the particular model (R, <,=) admits
quantifier elimination.

When doing the proof that it admits quantifier elimination, we will use the fol-
lowing properties about this particular model, which themselves can be formulated
in FOL (we call these the DLOWE axioms):

e < is a strict partial order:
< is irreflexive:
Vx,y:=(x <x)

< is asymmetric:
Ve, y:(x<y) = =(y<x)

< is transitive:
Vx,y,2: (x<y)A(y<2)) = (x<2)

e < istotal:

Vx,y: (x <yVx=yVy<ux)

* The ordering is dense:

3.2 Dense Linear Orders without Endpoints 25
Vi, y.(x <y=>3Jz.(x <zAZ<Y))
* There are no minimum or maximum elements (no endpoints):
Vx3dy.x <y

Vx3dy.y<x

It turns out that when proving that the reals with < admits quantifier elimination,
we will use only the above properties about (R, <). Consequently, it turns out that the
decision procedure we build is a decision procedure for any structure that satisfies
the above axioms. Since this decision procedure clearly defines a set of sentences
(those that it says are the only ones that are true in the model (R, <) and hence the
others are false), it follows that any structure that satisfies the above axioms must
satisfy the same set of sentences that (R, <) satisfies. For instance, the structure
(Q, <) satisfies all the axioms above and hence has the same theory as reals with <.

Consequently, the theory of any structure with a < relation that satisfies the above
axioms is fixed and is (negation) complete— i.e., any sentence either holds in all the
structures or holds in none of them. No first-order logic formula (over this signature
involving < and = only) can distinguish between any two structures that satisfy the
axioms (like rationals and reals).

Two structures that have the same first-order theory are called elementary equiv-
alent. Once we show quantifier elimination, we would have shown that (Q, <) and
(R, <) are elementary equivalent.

In general, for any infinite structure S, it will always be the case that there is
a different (non-isomorphic) structure S’ that will have the same theory as S (we
will prove this later). So it is good to start understanding that FO cannot distinguish
between structures well enough and there are always alternate structures that satisfy
the same properties that one structure satisfies.

Quantifier Elimination for DLOWE

We briefly give the steps for eliminating the quantifier in a formula of the form
Ax.¢(x,y), where ¢ is quantifier-free, and is a conjunction of literals.

First, note that since there are no functions, atomic formulas are of the form ¢ < ¢’
and ¢ = ¢’ only, where #,¢" are variables. We can get rid of negations, by rewriting
negated atomic formulae:

—(t<t)=(@=t'Vt <r)

(t=t)=(@<t'Vt <1)

We can do this first, before converting to DNF, etc. Hence we can assume ¢ is a
conjunction of atomic formulae only.

26 3 Quantifier Elimination and Decidability

We can also assume, without loss of generality, that all the atomic formulae in ¢
involve x. After all, if an atomic formula does not involve x, it can be “pulled” out
of the quantification as a separation conjunct, for example:

Ix.(y1 < y2AY) =y1 <y2 AJxy

Also, if there is a conjunct of the form x < x, then clearly the formula is equivalent
to false, and we are done eliminating quantifiers (we can write false as say 0 < 0).

So let us assume ¢ is a set of conjunctions of atomic formulae, each being of the
formx =t x <t,andx > t.

The first case is when ¢ has a conjunct of the form x = ¢. In this case, we can
clearly substitute x with ¢, as it is the only way to satisfy the formula, and we are
done.

Fx. (x=1Apx,y) = ¢[t/x]()

The remaining case is when there are no conjuncts of the form x = 7 in ¢, and
hence varphi consists only of atomic formulas of the kind # < x and x < ¢. Let L
be the set of terms ¢ such that ¢ < x occurs in the formula and U be the set of terms
such that x < u occurs in the formula. Then there is some x satisfying the constraints
iff every term in L is less than every term in U. Clearly this condition is necessary
as the formula demands it. It is also sufficient: When L and U are nonempty, it is
also sufficient since if the condition is satisfied, we can pick x between the “largest”
element in L and the “smallest” element in U, since the order is dense. Note that if
L is empty and U is nonempty, then the condition doesn’t demand anything (i.e., it
is true, which can be written as 0 = 0). And this condition is sufficient too as we
can pick x to be something smaller than all elements in U, as there is no minimal
element. Similarly, the condition is sufficient when L is nonempty and U is empty.
We can summarize the elimination as:

T.(/\(t<x)/\ N@<t)) = /\ (t <1

teL t'eU teL,t’eU

with the understanding that the empty set of conjuncts is written as 0 = 0 (synony-
mous for true).

The above finishes the proof that the theory of (R, 0, <, =) admits quantifier elim-
ination. Since the quantifier elimination is constructive, and since quantifier-free
variable-free (grounded) formulas can be checked (they are just Boolean combina-
tions of atomic formulas of the kind 0 < 0 and 0 = 0)), it follows that checking
whether a formula is valid is decidable. Since we followed only the axioms of
DLOWE, it follows that the same procedure decides the theory of all linear orders
without end-points.

Theorem 3.1 The first-order logic over (R, 0, <,=) admits quantifier elimination.
The first-order logic over dense linear orders admits quantifier elimination using the
same elimination procedure. Their theories are hence decidable and identical. The
theory of (Q, 0, <, =) is hence also identical and decidable.

3.3 Quantifier Elimination for rationals with addition: (Q, 0, 1, +, —, <, =) 27

The complexity of the procedure is quite high. Eliminating one quantifier causes
a quadratic blowup in the formula. However, when m quantifiers are eliminated, this
results in a formula possibly of size O(n>"), which is doubly exponential in the
number of quantifiers.

3.3 Quantifier Elimination for rationals with addition:
(@9 0, 1, +, =<, =)

See book Calculus of Computation, Section 7.3.

The technique is by Ferrante and Rackoff. The technique does not require to put
the quantified formula in disjunctive normal form, but works directly on Boolean
combinations.

Briefly:

Step 1. Given 3x.¢(x, y), put it in negation normal form (NNF), where ¢ is expressed
as a postive Boolean combination of atomic formulae and negations of atomic
formulae. Note that atomic formulae are of the form s < ¢ or s = ¢, where s,¢ are
terms involving constants, variables, and combinations using +, i.e., they are linear
expressions.

Step 2. Replace literals with equivalent formulae that do not have negation:

—(s<t)=(s=tVs>t)

“(s=t)=(s<tVt<ys)

Step 3. “Solve for x” in each term. Write each atomic formula in the form x < a,
b < x, or x = c. You may have to use division by constants (this will be temporary
and get removed in the end) to do this.

Key Idea: We now come to the key idea. Think of the terms involved in the
various atomic formulas above (of the kind a, b, c) above. Let S be the set of such
terms (they don’t involve x). Depending on the valuation of the free variables Y,
the terms will be some rational numbers; think of them on the rational “number
line”. Now, x can be any rational number, but if two terms #; and #, evaluate to two
“consecutive” values on the number line, it doesn’t matter which value of x we pick
in between 7| and f5... all of them will make the atomic formulas evaluate the same
way. So we can just pick (¢ + £2) /2. Now, we don’t know what order the terms will
evaluate. But we can simply instantiate x to (¢ +t’)/2 for every pair of terms t,1’.
(We do this also for the pair of terms ¢, # as well— which will just instantiate x by ¢;
this will cover x being precisely equal to one of the terms).

To cover the range of rationals less than all the terms, we can instantiate x to
something smaller than all the terms. But instead of doing this as an instantiation,
we just imagine instantiating x to some large negative value, and see how atomic
formulas will evaluate. Clearly, atomic formulas of the form x < a will evaluate to

28 3 Quantifier Elimination and Decidability

true, x = t will evaluate to false, and x > ¢ will evaluate to false. So we can replace
the atomic formulas by these values, and get a formula F_.

Similarly, to cover the range of rationals larger than all the terms, we pretend
instantiating x to a value much larger than the values of all the terms. The atomic
formulas x > ¢ evaluate to true, and the formulas of the form x = ¢ and x < ¢ evaluate
to false. Replacing these gives the formula F.

We then take the disjunction of all the above formulas to eliminate x.

Step 4. Let the current formula be 3x.F3 Let S be the set of terms not involving x in
the formula.

Let F_. be the formula by replacing each atomic formula of the form x < a by
true, and the atomic formulae of the form x = » and x > ¢ by false.

Let F. be the formula by replacing each atomic formula of the form x > ¢ by
true, and the atomic formulae of the form x = b and x < a by false.

The quantifier-eliminated formula is now:

FeoV Fio Vv \/ Fs[(s+1)/2] x]

s,t€S

The above formula is quantifier-free and equivalent to the original formula on
Q. You can now rewrite the above by multpiplying by constants to use only integer
constants, and integers can be written using an arithmetic expressions over 0 and 1.

A note of axiomatization of rationals with addition.::

One can ask, similar to dense linear orders without endpoints, whether we can
formulate a set of axioms that capture the properties of rationals with addition that
we are utilizing in order to do quantifier elimination. One can indeed formulate such
a set of axioms, and this set of axioms would hence capture the theoru of rationals
with addition completely. However, this needs to be carefully done.

The book Calculus of Computation referred to here does quantifier elimination
and, in parallel, gives a set of axioms for rationals with addition. However, the book
does not actually prove the axioms are precisely the properties that are used when
doing quantifier elimination. Hence it does not in any way show that the axioms
presented are complete. (In fact, the axioms presented are clearly not complete as
they do not capture any property of the constant 1). The book, unfortulately, seems
to suggest that the axiom system and the quantifier elimination are linked, and hence
that the axioms are complete. While one can see how this can be done (for a mildly
modified axiom system), such an argument or proof is not presented in the book.

Example 3.1 Let’s illustrate with a simple example.
Consider the formula:

p:Vy.(0<x=1<x+Yy)

3.3 Quantifier Elimination for rationals with addition: (Q, 0, 1, +, —, <, =) 29

The above formula is a formula with a single free variable y, and it is easy to see
that the formula holds for a particular interpretation of y iff y > 1. Hence we expect
our quantifier eliminated formula to be equivalent to y > 1.

The formula can be written as:

-FI-0<x=>1<x+y)
Let’s take the inner formula
Y. -(0<x=>1<x+y)

and eliminate the quantifier.
Pushing negations in, we get the equivalent formula

Ax. (O<xA=(l <x+Yy))
which is equivalent to
dx. O<xA(l=x+yVvx+y<l1))

Writing it in a form where x is grouped alone, and coefficient 1, on one side of
every term,
. O<xA(x=1—-yVvx<l-y))

The F_ formula is (false A (false V true)) which is (Boolean) equivalent to false.

The F,. formula is (true A (false V false)) which is (Boolean) equivalent to false.

The terms in the formula that do not involve x are § = {0, 1 — y} So the formula
is equivalent to

\/ Filt+1)/2 /) x]

t,t’eS

which has the following disjuncts:
0<0A(0=1-yv0<l-y)
O0<l-yA(l-y=1-yVvi-y<l-y)
0<(O0+1=y)2A(0+1=y)2=1-yVv(O0+1-y)/2<1-y)
Writing them by removing division by constants gives the disjuncts:
0<0A(0=1-yVvO<l1-y)
O0<l-yA(l-y=1-yVvi-y<l-y)
0+0<0+1-yA(O0+1-y=1-y+1-yVO0+l-y<l-y+1-y)

We shouldn’t simplify further (in fact, we should include F_, and F. as well. But
notice that the first disjunct is equivalent to false, the second formula is equivalent to

30 3 Quantifier Elimination and Decidability

y < 1 and the third formula is equivalentto y < 1 A (y = 1 V y < 1, i.e., equivalent
toy < 1.

Going back to the original formula ¢, we need to negate the above formula which
gives the negation of the above fomulas as conjuncts:

“(0<0A(0=1-yVvO0O<l1-y))

“0<1-yA(l-y=1-yVi-y<1-y))
-(0+0<0+1-yA(0+1-y=1-y+1—-yVvO0+l-y<l-y+1-y))

The above is the quantifier-eliminated formula equivalent to ¢.
These conjuncts are semantically equivalent to true, y > 1 and y > 1. Hence the
conjunction is semantically equivalent to y > 1, which is what we expect.

3.4 The Theory of Reals with Addition

Let us consider the theory of reals with addition, i.e., the theory of the model
(R,0,1,+,—, <=). Now notice that when arguing why the quantifier elimination
procedure we described for rationals with addition above, we used properties that are
equally true for reals! Rewriting negated atomic formulas, the key idea of choosing
the average of every pair of terms and beyond the minimum and maximum evaluated
terms (F_. and F,), etc., are valid for reals too. Consequently, the quantifier-
elimination based decision procedure works equally well for the sentences in the
theory of reals with addition.

Now, if the same decision procedure works for deciding two theories, then surely
the theories must be the same! Hence Th(R,0,1,+,—, <,=) = Th(Q,0,1,+,—, <
,=). Note that this means that there is no first order sentence that can distinguish
between the two structures. If we had multiplication in our signature, the formula
dx.(x xx = 1 + 1) would be true over reals but not over rationals. However, with
only addition, reals and rationals are not distinguishable.

3.4.1 Aside: Axiomatizations

Again, we can ask whether the properties we used to do quantifier elimination for
rationals/reals with addition can be codified as a set of first order axioms. Again, this
is largely possible. The book Calculus of Computation gives such an axiomatization
(see Chapter 3) and suggests that the quantifier elimination procedure is for the
theory of this axiomatization (as opposed to the true theory of rationals); but the
proofs later do not really show this.

In general, it is true however that for theories of a single structure (or a class
of structures whose theory is negation complete, i.e., for any sentence «, either a

3.4 The Theory of Reals with Addition 31

or -« is in the theory), the notions of the existence of a recursive axiomatization
and decidability are synonymous. One direction is easy— if the theory is decidable,
we can simply take the theory itself as its recursive axiomatization (sounds like
we are cheating, but we are not). And if there is a recursive axiomatization for a
complete theory, it will follow, as we will show later (Godel’s strong completeness
theorem), that the membership problem is recursively enumerable, and hence by
simultaneously checking if @ or —e is in the theory, we can show the problem is
decidable.

3.4.2 Other theories that admit quantifier elimination

There are several other important theories that admit quantifier elimination.

First, the theory of integers with addition, often referred to as Presburger arith-
metic, is decidable; this theory is defined by the model (Z, 0, 1, +.—, < . =). However,
the first-order logic over this theory does not, by itself, admit quantifier elimination.
For example, one can show that there is no quantifier-free formula that is equivalent
to the formula 3x.x + x = y, which says y is even. However, we can extend the lan-
guage so that it admits quantifier elimination. We introduce predicates of the form
c|t, where c is a constant, to the logic. Then this extended logic does admit quantifier
elimination, and leads to a decision procedure. See Calculus of Computation.

Another important theory that admits quantifier elimination is the theory of reals
with addition and multiplication: (R, 0, 1, +, -, <,=). And is decidable! This theorem
is basically due to Tarski, and is called Tarski-Seidenberg theorem.

Chapter 4
Validity of FOL is undecidable and is r.e.-hard

In this chapter, we look at general FOL (over arbitrary signatures). We will first
consider the problem of checking if a formula is valid over all models, and show
this to be undecidable. In particular, we will show that validity is r.e.-hard. In a later
chapter, in what essentially constitutes proving Godel’s completeness theorem, we
will see that validity is a problem that is r.e.. So the validity problem is of the same
complexity of the halting problem. And there is a Turing machine that can print
out the list of all valid formulas. In fact, we will prove a stronger result that for any
recursive (decidable) set of axioms A, the theorems that are semantically entailed by
Aisr.e. (i.e., the set of sentences true in all models that satisfy the axioms A is r.e.).

The problem of checking validity of a first-order formula is referred to sometimes
as the classical decision problem [?] or the Entscheidungsproblem, and the problem
was popularized by David Hilbert (das Entscheidungsproblem, or the decision prob-
lem), in an attempt to lead towards the formalization of mathematics. However, what
computation meant was not clear then. These were resolved in 1936, when Church
postulated that a class of computable functions using recursion captures computabil-
ity, and proved that the classical decision problem was not solvable using this notion
of computability. A few months later, Alan Turing, in his paper that introduced Turing
machines (and started the field of theoretical computer science, or even computer
science), also examined the Entscheidungsproblem (mentioned in the title of the
paper), and showed validity of first-order logic is undecidable. Soon people realized
that the notions of computing defined by Turing and Church were the same (Turing
in fact showed equivalence in his paper), and the Church-Turing postulate was that
the notion of computability coincided with the notion of computability defined by
A-calculus and Turing machines. The undecidability of the Entscheidungsproblem is
credited now to both Church and Turing.

In this section, we will also look at the class of all finite models ¥, and show
that validity of formulas over all finite models is also undecidable. The reason we
do this proof now is that the proof is very similar, but with important differences. In
particular, we will show that over finite models, validity is co-r.e. hard, and hence
not r.e.. Consequently, there is no proof system that can prove all properties about all
finite models! This fundamental incompleteness result is easier to understand than

33

34 4 Validity of FOL is undecidable and is r.e.-hard

the incompleteness result for arithmetic which we will see later (i.e., Godel’s first
incompleteness theorem).

A note on functions and relations

In general, we could ask why we need both functions and relations in FOL. We could
for example encode functions as relations. Given a function symbol f, we could
introduce in its stead a relation symbol R, and demand that:

(a) for every x, there is a y such that R (x, y) holds, i.e.,
Vx.3y. Ry (x,y)
(b) foreveryx,y,and z,if Ry (x,y) and Ry (x, z) hold, then y = z, i.e.,

Vx,y,2.((Ry (x,y) ARy (x,2)) = y=12)

These two properties, formulated in FOL over the signature with Ry instead of
f, captures the property that Ry encodes a function. Furthermore, we can take
any formula involving f and translate it to one involving Ry — this would involve
quantifying over a variable for each term of the form f(¢) in the formula, and then
relating ¢ and this variable using Ry, etc., but it is possible. Consequently, many of
our results will not depend on the fact that the signature includes functions.

However, there are some cases where logics with relations are simpler to reason
with than logics with relations and functions. One case is when dealing with the logic
fragment that has only universal quantification. For instance, for this fragment, the
validity problem when there are only relation symbols is decidable, while the validity
problem in the presence of relation and function symbols (or only function symbols)
is undecidable. Note that there is no contradiction here as one of the formulas above
that capture Ry is a V3 formula.

4.1 Validity of FOL is r.e.-hard

Let us consider the problem of checking if a given sentence ¢ over a first-order
signature is valid, i.e., whether it is true in all models. For example, the sentence
(Vx.(p(x) = q(x))Ap(c)) = q(c) is avalid formula, where c is a constant symbol,
and p, g are unary predicates.

One may wonder first whether a sentence always has a finite model, if at all it has
a model. If this were true, then we could negate the sentence and try to find a finite
model for it, say by enumerating all finite models systematically, and perhaps hope
that there will be a bound. But it is easy to see that this is not true. In fact, as we will

4.1 Validity of FOL is r.e.-hard 35

see later, it is good news that finite models do not always exist, as when restricted to
finite models, validity is not even r.e.!

Consider the following formula involving a function symbol s and a constant
symbol 0.

(Vx.=(s(x) = 0)) A (Y, y.(s(x) = 5(y) = x =y))

The above says that the successor (s) of no element is 0, and that no element is the
successor of two different elements. In any model where this formula holds, it is easy
to see that s(0) must be different from O (since the successor of no element can be
0), s(s(0)) must be different from O (since the successor of no element can be 0 and
there can be only one element whose successor is s(0)). One can argue by induction
that for any i € N, 0,5(0),...,s'(0) must all be distinct elements. Consequently,
any satisfying model has to be infinite.

0 s s s
*-—>0—>0—>0—> ¢+ o o
We will use the “number line” created by the above formula crucially in our proof,
which will reduce the halting problem of Turing machines. However, we modify it
slightly so that we use a relation instead of a function.

Let s be a binary relation. Then we will, use the following three properties to
encode the infinite number line:

NLI : Vx.3y.s(x,y)
NL2 : Vx.Vy.Vz. ((s(x,y) As(x,2)) = y=2)
NL3 : Vx.=(s(x,0))
NL4 : Vx.Vy.Vz. ((s(x,2) As(y,2)) = x =)

The first two formulas demand that the relation s encodes a function. The second
two encode the requirement that ensure the element O, the element x; such that
s(0, x1) holds, the element x, such that s(x;,x2) holds, etc., are all different from
each other.

Aside: If we drop the requirement (NLI) above, then we get s is a partial function,
and we can see that the other conditions will still ensure distinctness of elements
successively related to 0. However, we could get a finite prefix of the number line
(i.e., we may not get infinitely many elements). We will use this for the second proof
showing that validity over finite models is undecidable as well. For the current proof,
however, it is important that the number line is infinite.

Proof of undecidability:

We will show that the halting problem for Turing machines reduces to the validity
problem for FOL. We will use the constants 0 and 1, and insist that 1 is the successor
of 0 using the following formula ¢y:

36 4 Validity of FOL is undecidable and is r.e.-hard
s(0,1)

Since we are going to only worry about whether a Turing machine halts on empty
input, let us denote a deterministic Turing machine as M = (Q, A, 9, qo,qn). Q is a
finite set of states, with gg € Q being the initial state, and g, be the halting state. I is
the finite tape alphabet, and the transition relation § : Q XI' — Q X' X {L, R}. Let
us also assume that all transitions from g go to state g, without loss of generality.

Let us assume that the states Q are {0,1,...,m} for some m € N, m > 0, and
assume the initial state is O and the halting state is 1. Let us also assume that the tape
symbols A are {0, ...,n}, for some n € N, n > 0. We assume 0 stands for the blank
symbol, and we assume 1 is a special symbol used to mark the left end of the tape—
the Turing machine can be assumed to have no rewrites of this symbol nor move left
when it reads it so that it never goes off the left end.

The Turing machine’s computation can be seen as an infinite (and unique) se-
quence of configurations Cy, Cy,...,Cy,... where C; is the configuration at time
t. Each configuration includes the content of the tape, the position of the head
on the tape, and the state the machine is in. We assume that the Turing machine
from the halting state, stays in the halting state, and hence this infinite sequence of
configurations always exists and is unique.

The crucial idea now is to encode the Turing machine’s computation as a model.
In this model, we will have the constant 0, and the s-related successory encode
(at least) the number line. So, intuitively, we have elements that encode all natural
numbers. We have two relations (over natural numbers):

e T(t,c,y) thatintuitively holds true iff at the #°th configuration in the computation,
the c’th cell contains the tape symbol y € I"

e H(t,c,q) thatintuitively holds true iff at the #’th configuration in the computation,
the head is pointing to cell ¢ and the TM is in state g € O

Let IsState(q) denote the formula that checks whether the number ¢ represents
a state, i.e., is O or one of the m — 1 successors of 0.

IsState(q) = (¢ = 0)VIx;.(s(0,x)A(x; = sVIxy. (s(x1,x2)A(x2 = sV.. . A(xp-1 = 5)))))

Similarly, let IsSymb(7y) denote the formula that checks whether y represents a tape
symbol, i.e., is 0 or one of the n — 1 successors of 0.
We hence will insist the conjunction of the following formulas (call this ¢):

Vt,c. Jy. (IsSymb(y) AT(t,c,y))

vt,c,y,y (T(t,c,y) AT(t,c,y')) = y=7y
Vt,3c. q. (IsState(q) AN H(t,c, q))
Vt,c,c’,q,q". (H(t,c,q) NH(t,c',q")) = (c=c"Ag=q")

The above formulas ensure that the relations 7 and H ensure that there is one and
only one symbol in any cell in any configuration at any time, and that at any time,

4.1 Validity of FOL is r.e.-hard 37

in the configuration at that time, the head points to some cell and only one cell, and
the TM is in some state and only one state.

We now have to demand that the sequences that 7 and H encode correspond to true
computations of the Turing machine. We do this by fixing the initial configuration
and restricting how the configurations progress.

e The first configuration is correct (call this formula ¢,):
H(0,1,0) AT(0,0,1) AVx.(x #0 = T(0,x,0)

The above says that the TM is in state O at time 0, with head pointing to cell 1.
And that in the first configuration, the first cell has the tape-symbol 1 (marking
the beginning of the tape), and the rest of the cells have blank symbols (0).

* The transitions of configurations are correct. Call this formula ¢3.
For each state g and each symbol y, where §(qg, y) is of the form (¢’,y’, R) (i.e.,
instructs the head to go right), we add the following conjunct:

Vet c. (s(t,t’) As(c,c’) AT (t,c,y) NH(t,c,q)) =

Tt ,c,yYNH(t',c',q") AYC". [=(c=c") = /\ T, c",y") © T(t, c",y”)))
y"”el

The above says that for every time ¢, successor time t’, every cell ¢, and the cell
to the right of it ¢’, if the TM has symbol vy in cell ¢ and time ¢ with head pointing
to cell ¢, then in the next configuration (at time ¢’), the cell ¢ has symbol y’, the
head points to ¢’, the state is ¢’, and every other cell other than ¢ has the same
content as it had in the previous configuration.

Similarly, for each state ¢ and symbol y € I" such that 6(g,y) is of the form
(¢q’,v’, L), we add the following conjunct:

Vet c. (s(t,t’) As(c’,c) AT(t,c,y) NH(t,c,q)) =

Tt e,y YNH(,c',q") AYC". [=(c=c")= /\ T, c",v"y e T(t,c”, s")))
y" el

We finally have to demand that the TM halts, which the following formula de-
mands:

@4 : 3t.3c. H(t,c,1)

Our final formula, whose validity captures the halting of the Turing machine M
on the empty tape, is:

Uapr o (NLLANL2ANL3ANLAA @o A1 A @ A @3) = ¢4

38 4 Validity of FOL is undecidable and is r.e.-hard

The above formula says that if NL1-NL4 and ¢ are true (i.e., we have 0 and
infinitely many distinct successors, modeling at least the natural numbers?, with 1
being successor of 0), and if the relations T and H encode the computation of the
TM correctly (¢1—¢3), then we are bound to find a halting configuration at some
time.

If the above formula yrp, is valid, then to show the Turing machine must halt,
consider the model where the universe is precisely N, with symbol O interpreted
as the number 0, and s(n,n’) holds iff n’ = n + 1. Then consider the relations T
and H interpreted so that they encode precisely the (infinite) fixed computation of
the Turing machine starting on the blank tape. Then the antecedent of 5, will be
satisfied by the model. Since the formula is valid, the consequent must be true, i.e.,
there is a finite time ¢ and a cell ¢ such that H (¢, ¢, 1) holds. From this we know that
the TM halts by the time 7.

Now for the other direction, which is easy except it involves a subtle point! Assume
that M halts. Then we have to prove that the formula i), is valid. Consider a model
that satisfies the antecedent of ;. We know that the model then must contain 0
and its successors defined by taking the s relation, as distinct elements, defining an
w-chain of elements isomorphic to N. Let this subset of the universe by U’. Note that
there can be elements that are in the universe that are not part of this chain. The only
way to encode the relations 7 and H on the elements involving U’ is to follow the
Turing machine’s computation. Since the Turing machine will halt, we know there
will be a time ¢t € U’ and cell ¢ € U’ such that H(¢, ¢, 1) will hold. So the formula
¢4 will hold in this model, making ¢ s also hold. Hence the formula is valid.

We have now proved what is called Church’s theorem:

Theorem 4.1 (Church) The validity problem for FOL is undecidable, and is in fact
r.e.-hard.

In fact, we have shown above that validity is undecidable even if there are only
three relation symbols and no function symbols. We can even strengthen the result
to a single relational symbol (model the three relations using a single relation that
has an additional component, which can be 0, 1, or 2, to encode the three relations in
one). One can also do the proof using no constant symbols (we can just existentially
quantify to get the element standing for 0). So it’s hard to find any reasonable
restrictions on the signature that has hope for having validity decidable. Also, if we
had one function symbol, we can still do the reduction.

Corollary 4.1 For any signature containing at least one relation symbol or one
function symbol, the validity problem for FOL is undecidable, and is r.e.-hard.

Note however that formula uses quantifiers and quantifier alternation. One could
ask whether there are restricted quantifier sequences that lead to decidability. A fairly
complete characterization of what is decidable and what is not is known (interested
readers are referred to the book “The Classical Decision Problem” by Borger, Gridel,
and Gurevich).

1 Maybe more! See notes later.

4.2 Trakhtenbrot’s theorem: Validity of FOL over finite models is undecidable, and co-r.e. hard39

Some subtleties of the reduction:

There is a subtle issue here worth noting. Though we have demanded that the s
successors of 0 form an infinite chain, we have not ensured that the model contains
just this chain. There could be elements in the universe that are not “reachable” by
any number of transitive relations to 0 (for example, we could have another infinite
two-way chain). If we had access in our logic to the reflexive and transitive closure sx
of s, then we could have insisted Vx.s = (0, x), and this would have not allowed such
models. However, FOL cannot express the transitive closure of a relation, and so we
cannot do the above. So you should go through the above proof carefully (the second
direction, in particular), and make sure it goes through even when such unreachable
elements are present.

Now, assume that we wanted to reduce the problem of whether the Turing machine
does not halt on the blank tape to FOL validity. Then the natural modification to
the above proof will not work. We could do the same constraints as above, and
demand, instead of ¢4, the formula Vt,c.—(H(t,c, 1)) to say that the TM does not
halt. However, the proof will fail. Consider a TM that doesn’t halt. Then we could
encode the TM’s computation faithfully using T and H on the infinite segment of
elements reachable from 0. But we could have another element not reachable from
0 using s() in finitely many steps, and have a model that maps H(t,c, 1) to be true
(we may have to engineer the elements s related to such t’s and c’s).

The above shows subtlety shows why it is not easy to reduce the co-r.e. hard
problem of non-halting of Turing machines to the validity problem for FOL. In fact,
validity is r.e., as we will prove later, and hence is not co-r.e.-hard, and such a
reduction just doesn’t exist.

The inability of ensuring that just O and its successors are in the model also
plays out when capturing the theory of arithmetic using axioms. We cannot ensure
this property; in fact, we cannot even ensure this using an infinite number of axioms!
Consequently, axiomatizations of number theory always include so-called “non-
standard” models of arithmetic.

4.2 Trakhtenbrot’s theorem: Validity of FOL over finite models
is undecidable, and co-r.e. hard

One important class of structures are finite structures. In computer science, especially,
many of the structures that we want to reason with are finite: graphs, data-structures,
relational databases, etc.

Given that the undecidability proof above crucially used infinite structures to
encode Turing machines, we could ask whether the validity problem becomes easier
if we consider only finite models.

The surprising and non-intuitive result here is that the validity problem becomes
harder when we consider finite models. Having to reason with finite models is a

40 4 Validity of FOL is undecidable and is r.e.-hard

curse, not a blessing! In fact, we are going to adapt the proof above to show that
validity of FOL is not just undecidable, but is co-r.e. hard, and hence not even r.e..

Note that the satisfiability problem for FOL on finite structures is indeed r.e.. Since
each finite model has a finite description, we can simply enumerate all finite models,
and check whether any of them satisfy the given formula, and stop if we find one
that does. Evaluating a formula on a finite model is also easy (though expensive!)—
it just considers examining all possible valuations for variables that are universally
quantified, searching for one possible valuation for variables that are existentially
quantified, and evaluating the inner quantifier-free formulas.

Theorem 4.2 The satisfiability problem for FOL over finite structures is recursively
enumerable.

So, assuming validity is undecidable for a logic, and hence so is satisfiability,
we cannot have both problems to be r.e. (as then the problems would become
decidable). It turns out that over all structures, validity is in r.e. and satisfiability is
co-r.e.-hard. And it turns out that over all finite structures, validity is co-r.e.-hard
while satisfiability is in r.e.. Hence if we want to prove theorems, reasoning about
infinite structures is in a sense easier— at least when theorems are true, we can build
machines that identify them as being true (and its computation can be thought of as
a proof of the theorem). But over finite structures, even valid statements need not
have proofs.

Proof of undecidability and co-r.e. hardness

Let us now prove that validity over finite models is undecidable. We will in fact
reduce the non-halting problem for Turing machines to validity of FOL over finite
models.

We will use similar ideas to the earlier proof. We remove NL1 from our formula
modeling that the TM halts, as NL1 with the other axioms forces infinite models.
Note that 0 and its s-related successors form a finite set of numbers, and we can still
encode finite executions of TMs.

However, since our models are finite, we can identify the last element in the
s-chain from 0, logically. Let us first demand the following property that says there
is one and only one element that has no successor:

Fx. ((Vy. =50 y) A (V2. (=(x = 2) = (Fy. 5(2,9)))))

Since the s-chain from 0 has to end in an element that has no successor (since the
model is finite), it follows that the maximal element in the chain is the element that
has no successor.

Without loss of generality, let us assume that the Turing machine resets its head
to the beginning of the tape when it halts (one can modify any TM to do this).

We keep the constraints the same as in the previous reduction, except the formula
¢4. Instead of saying that there is a configuration that halts, we replace it with the

4.2 Trakhtenbrot’s theorem: Validity of FOL over finite models is undecidable, and co-r.e. hard41
following formula ¢s5:
Vt. (Vy.(=s(t,y))) = —-H(t,0,1)

Note that there is in any computation, the number of cells used by the Turing
machine is at most the time it takes on it. So the cell numbers can be bounded by
the time take by the Turing machine. The above condition demands that for the last
element ¢ in the s-chain, the machine is not in the halting state.

We can show that the TM M does not halt iff the formula

(NL2ANL3ANLA A @1 A2 A 93) = @5

is valid over all finite models.

The proof is easy. If the TM halts, we can take a large a finite prefix of natural
numbers that at least as long as the number of steps the T M takes to halt, and encode
the TM’s computation faithfully, and show that the halting state is reached, and
hence the formula is not valid.

Conversely, if TM does not halt, then in any finite model that encodes the Turing
machine’s computation on the s-chain from O, the final element in the s-chain will
not be halting, and hence the formula will be true in the model. Hence the formula
is valid.

We hence have:

Theorem 4.3 (Trakhtenbrot’s theorem:) The validity problem for FOL over finite
structures is undecidable, and, is in fact, co-r.e.-hard.

Aside: It is actually possible to do a slightly simpler proof than the above where
instead of using a successor relation, we ask that the elements form a total linear
order under a relation <, and then recover the successor relation from this ordering
relation and constrain O to be the minimal element. Then all elements in the universe
are part of the s-chain from 0 and we can simply ask all configurations to be non-
halting. See Libkin’s “Finite Model Theory” book for such a proof. However, we
have chosen the above proof since it closely mimics the previous proof that validity
over all structures is r.e.-hard. Note that when models are infinite, we can define a
linear order, but won't be able to extract a successor relation (it may not even be
present as the order can be dense).

Here is a simple corollary:

Corollary 4.2 There is no computable function f such that for any sentence ¢, if ¢
has a satisfying finite model, then it has a model of size at most f ().

Why? If such a computable function existed, then the satisfiability problem for
FO sentences over finite models would be decidable, since we can just enumerate all
models of size at most f(¢), and check whether any of them satisfies the formula
(this check is a decidable check). But satisfiability over finite models is undecidable,
as validity is undecidable.

42 4 Validity of FOL is undecidable and is r.e.-hard

Aside: One of the applications of logic is in program verification. When proving
programs, you typically want to show a small program snippet has a property, in
terms of its input and output, and you can model this often in logic. For programs
that manipulate integers, etc., we can use appropriate logics over integers. Program
verification, however, is not complete, since programs over integers typically require
addition and multiplication, which is not r.e. (we will see this later). Avoiding integers,
we could look at programs that manipulate data-structures manipulated by a program
that manipulates pointers in heap. But this too turns out to be inherently incomplete
as typically data-structures are finite. Consequently, the validity problem, even after
axiomatizing them, is a problem about finite structures that tends to be not r.e..
Testing, such as trying to see if there is some input that takes a program down a
path, is easier, as this is a satisfiability problem, that is in r.e.— we can enumerate
datastructures, as they are finite, and see whether they drive the program down that
path.

Chapter 5
Quantifier-free theory of equality

In this chapter, we consider the problem of deciding the validity of sentences of the
kind
VX1, .. . Xn. @

where ¢ is quantifier free, and over an arbitrary signature.

Note that our convention for validity for formulas (with free variables) is that a
formula is valid if it is true in every structure and every valuation of variables over
the structure. Hence validity of the sentence Vxi, .. .,x,. ¢ is the same as the validity
of the formula ¢. Since this formula has no quantifiers, this fragment is referred to
as the quantifier-free fragment. Furthermore, since the functions and relations are
not restricted in any way, the only relation that has a fixed interpretation is equality
(interpretation of = symbol). Hence this theory is called the quantifier-free theory of
equality.

We saw in the last chapter that general FOL validity is undecidable. However, the
proof of that undecidability crucially used existential quantification (in particular,
V3 quantification), and hence that proof does not apply for this fragment. We will
show in fact that validity for this fragment is decidable.

Let us consider the dual problem of satisfiability. Given a quantifier-free formula
¢(x), is there a model and interpretation of x that satisfies ¢? Note that this is the
same decision problem as validity, as ¢ is valid iff - is not satisfiable. Hence a
decision procedure for satisfiability gives a decision procedure for validity as well.

5.1 Decidability using Bounded Models

We first make the simple observation that a quantifier-free formula ¢ is satisfiable
iff it is satisfied in a finite model, in fact the finite model needs to be only of size n,
where 7 is the number of ferms mentioned in the formula.

43

44 5 Quantifier-free theory of equality

Let ¢(x) be a satisfiable quantifier-free formula. Let M be a (potentially infinite)
model and s be an interpretation of the variables x, under which ¢(x) is true, i.e.,
M [o(x).

Now let us construct a finite model M’ from M that also satisfies ¢. Let T be the
terms mentioned in ¢; T is finite, and let’s say |T'| = n. Without loss of generality,
assume n > 0 (if not, add a conjunction x = x to the formula to introduce a term
x). Let the universe in M be Uj,s. Now, under the interpretation s, each term t € T
evaluates to an element [¢]; € Uy,.

Let us define the model M’ as follows: the universe U’ of M’ is {[t]; | t € T}
(i.e., the finite subset of elements that terms evaluate to. For every relation symbol R,
R(w) is true in M’ iff R(u is true in M. Functions are a bit more complex to define.
Let us fix an arbitrary element e in U’. Define /™’ (u) to be f™ () if fM () € U,
and e otherwise.

The above construction basically takes the sub-universe corresponding to the
terms mentioned in ¢, restricts the relations and functions to this subset, and when
the function maps a vector of elements to an element outside this subset, map it to e
instead.

Our claim now is that M’ with the same interpretation s will also satisfy ¢. First,
we prove that every term in ¢ maps to the same element in M’ as it does in M. And
hence any atomic formula R(_t>) as well as any atomic formula ¢ = ¢’ will evaluate
the same way under both models. It follows that the formula ¢ will evaluate to true.

The above argument shows that satisfiability for quantifier-free formulas is de-
cidable. We can just enumerate all possible models of size n, where n is the set of
terms mentioned in ¢, choosing all possible interpretations for functions, relations,
constants, and variables, and check if any of them satisfy ¢.

If the signature (including arities) are fixed, and validity of formulas only over
the fixed signature is to be decided, we can even do this in Np. We can just non-
deterministically guess the model of size n and the interpretation, and check if the
formula is satisfied. Since checking whether a formula holds in the model can be
done in polynomial time, this gives an Np algorithm.

It is also easy to see that the problem is Np-hard as well, as it essentially includes
Boolean logic. Reduction from SAT: Given a propositional formula «, introduce a
new variable x, and replace each proposition occurrence p in ¢ with the atomic
formula (p =x). This formula is satisfiable iff « is satisfiable. Hence satisfiability of
quantifier-free formulas is Np-complete.

5.2 An Algorithm for Conjunctive Formulas

The above proof that checking satisfiability is Np-hard is a bit unsatisfactory, as
it shows it is hard because of the Boolean logic within in. What is the precise
complexity of reasoning with equality itself?

We can ask the above question more precisely by asking what is the complexity
of deciding conjunctive formulas. Can they be decided in polynomial time?

5.2 An Algorithm for Conjunctive Formulas 45

It turns out that the problem is indeed solvable in polynomial time. We will
consider an algorithm in this section that clearly works in polynomial time if the
arity of functions/relations are fixed (i.e., bounded by k). However, it turns out that
one can implement this algorithm using clever data-structures to get a polynomial
time algorithm even when arities are not fixed (see Calculus of Computation, Chapter
9, Section 9.3, for example).

To simplify the algorithm, let us first get rid of predicates (other than equality)
from the formula. This can be done easily. Let us fix a constant T. We can model
a predicate p C U" as a function f, : U" — U U {T'}, with the understanding that
p(u) is true iff f, (u) = . Hence, given a formula ¢ with functions and relations,
we can replace each occurrence of p(r) with f,(7) = T, to get a formula ¢’ such
that ¢ is satisfiable iff ¢’ is satisfiable. (We leave this as an exercise.)

Let ¢ be a conjunctive formula that is quantifier-free, that uses function symbols
and =, but no relation symbols. Then ¢ = @] Aas A ... @y, where each q; is a literal
of the form ¢t =¢" or —(t = t’).

Since the formula is conjunctive, let us look upon the formula as a set of conjuncts:
{aq,...,a,}. Infact, let us divide these formula into two sets EUD, where E consists
of equalities of the form ¢ = ¢ and D consists of disequalities of the form —(¢ = ¢’).
Let us look upon the elements of E and D as pairs of terms of the form (z,7’).

Our key idea is now to build a model, if the formula is satisfiable, just using the
terms 7" mentioned in the formula ¢, which is finite and linear in |¢|. Furthermore,
our idea is to find the smallest set of equality constraints that are imposed by the set
of equalities in E. It turns out that such a smallest set always exists, and is called
the congruence closure of E, denoted CC(E), and is easy to compute in polynomial
time. We then check whether any of the disequalities are violated in CC(E). Then
there is a violation iff the formula is not satisfiable.

The congruence closure of E, CC(E) is the smallest set such that:

Includes E: Forevery (t,1) € E, (t,t') € CC(E)

Reflexive closure: Foreveryt €T, (t,1) € CC(E)

Symmetric closure: Forevery t,#" € T, if (t,1’), (¢',t) € CC(E).

Transitive closure For every 7,#,¢t"” € T, if (t,t') € CC(E) and (¢',t"”) €
CC(E), then (t,t"”) € CC(E).

Congruence closure Forevery function symbol R of arity n, forevery f (1, ...,1,), f(t{, ..

T, if (t1,1]), (t2,1}), ... (ta ty) € CC(E), then (f(t1,...,tn), f(t],....1,)) €
CC(E)

Intuitively, CC(E) is the reflexive, symmetric and transitive closure of E, and
also congruence-closed, in the sense that if two tuples of terms are deemed equal by
it, then the function expressions applied on those terms are also deemed equal.

It turns out that CC(E) exists (i.e., a smallest set of such equalities exists). Here
is a simple proof. Define

) €

46 5 Quantifier-free theory of equality

CCy =E
CCiy =CC;
U {(t,1) |t eT}
U {(tt) | (¢',1) € CC}
U {(,t)| 3" eT,(t,t"), ", t") e CC;}
U {(f(t1,. . tn), (] at) | (t1,1]), oo, (tn, 1) € CCy, f(t1, ..o 1), f(1], ... 1,) €T}

Now, let CC = U;enCC;. Then it is easy to prove that CC has the required
properties and is the smallest set that has these properties (readers should prove this
for themselves). Since T is finite, the above procedure in fact terminates, i.e., there
will be an 7, such that CC; = CCj;q, in which case we can stop, as the future sets
will all be the same. It’s easy to see that this is in fact a polynomial time algorithm,
since CC; monotonically increase and can have at most |T|? pairs. We will see later
in this section a concrete algorithm that does this computation a bit better.

Now let M be any model that satisfies the equalities in E. Then it is clear that M
will satisfy the equalities in CC(E) as well, since what we demand of CC(E) are
properties satisfied by equality. Consequently, the equalities in CC(E) are logically
implied by the equalities in E.

Let us now prove:

Lemma 5.1 There exists a model satisfying the equalities in E and the disequalities
in D exist iff CC(E)YND =0

Proof In the forward direction, assume M is a model satisfying the equalities in
E and the disequalities in D. Then, as we argued above, the equalities in CC(E)
must be satisfied in M as well, as they are logically implied by the equalities in E.
It follows that since every disequality in D is satisfied by M, CC(E) and D cannot
have a common pair of terms.

In the other direction, assume CC(E) and D are disjoint. Let us define the
equivalence relation ~ over T defined by CC(E) as t ~ ¢’ iff (¢,¢') € CC(E). It is
easy to see that ~ is indeed an equivalence relation.

Let us construct a model M, where the universe U of M is T/~ i.e., the universe is
the set of equivalence classes of ~. Interpret each constant symbol ¢ occurring in ¢ as
the equivalence class [¢]|, and each variable x occurring in ¢ as the equivalence class
[x]. The interpretation for a function symbol f on a vector of elements ey, . . . e, is
defined as follows (for the definition below, fix a particular element e* arbitrarily):

¢ If there are some terms t| € ey, ...t, € e, such that f(¢;,...,t,) isatermin 7,
then map f(ey,...,e,) to [f(t1,...t2)]-
e Else, map f(ey,...,e,) toe*.

Note that the above model construction is well defined only because CC(FE)
satisfies the congruence-closure condition. For example, if #; ~ 7, then we would
need f(t;) ~ f(t2) in order for the definition of f to be well-defined.

It is now straightforward to argue, by induction on structure of terms, that for
every term ¢, the term evaluates to the element [¢] in this model. Consequently all

5.2 An Algorithm for Conjunctive Formulas 47

the equalities E are satisfied. Also, every disequality (z,t") € D, we are guaranteed
[t] # [t'], since CC(E) N D = 0. Hence the formula holds in the model, and is
hence satisfiable. O

The above shows that in order to check whether a quantifier-free conjunctive
formula ¢ is satisfiable, we just need to compute CC(E) and checkif CC(E)ND = 0,
where E and D are the equalities and disequalities occurring in ¢.

5.2.1 Computing CC(E)

One simple method for computing the congruence closure, especially on paper
manually, is to compute successive equivalence relation using its equivalence classes.

An equivalence relation ~ over T can be represented as a set of sets that form a
partition of 7, i.e., as {E}, ... Ex} where each E; C T, the sets are all disjoint, and
their union is E;.

Given such a representation of ~, let us define a Merge operation on them:
Merge(~, E;, E), where E;, E; are two equivalence classes of ~ simply merges the
two equivalence classes into one and results in a new equivalence relation. More
precisely, if ~is {E1, ..., Ex}, then Merge(~, E;, E) is ~' whose representation is
{E, |r+i,r+jtU{E; UEj}.

The algorithm for computing congruence closure is then as follows. :

¢ Initialize ~ to {{t} | t € T}. In other words, we start with each term in its own
equivalence class.

e Forevery (t,t') € E, merge [t] and [¢]’.

* Do the following till ~ stabilizes:

— If there are any terms 71, . . .,tn,ti,t;, € Tsuchthatboth f(z;,...,t,) and
f(ti, ...tj)arein T, and if [f(¢#,...,t,)] is not equal to f(ti, ...,t,), then
merge them.

* Check whether there is any disequality (#,¢") € D such that [¢] = [¢’]; if there is,
report formula is unsatisfiable; otherwise, report formula is satisfiable.

Let us illustrate through an example:

Example 5.1 This example is taken from the book Calculus of Computation.
We want to know whether the following formula is satisfiable:

fla,b)=a A f(f(a,b),b) #a

Equalities E are {(f(a, b),a)}.

Disequalities D are {(f(f(a,b),b),a)}

The set of terms T is {a, b, f (a, b), f(f(a,b), D).
We start with the equivalence relation:

{{a}. {b}.{f(a,b)}.{f(f(a,b),b)} }

48 5 Quantifier-free theory of equality
Since (f(a, b), a) are in E, we merge their equivalence classes to get:

{{a, f(a,b)},{b}.{f(f(a,]),b)} }

Since a and f(a, b) are in the same equivalence class, and since b and b are in
the same equivalence class, we merge f(a, b) and f(f(a, b), b) to get:

{{a.f(a.b), f(f(a,b),b)}.{b}} }

It is easy to verify that the equivalence classes have stabilized.
We can now check whether the disequalities are all satisfied. But since f(f (a, b), b)
and a are in the same equivalence class, we report that the formula is unsatisfiable.

Let us now illustrate an example where the formula is satisfiable, and also illustrate
the model construction involved in the Lemma above.

Example 5.2 We want to know whether the following formula is satisfiable:
fl@)=bnfb)=an f(f(a))=cr=(f(a)=a)

The equalities are: E = {(f(a), b), (f(b),a), (f(f(a)),c)}.
The disequalities are: D = {(f(a),a)}

The terms are 7 = {a, b, ¢, f(a), f(b), f(f(a)).
We start with the equivalence relation:

{{a}. {b}. {c}, {f (@)}, {f (D). {f(f(a))}}

Since (f(a), b) is in E, we merge their equivalence classes to get:

{{a}. {b. f(@)}. {c}. {f (D)} {f (f(a))} }

Since (f(b), a) is in E, we merge their equivalence classes to get:

{{a, f (D)}, {b, f(a)}. {c}, {f(f(a)} }

Since (f(f(a)),c) is in E, we merge their equivalence classes to get:

{{a. f(D)}.{b. f(a)}. {c, f(f(a))} }

Now, since b and f(a) are in the same equivalence class, we must merge the
equivalence classes of f(b) and f(f(a)). We get:

{{a, f(b),c, f(f(a))},{b, f(a)} }

The equivalence class has now stabilized. We note that there is only one disequal-
ity, (f(a),a), and f(a) and a are in different equivalence classes. So we report the
formula to be satisfiable.

5.3 Axioms for The Theory of Equality 49

Let us examine now how the proof of the Lemma above constructs a model. We
have two elements in our model, e; standing for the class {a, f(b),c, f(f(a)) and
e, for the class {b, f(a)}.

Since a is in e and f(a) is in e,, we interpret that f(e}) = ep. Also, since f(a)
is in ey and f(f(a)) is in e, we interpret f(ez) = e;. The constants a and ¢ are
interpreted as e; (since they belong to e¢1) and the constant b is interpreted as e, (as
b belongs to e,. This model satisfies the formula.

There are even faster ways to do congruence closure. Notice that the key operations
above have to manipulate disjoint sets and support union (merge) and find (which
equivalence class does an element belong to?). This turns out to be a well-studied
data structure called disjoint-set datastructure (or union-find datastructure for which
efficient algorithms are known. Note that the number of equivalence classes is n,
where n is the number of terms in the formula, which is of course linear in the
size of the formula. Now if the signature is finite and fixed, or if the signature had
functions of fixed arity (the former implies the latter), then it is easy to see that the
above algorithm can be implemented in polynomial time. If the maximum arity is
k, then there are only n* possible considerations of terms to consider for identifying
candidates of equivalence classes to merge. If the signature consists of functions of
arbitrary arity, it turns out that one can still effect a polynomial time algorithm, but
we skip this here.

SMT solvers also implement fast algorithms for congruence closure. In particular,
given a quantifier-free formula (not necessarily conjunctive), they look upon the
formula as a Boolean formula over propositions (each proposition being an atomic
formula), and call a SAT solver to find a satisfying valuation (if the SAT solver finds
it unsatisfiable, then clearly the original formula is also unsatisfiable). The satisfying
valuation can now be interpreted as a conjunctive set of equality and disequality
constraints, which can then be checked for satisfiability using congruence-closure
algorithms. If this conjunctive formula is unsatisfiable, it would return a core set of
atomic formulas that already make it unsatisfiable, and the SAT engine will add that
as a clause, and continue its search for valuations.

5.3 Axioms for The Theory of Equality

In this book/course, we will treat the equality symbol (=) as an interpreted relation
throughout— it is interpreted as equality of elements in the universe. However, in this
section, we are briefly going to suspend that in order to understand what properties
equality really satisfies.

Let us fix a FO signature, and for clarity, let us not have = as a symbol, but
instead have the symbol =. If = was uninterpreted, what properties would we like it
to satisfy?

Here are some properties (which we will call the congruence axioms) that equality
clearly satisfies (we continue to write relations as t=t’)), instead of =(z,¢’):

50 5 Quantifier-free theory of equality

Reflexivity' Vx.x=x

Symmetry: Vx. (x=y = y=x)

Transitivity: Vx,y,z. (x=y A y=z) = x=z

Congruence wrt relations: For any relation R of arity n,

VX1, oo Xy Vise ooy Ve /\ xi=yi | = R(x1,...,xp) © R(y1,...,¥n)

i€[l,n]

Congruence wrt functions: For any function f of arity n,

VX1, o Xns Vise ooy Vne /\ xi=yi | = fOxes e x)=f Vs o5 Yn)

i€[l,n]

First, notice that the above doesn’t ensure that = will be interpreted as true equality
on the model. For example, if there were two elements e and e; such that all functions
and relations behaved identically on them and no constant was interpreted as either
of them, then we could relate them with = and satisfy all the properties above. In
fact, FO with = (and without =) will not be able to distinguish this model from one
where we removed e, and just had e;. The above properties in fact only insist that =
is an equivalence relation that is also a congruence with respect to the relations and
functions.

However, it turns out that the above properties are sufficient to capture equality as
far as satisfiability/validity of logical formulae are concerned. It doesn’t matter that
the properties above capture only congruence and not true equality.

Let us formalize this. Let M be a model with universe U an interpretation of
the relation = that satisfies the congruence axioms given above. Then let M /= be
the model where we take as the universe the equivalence classes U/=, and interpret
relations and functions as follows:

* For any constant c,
CM/= — [CM]

* For any n-ary relation R,

RM=([e1], [ea], .. [en]) holds iff R (e, ... en) holds

* For any n-ary function f,

ME([er], [eal, - .- [en)) = [fM (e .. en)]

The above says that constants are interpreted in M /= as the equivalence class
of their interpretation in M, and relations and functions are interpreted in M /=
depending on how the relations and functions are interpreted on the elements in their
equivalence classes. The reason the above is well-defined is because = satisfies the
congruence axioms.

We can now show the following:

5.3 Axioms for The Theory of Equality 51

Lemma 5.2 Fix a signature S without = and =. Let ¢ be a formula over S U {=}. Let
¢’ be ¢, where = is replaced with =, and hence is over the signature S U {=}.

o [f ¢ holds in a model M, where = is interpreted as equality in the model, then ¢’
holds in M’ where = is interpreted as equality, and the interpretation of = does
satisfy the congruence axioms.

o [f ¢’ holds in a model M, where = satisfies the congruence axioms, then ¢ holds
in M /= with = interpreted as equality in the model.

We leave the above as an exercise for the reader.

A consequence of the above lemma is that a formula with = is satisfiable (or valid)
iff the formula, with = replaced by = is satisfiable (or valid) over the class of models
that satisfy the congruence axioms.

Hence the above congruence axioms define equality as far as logic goes. Logically,
there is no real difference between true equality and a congruence.

Chapter 6
Completeness Theorem: FO Validity is r.e.

Godel proved in 1929 his first famous theorem that there is a formal proof system
that can prove every valid formula in FOL. As the formal proof system one can
choose a variety of proof systems (Godel showed it for one proposed by Hilbert and
Ackermann). A proof system is a formal set of rules of writing down a finite sequence
(called a proof) that establishes the validity of a formula/sentence. In fact, a stronger
statement is proved (let’s call this the strong completeness theorem): there is a formal
proof system such that for any set of axioms A, the formal system (incorporating
axioms A) can prove any formula/sentence that is semantically entailed by A. In
other words, the system can prove any sentence ¢ where ¢ holds in all models that
satisfy the axioms A.

The above result is remarkable. It basically shows that any theorem that can be
stated in FOL has a proof. Not only that, for any class of axiomatizable structures,
the class of valid FO-formulatable theorems over such structures always has a proof.
For instance, take the class of groups— they can be axiomatized using a few axioms,
as we saw in Chapter 1. Consequently, every first-order formulatable theorem over
groups has a proof.

Given a set of formulae/sentences A, the validity problem for the theory of A is
to determine whether, given a formula/sentence ¢, whether every model and every
interpretation under which A holds also satisfies ¢.

Connection to computability

In this book/course, we won’t be studying proof systems, and hence won’t prove
Godel’s completeness theorem. However, we will prove essentially Godel’s com-
pleteness theorem, but where we replace proofs with computation.

Consider a set of axioms A which is a decidable set (i.e., it is either empty or finite
or infinite where a TM can check whether a given sentence is an axiom or not). Then
Godel’s completeness theorem says that every logically entailed theorem has a proof.
Proofs are generally finite objects— they are typically finite sequences over some

53

54 6 Completeness Theorem: FO Validity is r.e.

signature, that closely follow some set of allowed rules, incorporating the axioms
when needed, in order to prove a theorem. Whatever the proof system is, it is always
true that checking whether such a sequence encodes a correct proof is a decidable
problem. Consequently, it is easy to see that validity with respect to the axioms is a
problem solvable in r.e.. This is because a Turing machine can enumerate all possible
finite proofs, systematically, checking if any of them prove a given theorem, and halt
if it does. So Godel’s theorem can be seen as saying that the problem of checking
validity wrt any recursive set of axioms is recursively enumerable.

Our goal in this chapter is hence to prove this version of completeness. For every
formula/sentence, when the TM finds that the sentence is a theorem in the theory of
the given axioms, the computation itself can be viewed as a proof of the theorem.

Outline of Proof

The procedure we are going to outline is not entirely the usual one found in standard
textbooks, and has a more computational flavor. As we will see, it can also be
automated to some extent (we can build an r.e. procedure using calls to an SMT
solver that decides the quantifier-free theory of equality).

The rough outline is as follows. We fix a countable signature. We are given
a countable decidable set of axioms A and we consider the problem of proving
validity of a FOL formula .

1. Our procedure will work through refutation— we will show that ¢’ = = is not
satisfiable in any model satisfying the axioms. In other words, we want to show
there is no model satisfying A U {y'}.

2. We first show that formulas can be translated to equivalent formulas in prenex
normal form. Then we show that we can convert the negated formula to an
equisatisfiable formula "’ over an expanded signature which has only universal
quantification, and is of the form

U VxR @

This process is called Skolemization.

3. We then show Herbrand’s Theorem for such sets of universally quantified formu-
las, which roughly says that if the axioms and the formula is satisfiable, then they
satisfiable in a universe that is composed of only ground terms over the signature
modulo a congruence.

4. The above result will show that the universally quantified formula will be unsat-
isfiable iff replacing variables with all possible terms, which gives an infinite set
of formulas, is an unsatisfiable set.

5. We will then use compactness of propositional logic to argue why this instantiated
infinite set is unsatisfiable iff there is a finite subset of it that is unsatisfiable.

6. The above gives our r.e. procedure: negate the formula, Skolemize the axioms and
formula, and instantiate systematically the formulas by a growing set of terms and

6.2 Skolemization / Herbrandization 55

check whether the the resulting set is unsatisfiable. Any instantiation procedure
that dovetails between the axioms and term instantiation so that all axioms are
instantiated for all terms eventually will do. Each level of instantiation gives a
set of quantifier-free formulae in the theory of equality, which is decidable. The
algorithm will halt only if it finds that there is some level where the instantiated
set is unsatisfiable.

We first show Step 2: Skolemization. Then we prove Herbrand’s theorem. We
then will use compactness to argue unsatisfiability can be proved using only a finite
set of terms. And finally give the r.e. procedure.

6.1 Prenex Normal Form

We assume that the formulae/sentences we are considering for validity/satisfiability
have first been convereted to prenex normal form, i.e., to the form:

Q1x1. 02x2 ... QnXp.@

where ¢ is quantifier free, and furthermore, where no variable repeats (for every
i #J,x; #x.,').

We refer the reader to a standard text that shows that any formula in FOL can be
converted to an equivalent formula in prenex form.

6.2 Skolemization / Herbrandization

Recall that for validity, pure universal quantification was easy to handle (we showed
decidability in the last chapter). Hence, for satisfiability, pure existential quantifica-
tion is easy to handle.

We can in fact eliminate all existential quantification in a satisfiability problem
easily.

Consider a formula of the form

U Vxg, o xg Ay, . X, Y)

where ¢ is an arbitrary formula (can have quantifiers). We will show that there is an
equisatisfiable formula (over an expanded signature) where we essentially remove
the quantified variable x.

The formula roughly says:

For every valuation of xi, . . ., x,, there exists a value for y such that ¢ holds.

Assume there is some model that satisfies the above property. Then for every
sequence of values of xy,...,x,, since there is an element y in the universe such

56 6 Completeness Theorem: FO Validity is r.e.

that ¢ holds, we can fix a particular choice of this element y using a new function f.
This function in the model takes a tuple of values (vi,...,v,) € U" (standing for a
valuation of xy, . .., x,, respectively) and maps it to an element in Y. Now, instead
of saying that there is a value y that satisfies ¢, we can instead say that choosing y
tobe f(xi,...,x,) satisfies ¢.

More precisely, we can write instead the formula:

U oiVx, X (X X, (XL X)) YY)

In other words, we remove the existential quantification on y, and instead replace
y in ¢ with f(xy,...x,). Here, f is a new function symbol introduced specifically
for this quantification of y.!.

It should be clear that the original formula i is satisfiable over a signature X iff
the above formula ¢/’ is satisfiable over the signature ¥ U { /}, where f is a function
symbol not occurring in Z. In the forward direction, if ¢ is satisfiable in a model M,
we construct a model M’ over the expanded signature that extends M by interpreting
f on an n-tuple of values to some value y that makes ¢ true when xy,...,x, are
evaluated as the n-tuple. This extended model M’ will satisfy ¢’. In the reverse
direction, if there is a model M’ for ¢/, we can show that the model M which is the
same as M’ except with the interpretation of f erased, satisfies ¢: for every valuation
of x1,...,x,, if we choose choose y to be f(xy,...,x,), then we are guaranteed to
satisfy ¢.

When a formula has no universal quantification preceding an existential quantifier,
the above works too, except that now the function takes no arguments, i.e., itis a 0-ary
function. A function that takes no arguments and returns an element is essentially
a constant. So we can replace such an existentially quantified variable with a new
constant symbol.

More precisely, we can show that for any formula 3x.¢ over a signature X, the
formula ¢[c/x], where ¢ is a new constant symbol that is not in X, is equisatisfiable.

The following lemma captures the above:

Lemma 6.1 For any formula : Vxy,...x,.3y.0(Z,x1, . ..,Xn,y) over a signature
2, let f be a function symbol not in Z, and let

w, . V.x],-~-xn- ('O(Z,X],...,xn,f(xl,...,xn) /)’)

over the signature XU{ f }, where the arity of f isn. Theny and '’ are equisatisfiable.

Also, for any formula : 3y.(Z,y) over a signature X, let ¢ be a constant symbol
not in 2, and let

v e/ y)
over the signature X U {c}. Then ¥ and ' are equisatisfiable.

Example 6.1 For example, consider the formula

1 Some readers may wonder if we are using the axiom of choice here; we are.

6.3 Herbrand’s theorem 57
Vx.3y.R(x,y)

which says that every element x is R-related to some element The above is equisat-
isfiable to the formula

Vx.R(x, f(x))

Intuitively, the function f chooses one of the (potentially several) elements x is
R-related to. Such a function exists iff every x is indeed R-related to some element.

We can now apply the above procedure of eliminating existential quantifiers
repeatedly to a formula in prenex rectified normal form in order construct a purely
universally quantified formula that is equisatisfiable.

Let us call formulas that are purely universally quantified universal formulas.

Herbrandization:

The above also shows that we can take any formula ¢y and convert it into an equi-valid
formula of the form 3x;. ..., 3x, ¢ over an expanded signature. We can simply take
—psi, Skolemize it to derive an equi-satisfiable formula over an expanded signature,
and then take its negation, to get a formula with purely existential quantification
that is equi-valid to . This process of getting equi-valid formulas with existential
quantification only is called Herbrandization.

6.3 Herbrand’s theorem

One of the the first hurdles for solving satisfiability or proving unsatisfiability is
to figure out what the universe for a formula might be. Clearly, we need elements
to represent constants as they are terms. And we need elements to represent terms
formed by applying functions (any number of times) to terms. But do we need more?
Can a formula/sentence talk about elements that are are not accessible by using
functions that involve constants?

Let us define accessible elements more formally. A ground term is a term without
variables (it it built only using functions and constants). Let M be a model. An
element e in the universe of M is said to be accessible if there is a ground term ¢
such that ¢ evaluates to the element e in the model M. A model is said to be fully
accessible if every element of it is accessible.

We can now ask whether every sentence that is satisfiable has a fully accessible
model. It turns out this is not true. For example, consider a signature that has a
constant 0 and a function s and the formulae that force a number line from 0:

wo: Vx. (ms(x) =0) AVx,y. (s(x) =s(y) = x=y)

58 6 Completeness Theorem: FO Validity is r.e.

For this formula, it is indeed true that it is satisfied in a fully accessible model,
for example a model that contains elements that serve as interpretations for
0, 5(0), s(s(0)), ... only.

However, consider adding a conjunct:

e1: wo AVx. Iy.(f(Y)=xAs(y)=Y)

This formula means that there must be elements whose f images are 0, s(0), s(s(0)),
etc., and hence these elements must all be distinct as well. These have to be different
from the 0-chain and must be distinct from each other as well (as their f-images are
different). Note that there are no ground terms that access these (infinitely many)
elements. For example, one model that satisfies the above constraints is:

U=NU{i"|ieN}

s(iy=i+1, foreveryi e N
s(i')y =1, foreveryi € N
f(i’) =i, foreveryi € N
f(i) =i, foreveryi e N

Note that there are no ground terms that “evaluate” to the elements i’, where
i eN.

It turns out however that universal formulae do indeed have the property that
satisfiable sentences always have fully accessible models. This is called Herbrand’s
theorem which we will prove below.

In fact, in the above example, the formula ¢ is a universal sentence and has a fully
accessible model. The sentence ¢; does not have a fully accessible model, and notice
that it uses an existential quantifier. We can, as argued in the last section, Skolemize
formulas to have an equisatisfiable formula that has only universal quantification.
Skolemizing ¢; gives:

¢1: o AVx (f(g(x) =x As(g(x)) =g(x))

Notice that the Skolemization introduces a new function g for the existentially
quantified variable y removed. And notice now there is a satisfying fully accessible
model. In the model above sketched, we can make g(i) = i’ to satisfy the formulas
(g for other elements can be defined arbitrarily).

Note that having accessible models is very pleasing. The universe can be thought
of as consisting only of ground terms in the logic! In fact, we can name our elements
using the terms in the logic (more precisely, equivalence classes of terms will be

the elements in our universe). Also, notice that if ground terms #1, .. ., #, access the
elements ey, ..., e,, respectively, in a model M, then clearly f(zy,...,t,) accesses
the element f M (ey,...,en).Consequently, in the models we build, the interpretation
of functions is fixed— the function f will map the ground terms ¢, ..., #, (which

are in the universe as the universe consists only of ground terms) to the ground

6.3 Herbrand’s theorem 59

term f(tq,...,t,). So, really, the universe, and the interpretation of constants and
functions will be fixed. The only things to figure out are the interpretation of relations,
including equality which will cause the universe to be equivalence classes over
ground terms.

We now prove that this is always the case— universal sentences that are satisfiable
have fully accessible models. More precisely, we will define Herbrand models where
elements are equivalence classes of ground terms (with fixed interpretations of
functions), and show that satisfiable universal sentences (also called sentences in
Skolem form) have Herbrand models.

Universal Formulas and Closed Submodels

The key property that universal sentences satisfy is that they are satisfied in any
submodel of a satisfying model, as long as the submodel is closed with respect to
function applications. Let ¢ be a universal sentence and M, with universe U, be a
model satisfying it. Let U’ C U that satisfies the following properties:

* For every constant ¢, cM € U’
* For every function symbol of arity n, if ey,...,e, € U’, then fM(ey,...,e,) €
U'.

Then the submodel M’ = (U’, I’) define by taking U’ as the universe and interpreting
all constants, functions, and relation symbols on U’ exactly as in M, but restricted to
U’, is called a closed submodel. More precisely, we define the interpretation of the
closed submodel with universe U’ to be:

o M =M forevery constant symbol ¢

e For every relation symbol R of arity n, and for every ej,...,e, € U’,
RM (e1,....en) iff RM (ey, ... en)

e For every function symbol f of arity n, and for every ei,...,e, € U’,

fM,(el,...,en) =fM(ey,...,en)

Note that the properties that U’ needs to satisfy is crucial to build the submodel—
we cannot build a submodel using any sub-universe of elements (the values that f
takes tuples of elements in the sub-universe to must be in the sub-universe as well).

If M’ is a closed submodel of M, it turns out that M’ will satisfy all the universal
sentences that M satisfies (the converse does not hold, of course). Note that a sentence
that has an existential quantification, say of the form 3x.R(x), may hold in M but
may not hold in M’ (as the elements witnessing the property may be not in the
sub-universe, for example). But satisfiability is preserved for submodels on universal
formulas. The proof is rather simple:

Lemma 6.2 (Closed submodel property) Let M be a model and let M’ be a closed
submodel of M. Let ¢ be a universal sentence and let M |= ¢. Then M’ |= ¢'.
Furthermore, every term evaluates to the same element in M’ as it does in M.

60 6 Completeness Theorem: FO Validity is r.e.

Proof Fix a model M, a closed submodel M’, and a universal sentence ¢

Vxi,...,xn.¢" wWhere ¢’ is quantifier free, where M | ¢. Let ey, ..., e, be the
interpretation of the variables xy, .. ., x, in the universe of the submodel M’. Then
these belong to the universe in M, and since the universe of M’ is closed under func-
tion applications, and since M’ inherits the interpretations of constants and functions
from M, it follows that every term ¢ involving constants and these variables evaluate
to the same element in M’ as they do in M. Since M’ also inherits the relations from
M (including equality), it follows that all atomic formulas involving these variables
evaluate to the same Boolean value in M and M’. Since ¢’ is quantifier-free, it
too will evaluate to the same value in M as in M’. Since M’ satisfies ¢, for this
interpretation of variables, ¢’ will also evaluate to true. Hence we have shown that
for all possible interpretations of the variables in the universe of the submodel, ¢’
evaluates to true, which means that M’ = ¢. O

Note in the above that we don’t make the claim for universal formulas but just for
universal sentences. The reader should make sure they understand why the lemma
does not hold for universal formulas.

Herbrand Models and Herbrand’s Theorem

Let us now define Herbrand models.

Definition 6.1 Fix a FO signature 2. Let GT be the set of all ground terms over X. A
functional congruence over ground terms ~ is an equivalence relation over ground
terms such that for every 71, . . .,tn,ti, ..., t;, where foreach 1 <i <mn,t; ~ ¢, itis
the case that f(t1,...,t,) ~ f(t],...,t,). For such a congruence ~, we denote the
equivalence class containing ¢ with the notation [[¢] ~.

In the notation for equivalence classes, we sometimes write [], if ~ is clear from
context.

Definition 6.2 (Herbrand model with equality) Fix a FO signature X with at least
one constant symbol (hence the set of ground terms over X is non-empty). A Herbrand
model (with equality) is one where:

 The universe of the model is U = {[[¢] | # € GT} consists of the set of equivalence
classes of ground terms of £ with respect to some functional congruence over
ground terms ~.

* Any constant c is interpreted as [[c].

* Any function symbol f of arity » is interpreted so that for every ¢4, ..., 7, € GT,

M.l =1t

The first condition says that the universe of a Herbrand model consists of just
equivalence classes of terms with respect to a functional congruence ~. The second
says that the interpretation of functions is given by the names of the elements

6.3 Herbrand’s theorem 61

themselves— a function f will take the equivalence classes of n terms ¢, . .., 1, to
the equivalence class of the term f(t1, . ..,t,). This definition of ™ is well-defined
since ~ is a functional congruence over terms.?2

Let us make some simple observations. First, in a Herbrand model, because of
the way constants and functions are interpreted, it is easy to show, by induction,
that every ground term ¢ evaluates to the equivalence class containing it, i.e., [£]. It
hence follows that in a Herbrand model is fully accessible— every element [[¢] is
accessible using the term ¢.

In fact the converse is also true: every fully accessible model is a Herbrand model,
which will be evident in the proof of Herbrand’s theorem below.

Let us now prove Herbrand’s theorem. 3 Herbrand’s theorem states that if a
universal sentence has a model, it has a Herbrand model.

The intuition of the proof is quite simple. Let M be a model satisfying a univer-
sal sentence ¢. Then we can simply take the sub-universe that corresponds to all
accessible elements (elements accessible using terms). Clearly, this subset is closed
under function applications. And hence it defines a closed submodel that satisfies ¢
as well. This closed submodel, having accessible elements only, is isomorphic to a
Herbrand model— we can relabel every element e using the equivalence class of all
ground terms that evaluate to the element e, in order to make it a Herbrand model.

Theorem 6.1 (Herbrand’s theorem with equality) Ler ¢ be a universal sentence.
Then o is satisfiable iff it is satisfiable in a Herbrand model.

Proof We prove the forward direction (the reverse direction is trivial as if ¢ has a
Herbrand model, then it is clearly satisfiable).

Let ¢ be satisfiable. Let M be a model for ¢, with universe U.

Let U’ = {tM | t is a ground term }. Then, clearly, U’ satisfies the properties for
defining a closed submodel of M— it includes the interpretations of all constant
symbols, and for any function symbol of arity n and any n-tuple of elements, say
M, M it clearly contains fM (/M ..., M), as that is precisely f(1,...1,)M.

Now let M’ be the closed submodel of M defined by U’. By the previous lemma,
M’ [.

We now prove M’, with its elements renamed, is in fact a Herbrand model. Define
a congruence on ground terms as follows: ¢ ~ ¢’ iff tM = "M Verify that this is
indeed a congruence on ground terms (proof: verify it is an equivalence relation,

and note that if 71, .. .,tn,ti, ..., t; are such that each for each i, #; ~ t], then

2 If you were a student in elementary school and you knew Herbrand models, and your math teacher
asked you what 2 + 3 is, you would say it’s “2 + 3”! The value of the function + applied on the
terms (2, 3) is simply the term/element +(2, 3). You may not pass your elementary school exams
though!

3 Herbrand’s theorem is generally proved in a signature without equality. Then one can show that
purely universally quantified formulas have a model where the elements are terms, not equivalence
classes of terms. Since we want to treat equality as an interpreted relation that is always in the
signature, our treatment has equivalence classes of terms. One could instead take Herbrand’s
theorem and introduce equality as an uninterpreted relation that satisfies the congruence axioms,
and get the same result too.

62 6 Completeness Theorem: FO Validity is r.e.

it follows that t* = /™ and hence f(t1,...,t,)™ = f(¢],...,t;)™, and hence
flt, oo tn) ~ f(t], . t0).

Let us rename every element e as the nonempty set [[]], the equivalence class of
wrt ~, where ¢ is some ground term that evaluates to e in M (such a term must exist
since every element in U’ is accessible). It is easy to prove that no two elements get
named by the same equivalence class. Also, every equivalence class [[#] is the label
of some element in U’, namely ™ . We can easily prove, by induction on terms, that
that every ground term ¢ evaluates to [[7]] in M’.

It immediately follows that this is a Herbrand model satisfying ¢. O

Now, notice that in the proof of Herbrand’s theorem, given a model that satisfies a
formula, we built the submodel independent of the formula. The submodel consisted
of all elements accessible using any ground term in the signature. Consequently, the
same model construction works in showing that if a set of universal sentences S has
a model, then it has a Herbrand model as well.

Corollary 6.1 (Herbrand’s theorem with equality for sets of formulas) Lez S be
a set of universal sentences. Then S is satisfiable iff it is satisfiable in a Herbrand
model.

6.4 Some consequences of Herbrand’s theorem

Before we move to completeness, let us observe some simple consquences of Her-
brand’s theorem. First, it follows that if the signature is countable, then a set of
sentences S has a model iff it has a countable model. In fact, this is true for any set
of formulas as well.

Theorem 6.2 (Downward Lowenheim-Skolem Theorem) Fix a countable signa-
ture X. If a set of formulas S over X has a model then it has a countable model.

Proof Every formula in S can be made closed (i.e., made into a sentence) and
made universal by Skolemizing it (by replacing variables by new constant symbols
and removing existential quantification) to result in equisatisfiable formulas. The
resulting set S’ and S are equisatisfiable. In fact, it is easy to see that models
for S work as models for S’, and vice-versa (we can keep the universe, and the
interpretation of constants, functions, and relations in the common vocabulary the
same). Let S be satisfiable. Then S’ is satisfiable as well, and by Herbrand’s theorem,
there is a Herbrand model for S, which, by definition, is countable. This model can
be converted back to a model for S (we keep the same universe, we just throw away
the interpretations of the added constants and functions during Skolemization, and
interpret variables using the interpretations of constants that replaced them). Hence
S has a countable model. O

The above is a surprising result. Every set of axioms A (even infinite ones)
that has a model also has a countable model. Recall that there are several complete

6.5 Godel’s completeness theorem: FO Validity is recursively enumerable 63

axiomatizations of theories where the infended models are uncountable. For example,
there is an axiomatization of reals with addition and multiplication, i.e., for the theory
of (R, 0, 1,+,-). How then do they have a countable model? The only explanation is
that even for such theories, there is a countable model that is elementary equivalent
(which means it satisfies the same first-order sentences) as the model of reals with
addition and multiplication! This is truly bizarre, but true!

There is n generalization of the Downward Lowenheim-Skolem Theorem, called
the Lowenheim-Skolem Theorem, which we will not prove in this book, that says
that if a formula over a countable signature has a satisfying model that is infinite,
then it has models satisfying it of cardinalities «. In particular, there will always be
an uncountable satisfying model. This result is surprising too, as there are complete
axiomatizations for certain countable models, like (N, 0, 1, +). The result then says
that this set of axioms also has uncountable satisfying models! These are often
referred to as nonstandard models of arithmetic. Again, the key thing is though
such models exist, they agree with the standard model on all first-order expressible
properties.

The above results can also be seen as saying that first-order logic is not pow-
erful enough to talk about infinite cardinalities. A set of first-order sentences
can say that the model has at most k elements, for any particular k € N
(Fx1, - Xk VY Vien) (v = x;)). However, there is no set of first-order formu-
lae that ensure that the models that satisfy it are countable, or have any particular
cardinality. First-order logic also cannot ensure that satisfying models are finite—
this is true since validity of first-order logic over finite models is not in r.e., but
validity over arbitrary models is in r.e. (as we shall see soon in this chapter).

6.5 Godel’s completeness theorem: FO Validity is recursively
enumerable

Let us fix a countable signature X.

An instance of the validity problem is a set (finite or infinite, but recursive) A
of axioms, which are FO sentences, and a sentence ¢. Our goal is to show that the
problem of checking validity of such instances, i.e., checking if A | ¢, is recursively
enumerable.

We first negate the formula ¢. A | ¢ iff A U {neg¢} is unsatisfiable. Hence our
goal is to prove that S = A U {—¢} is unsatisfiable. We convert each formula in S to
prenext rectified normal form. We then Skolemize the sentences in S to obtain a set
X of sentences over an expanded signature X’ such that S and X are equisatisfiable.
Note that X is itself a recursive set. Our goal is now to show that checking whether
X is unsatisfiable is recursively enumerable.

Since X has only universal formulas, we know by Herbrand’s theorem that to
prove X is unsatisfiable iff X has no satisfying Herbrand model.

Since the signature is countable, the set of all formulas is countable, and hence
either X is finite or countable. Let us fix an enumeration of X: ¢1, ¢3,

64 6 Completeness Theorem: FO Validity is r.e.

Now any universal formula Vxy is true in a Herbrand model iff it is true when
the variables x are interpreted to be elements corresponding to all possible ground
terms, since Herbrand models have only interpretations of ground terms in their
universe. Consequently, such a universal formula is true in a Herbrand model iff for
every tuple of ground terms 7, ¥ [f / X] holds in the model.

Consequently, itis easy to see that X is satisfied in a Herbrand model iff {y/[7] / X |
Vx ¢ € X,t € GT(X)} is satisfied in the Herbrand model. This leads us to:

Lemma 6.3 (Term Expansion Lemma) A set of universal formulas T is satisfiable
ifT*={y[t/x] | Vx ¥ €T, t € GT(X)} is satisfiable.

Proof If T is satisfiable, then clearly I'* is satisfied in any model satisfying I", and
hence is satisfiable as well. Conversely, if I'* is satisfiable, then consider a Herbrand
model satisfying it (which must exist since the sentences are universal, in fact
quantifier-free). Clearly, in this Herbrand model, since all elements are accessible
using terms, the formulas in I are satisfied as well, and hence I" is satisfiable. O

Due to the above lemma, we can now take
X ={y[t/x|Vxy e X,t € GT(2)}

and our problem now reduces to showing X* is unsatisfiable. Note that formulas in
X* are quantifier-free. And quantifier-free formulas admit a decidable satisfiability
procedure (see previous chapter). However, even if A = 0, X* can be infinite.
Consequently, we cannot subject the X™* to a satisfiability decision procedure.

We now want to show a compactness theorem for such quantifier-free sets of
formulas. This will allow us to prove unsatisfiability of X* by just looking at finite
subsets of it for unsatisfiability. Note that finite subsets of X* can be conjuncted and
subject to a satisfiability decision procedure, as given in the previous chapter.

Compactness Theorem for quantifier-free grounded formulas

We want to show the following lemma:

Lemma 6.4 Let I be a set of quantifier-free grounded sentences. Then T is satisfiable
iff every finite subset of T is satisfiable.

Proof If T is satisfiable, then, of course, every finite subset of I' is satisfiable. We
hence need to show only the converse.

We will use the propositional compactness theorem to prove this lemma. Note
that since every sentence is I is grounded, each atomic formula is of the form ¢ = ¢’
or R(ty,...,t,), wheret,t’,11,...,t, are grounded terms.

Let us introduce a set of propositions p, for every atomic grounded formula a.
We can now form a set I, that contains the propositional abstraction of formulas
in I", obtained by replacing every atomic formula a in any formula in I with the
proposition p,,.

6.5 Godel’s completeness theorem: FO Validity is recursively enumerable 65

Now, of course, an arbitrary satisfying assignment of I";, may not correspond to a
way of satisfying I, since equalities obey a set of properties, namely the congruence
axioms detailed in the last chapter. Let us now introduce a set of propositional
constraints that capture these axioms, called A.

A contains the following formulae:

e pi= forevery t € GT(X)
* Pi=rr = pr=, forevery t,t’ € GT(X)
* (Pti=ty N Ptry=t3) = P1=1;, for every t1, 1,13 € GT(Z)

/\ D=t | = (PR(t],...,zn) 54 PR(z’,...,t,’,))

i€[l,n]

for every relation symbol R of arity n.

/\ Pt=t] | = Pf(t1,ecstn)=f (t],.00t})

i€[l,n]
for every function symbol f of arity n.

It is now easy to show that I is satisifiable iff ', U A is satisfiable. (Proof: If
I is satisfied in a model M, define a valuation that assigns the propositions p, to
true iff a is true in the model, and argue that I'), and A will be satisfied under this
valuation. Conversely, if I', U A is satisfied by a propositional valuation, it is easy
to see that the equality relation defined by the propositional formulas is a functional
congruence over ground terms, and hence defines a Herbrand model of equivalence
classes of terms. Interpreting each relation according to the propositional valuation
will satisfy the formulas in I".

Now, using compactness theorem for propositional logic, we know that I', U A
is satisfiable iff every finite subset of I U A is satisfiable.

Now let us show the required property. If I" is unsatisfiable, then I', U A is
unsatisfiable, and hence there is a finite subset F' of I' U A that is satisfiable. Consider
F’ =T, NF, which is finite. Then the set of FO formulas corresponding to £’ in T,
i.e., the set of formulas whose propositional abstractions are in F’, is unsatisfiable
(since F’UA is unsatisfiable). Hence there is a finite subset of I" that is unsatisfiable.O

The Algorithm

We now continue and finish our recursively enumerable procedure. Recall that we
had left off in showing X* is unsatisfiable, where X* was obtained by replacing each
universally quantified sentence with all possible instantiations of ground terms.
Using the above lemma, we know that X* is unsatisfiable iff there is some finite
subset of X* that is unsatisfiable.
We can now build a procedure to find such a finite subset. Recall that for any
finite subset of quantifier-free formula, there is a decision procedure (that always

66 6 Completeness Theorem: FO Validity is r.e.

halts) whether the set is satisfiable, from the previous chapter. Let’s call this decision
procedure D P-Q FE (decision procedure for quantifier-free equality).

6.5.1 The case of finite sets of formulas

We first consider the case when the set of axioms is finite, and hence X is finite. Note
that in this case, we can assume the signature is finite too (as the functions/relations
not mentioned in the set of formulas clearly do not matter). Note that X is finite, but
X* can be, however, infinite.

Let us consider the following increasing sets that cover X*. For any d € N, let
T, denote the ground terms of depth at most d. Formally, these sets are defined
recursively as:

e To={c | c is aconstant symbol in X}
o Ty =TaU{f(t1,....tn) | t1,...,tn € Ty, f is a function symbol of arity n}

Note that 7; € T; for any i < j, and ;¢ 7; is the set of all ground terms.
Our procedure is as follows: Given X, a finite set of universal sentences, we do the
following:

. Seti:=0;

. Repeat forever: {

R:={y[t/X] |7 is atuple of elements in T;}.

Check if R is satisfiable, by calling DP-QFE(R).

If it is not satisfiable, then report X is unsatisfiable and exit (concluding A | ¢).
Increment i;

}

The correctness of the algorithm is straightforward to see. If A |= ¢, then AU{—¢},
and hence X would be unsatisfiable. Hence X is unsatisfiable. Hence there is a finite
subset of F C X™ that is unsatisfiable. Let FT be the set of terms mentioned in F;
then FT is finite. Let i be the maximum depth of the terms in F7. Then in iteration
i, the algorithm will instantiate X with all terms of depth i, and hence the set R it
constructs will be a superset of F', and hence will be unsatisfiable. Hence the decision
procedure call to D P-Q F'E will report unsatisfiable, and the algorithm will halt and
report A | ¢.

On the other hand, if A |~ ¢, then A U {=¢}, and hence X would be satisfiable.
Hence X* is satisfiable. In each iteration, the algorithm constructs R which is a
subset of X*, and hence the call to D P-QFE will report satisfiable in each round.
Hence the algorithm will not halt, and will never declare A = ¢ holds.

B

oW

6.5 Godel’s completeness theorem: FO Validity is recursively enumerable 67

6.5.2 The case for infinite sets of formulas

Let us assume the signature is finite. Let us assume we are asked whether A | ¢,
where A is infinite, but recursive. Again, we know that A | ¢ iff A U {—¢} is
unsatisfiable iff the set X constructed by converting formulas in the set to universal
formulas is unsatisfiable. This set X is unsatisfiable iff X* is unsatisfiable. And X* is
unsatisfiable iff there is a finite subset of X* that is unsatisfiable. The key difficulty
is to explore larger and larger finite subsets of X* systematically such that for every
finite subset F of X*, we eventually will explore a superset of F. There are two
infinities to consider here— the set of formulas in X is infinite and the set of terms to
instantiate the formulas is also infinite. We need to dovetail through the two infinities
in order to build our procedure.

Let En : Yy, Y, Ys, ... be an enumeration of certain finite subsets of X*. Such an
enumeration is said to be fair if for every finite subset ' Cs, X*, there is some7 € N
such that F C ;.

There are several ways to achieve a fair enumeration. We give just one example.
Consider the enumeration where Y; consists of the first i/ sentences in X enumerated
by all possible ground terms of depth i. Then clearly this is a fair enumeration. Let
F be a finite subset of X*. Let i be the largest number such that the i’th formula in
X, instantiated in some way, belongs to F. Let j be the depth of the largest term that
was used to instantiate some element in F. Now, let k = max (i, j). Then it follows
that F C Yi.

For any fair enumeration, we have the following semi-algorithm: Given X, a recursive
but infinite set of universal sentences, we do the following:

1. Fix a fair enumeration Yy, Y7, ... of X*
2. Seti:=0;
3. Repeat the following forever: {
4. Check if Y; is satisfiable, by calling DP-QFE(Y;).
If it is not satisfiable, then report X is unsatisfiable and exit (concluding A | ¢).
5. Increment i;
6. }

Again, the proof that the above algorithm always halts when A |= ¢ and reports
that it is so, and the proof that when A £ ¢, the algorithm runs forever, is easy to
see.

We can extend the above argument also to countably infinite signatures and in-
finite but recursive set of axioms. In this case, we need to dovetail between several
infinities— exploring more symbols in the signature, exploring more axioms in-
volving this expanding signature, and systematic term instantiation involving this
expanding signature. Again, any fair enumeration will give an r.e. procedure.

68 6 Completeness Theorem: FO Validity is r.e.

6.5.3 Completeness Theorem

We can now phrase our completeness theorem, which follows from the above results.

Theorem 6.3 (Completeness) Let X be a finite or countable signature. Let A be
a finite set of sentences or an infinite recursive set of sentences over X, and let ¢
be a sentence over X. Then the problem of checking whether A = ¢, is recursively
enumerable.

Let us now work out an example.

Example 6.2 Consider the group axioms, where we have a special constant e for the
identity element:

» Associativity: Vx, y,z. f(f(x,y),2) = f(x, f(¥,2))
e Identity: Vx.f(x,e) =x A f(e,x) =x
e Inverse: Vx3dy.f(x,y) =e A f(y,x) =e

Let us now take the above three sentences as the set of axioms A. And let us try
to prove the following formula, which says the identity is unique, i.e.,

p:VYe'. (Vx.(f(x,e")=x A f(e',x) =x) = (e=¢")))

Of course, the above property is true even of monoids, i.e., even when the first
two axioms hold. However, let’s consider all group axioms for this example.

The first two formulas are already in prenex rectified normal form and universal.
Skolemizing the third axiom using a new function g gives:

Vxf(x,g(x)) =en f(gx),x) =e

The new function symbol g intuitively corresponds to a function that provides the
inverse of an element. (We don’t need to know it is unique in order to ask that such
a function exists.)

The formula ¢ is not in prenex form; bringing it to prenex form gives:

p=Ve'. (=(Vx.(f(x,e')=x A f(e',x) =x) V (e =¢)))
=Ve'. (Fx.(=(f(x,€') =x) V=(f(e',x) =x)) V(e = ¢€)))
=Ve'. Ix.(=(f(x,e’) =x) Va(f(e',x) =x) V(e =¢"))

The negation of ¢ is hence:
g =3’ Vx.(f(x,e')=xA f(e',x) =x A=(e=¢))

Skolemizing the above, by replacing the quantified variable e’ by a new constant
symbol c gives:

Vx.(f(x,c) =x A f(c,x) =x A=(e=c))

6.5 Godel’s completeness theorem: FO Validity is recursively enumerable 69

We now have a set X containing four universal formulas:

o Vx,y,z f(f(xy).2) = fx, f(y,2))

e Vx.f(x,e) =xA f(e,x)=x

o Vxf(x,g(x)) =en f(g(x),x) =e

o Vx.(f(x,c)=xA f(c,x) =xA=(e=c))

And our task is to check whether they are simultaneously satisfiable.

Let us instantiate with the depth 0 ground terms, i.e., by constants e and c.
Then we get the formulae where all quantified variables are replaced by all possible
combinations of e and c. That’s 14 quantifier-free formulas!

Note that this set includes the following formulae:

* The second formula with x replaced by c:

f(c,e)=cA f(e,c)=c
e The fourth formula with x replaced by e:

(fle,c) =eA flc,e) =eA—(e=0))

Clearly these two formulas are not satisfiable in any model. If f(c,e) = ¢ and
f(c,e) = e, then we must have ¢ = e, which contradicts the conjunction =(e = ¢).

Hence when we ask the decision procedure for quantifier-free formulae whether
the 14 formulas have a model, it will report unsatisfiable, and the algorithm above
would conclude A [¢.

We invite the reader to in fact generate the above formulae, and give them to an
SMT solver, like Z3 or CVC4, in order to check that the quantifier-free formulae are
unsatisfiable.

Example 6.3 We can take the same axioms above, and try to show that the following
holds, which says that inverses are unique. Since we have used the function g, during
Skolemization of the axioms, to give us the inverse of elements, let’s use the same
function g (for brevity).

@Yy (f(x,y)=en f(y,x)=e) = (y=g(x))

Negating the above and Skolemizing using two new constant symbols ¢ and d
gives:

(fle.d)=en f(d,c)=e) A=(d =g(c))

Instantiating the Skolemized axioms and the above formula with depth O terms
(i.e., by the constants e,c, and d) gives a large set of quantifier-free formulae, and it
turns out that they are already unsatisfiable. We encourage the reader to write these
formulae and feed it to an SMT solver to check that this is indeed so. Consequently,
A = .

70 6 Completeness Theorem: FO Validity is r.e.

6.6 Observations and Consequences

Using SMT solvers:

The above presentation was carefully done so that we get an r.e. procedure that re-
peatedly calls a solver to check satisfiability of quantifier-free formulae with equality.
One can instead also go all the way down to propositional logic satisfiability, and
implement the satisfiability of quantifier-free formulae using satisfiability of a propo-
sitional encoding of it. This was in fact proposed by Gilmore in 1960! Since SMT
solvers already implement satisfiability of quantifier-free formulae with equality, and
avoids the blow-up that the propositional encoding entails, we prefer this technique.
Furthermore, we will see another application of this term instantiation in a later
chapter that allows us to combine quantified theories.

The Bernays-Schonfinkel-Ramsey/EPR class

Let us now consider a signature without any function symbols, and a finite set S of
formulas of the form JxVye. We are asked to check if § is satisfiable. Skolemizing
these formulas could introduce new constants but no new functions. Consequently,
we end up with a set of universal formulas X that we need to check for satisfiability.
Since there are no function symbols, the only ground terms are the constants, and
we can assume that the constants are only those that occur in the formula, without
loss of generality. Consequently, the r.e. procedure outlined earlier in this section
can stop after the first instantiation of constants! Hence it is a decision procedure
(which always halts on all inputs) and decides satisfiability of such formulae. This
fragment of FO formulae, namely 3*V* sentences over a signature that has no
function symbols, hence admits a decidable satisfiability problem, and is called the
Bernays—Schonfinkel-Ramsey class or the effectively propositional reasoning (EPR)
class. Note that for validity, the fragment that is decidable is the V*3* fragment where
the signature has no function symbols. This is one of the few quantified fragments
of first-order logic that admits decidable validity.

Decidability when Axioms are Negation Complete

A set of axioms A is said to be consistent (without contradiction) if there is no
sentence such that A |= ¢ and A E -, ie., ¢,~¢ € Th(A). Note that a set of
axioms A is consistent iff there is at least one model satisfying the axioms A.

A set of axioms A is said to be complete (or negation complete) if for every
sentence ¢, either A |= ¢ or A | —¢. In other words, the theory of A, Th(A),
contains either ¢ or —¢.

For example, the set of axioms of Presburger arithmetic is consistent and complete.
The set of axioms of groups is consistent but not complete.

6.6 Observations and Consequences 71

A consequence of the results of this section is that the theory any complete and
consistent axiomatizations is decidable. Given a sentence ¢, we can execute two
copies of the r.e. procedure defined in this section to check whether A = ¢ and
whether A = —¢. These two executions must be simulated essentially in parallel—
for example, running one procedure k steps and then switching to the other for k
steps, and then switching back, forever, for some fixed k. Since either A | ¢ or
A E -, one of these procedures will terminate, in which we can halt, and report
whether ¢ is in the theory or not.

Theorem 6.4 Let A be a recursive set of sentences that is complete. Then the theory
of A, Th(A) is decidable.

The above also means that if the theory of a single structure is undecidable, then it
is not axiomatizable. We will prove (see next chapter) that the theory of (N, 0, 1, +, X)
is undecidable. This means that there is no recursive set of FO axioms A such that
the theory of A is identical to the theory of this model! This is in fact a version of
Godel’s first incompleteness theorem.

Axiomatizability and recursive enumerability

We proved completeness for any recursive set of axioms. However, it is easy to
extend the result even when the axioms are recursively enumerable— the procedure
will enumerate axioms and instantiate them systematically.

Consider a class of structures C. The notions of having a recursively enumerable
set of axioms A that characterize the theory (i.e., Th(A) = Th(C and having Th(C)
itself being recursively enumerable are synonymous. If a r.e. set of axioms A exists
characterizing C, then by the completeness theorem, Th(A) is r.e. as well. On the
other hand, if Th(C) is r.e., then we can choose as axioms this theory itself.

Axiomatic Systems

The most important consequence of the completeness theorem is that it justifies
the axiomatic approach. We are typically interested in logic over a particular single
structure, or interested in a class of structures. There are many ways to define such
a single structure or a class of structures, even using finite means (for example, we
can define them using computable functions— giving functions that decide which
strings over an alphabet are the elements of a univers, and providing programs that
oeprationally define functions and relations). The axiomatic method, in contrast, asks
the class of structures to be defined using properties which are themselves written in
FOL. And the completeness theorem gives the guarantee that validity of such a set
of axioms is always r.e., which roughly means that every theorem has a proof.

72 6 Completeness Theorem: FO Validity is r.e.

Compactness Theorem for FOL

Another consequence of the results of this section is that the compactness theorem
holds for first-order logic sentences as well.

Theorem 6.5 Let I" be a set of first-order sentences over a countable signature . T’
is satisfiable iff every finite subset of I is satisfiable.

Proof The forward direction is trivial. For the converse, assume I" is unsatisfiable.
Then, by the results of this section, we can assume I" is a set of universal sentences.
Then, by Lemma 6.3 (Term Expansion Lemma), I = {¢[f/Xx | Vx¢ € Tt €
GT(X)} is unsatisfiable. In other words, the set of quantifier-free sentences obtained
by instantiating variables by all possible ground terms is unsatisfiable. By Lemma 6.4,
there exists a finite subset F* of I'* that is unsatisfiable. Let F' C I" be a finite subset
of I' from which the elements of F* were obtained (using term instantiation). Then F
is unsatisfiable as well (since even instantiations of variables by ground terms make
it unsatisfiable). Hence there is a finite subset of I" that is unsatisfiable. |

Chapter 7

Number Theory and Correctness of Programs:
Incompleteness

Natural numbers, endowed with addition and multiplication, is one of the most
ubiquitous structures in mathematics and our society. The reason it’s so useful is that
it can model so many things in our world, both the physical/natural world and the
human created world, especially those that involve discrete objects. If I was a single
lone jellyfish in deep sea where everything was murky and there was nothing discrete
to discern, I may have less use for natural numbers. But we live in a world that is
full of discrete objects and others that can be discretized by approximating them.
For example, people are discrete objects; it’s useful to know how many children
one has, or how many people can vote in a country. Goats and cows are discrete,
and important in early notions of wealth and trade. Time is not discrete, but we
can discretize time into intervals, like seconds, and hence use numbers to count
time. Planetary positions are not discrete, but can be discretized to arcs of degree,
and hence modeled as natural numbers. With discretization, a significant aspect of
the physical world can be modeled as numbers, and most observations of physical
phenomena can be modeled using numbers.

The theory of numbers is hence ubiquitous and studied extremely well in math-
ematics. We learned how to represent them succinctly and how to do operations on
them (using n-ary representations, which need a symbol for 0, and algorithms for
computing operations on them). Much of elementary school is devoted to learning
these simple algorithms.

Programs are also very much discrete in nature. They deal with inputs that are
sequences, which can be seen as numbers, they do operations, which can be seen
as similar to operations involving numbers (arithmetic/Boolean circuits), and the
program itself, is a sequence of symbols that can be seen as numbers.

Consider an imperative program (choose your favorite programming language)
with assertions. Assertions are basically properties of states that you assert in code,
and are a form of specification asserting that the property must be true in all states
where the assertion is reached. A program with assertions is said to be correct if
in every execution of the program, whenever an assertion is reached, the asserted
property holds.

73

74 7 Number Theory and Correctness of Programs: Incompleteness

The problem of program verification is to determine whether a given program
with assertions is correct. The statement that a program P with assertions is correct,
is really a theorem in mathematics. And a proof of such a theorem, no matter what
the notion of proofs are, is a mechanically checkable sequence of statements, where
it should be clear that the proof asserts in the end that the program is correct. There
are several proof systems that prove programs correct— Hoare logic is a popular
one. But you can imagine other formal arguments/proofs of why a program satisfies
a particular assertion.

Incompleteness results in logic argue that there are no formal systems that can
prove all theorems in certain models or classes of models. In other words, for certain
models or classes of models, not all theorems have proofs, in any proof system.

In my view, there are at least three incompleteness results that are astonishing: (a)
theorems expressed in FOL over natural numbers with addition and multiplication
(Godel’s incompleteness theorem), (b) theorems expressed in FOL about the class
of all finite structures (or even all finite graphs), and (c) theorems about correctness
of programs.

In this book, we show that none of the above problems is r.e., which is another
way of saying there is no formal proof system that contains proofs for these theorems.
The incompleteness of all three problems are non-intuitive— it seems intuitive that
all FO theorems about numbers ought to have proofs, that all FO properties of finite
graphs ought to be provable, and all correct programs should have some proof of
correctness. It’s incredible that they don’t. We intrinsically believe that all theorems
ought to be provable, but incompleteness argues that this is not possible, at least not
in any formal proof system. It shows that formal systems are intrinsically weak!

Incompleteness results put mathematics in a strange place than we intuitively
imagined. There may be true theorems that may not even be provable using the
formal rules of proof we accept. It opens up the possibility that theorems in number
theory (including open problems) may not even have proofs. And similarly theorems
about finite graphs. And similarly, the correctness of certain programs.

We proved the incompleteness of FO theorems of finite structures in Chapter 4
(Trakhtenbrot’s theorem). We will show the other two incompleteness results in this
chapter.

The incompleteness results all have a similar proof outline based on some form
of diagonalization, similar to the one found by Cantor, and similar to the one used
by Turing to show the undecidability of the halting problem. Since, as computer
scientists, we already know of such results, in particular that the halting problem
for Turing machines (or programs) is undecidable and the non-halting problem of
Turing machines (or programs) is not even recursively enumerable, we will use these
to prove our results.

7.2 Incompleteness of the theory of natural numbers with additional and multiplication 75

7.1 Program Verification

Consider a TM that we want to check for non-halting. The TM can be realized by
a program P (any programming language with infinite memory will do, as it can
simulate the moves of a Turing machine; for example, a program with access to
unbounded linked lists, or a program with access to an unbounded secondary storage
device, or even a program that has unbounded integers). So the problem reduces to
checking whether P does not halt.

Construct a program P’ that is basically the program P modified so that if P halts,
we add an assertion assert false; at the point where it halts. (An assertion of
false doesn’t hold in any program state— if you are uncomfortable with it, replace it
with x := 1; assertx = 0;.)

Now it is clear that the program P’ satisfies its assertion if and only if P does not
halt. Consequently, program verification is not recursively enumerable.

Theorem 7.1 Program verification is not a recursively enumerable problem.

Let us now use the above result to prove Godel’s incompleteness theorem stated
in terms of the theory of numbers not being recursively enumerable.

7.2 Incompleteness of the theory of natural numbers with
additional and multiplication

We want to show that the theory of natural numbers with addition and multipli-
cation is not recursively enumerable, i.e., Th(N, 0, 1, +, X, =, <) is not recursively
enumerable.

The intuition behind this result is that the theorem stating that a program is correct
(or that Turing machines halts or does not halt) is a first-order expressible theorem in
number theory! Consequently, there is no formal proof system such that all theorems
in FO arithmetic have proofs in the system.

We want to reduce the problem of Turing machine non-halting (or halting!) to
the validity problem of sentences over the theory of natural numbers. The following
proof is adapted from Dexter Kozen’s book “Automata and Computability”.

First, we can express several interesting properties using first-order logic using
addition and multiplication:

* g is the quotient and y is the remainder when x is divided by y:
IntDiv(x,y,q,r): x=qy+rAr<y

e ydivides x:
Div(y,x) : 3gq. IntDiv(x,y, q,0)

! Note that reducing the halting problem to validity also works to show non r.e.-ness since the
theory is negation-complete; a negation conmplete theory is either decidable or not r.e.

76 7 Number Theory and Correctness of Programs: Incompleteness
* x is prime:
Prime(x) : x =22 AVy. (Div(y,x) = (y=1Vy=x))
* yis a power of a particular fixed prime p, i.e., y = p* for some k € N:
Power,(y) : Vz.((Div(z,y) A Prime(z)) = z = p)

We will now show a reduction from the non-halting problem of a Turing machine
(on an empty tape) to validity of arithmetic sentences.

Given a Turing machine M with tape alphabet I" and states Q, let us fix the
alphabet IT = T'U (Q x T). Let us choose a prime p larger than I1, and let us look
upon sequences over I1 as p-ary representations of numbers. A sequence a,, .. ., ao,
where each a; € [0, p — 1] maps to the number Z;c[1,n) a;p".

The computation of M on the empty tape can be seen as a sequence of configu-
rations oy, o7y . . . ,, where each o is a configuration represented a word in IT*. When
M halts, configurations are bounded by some maximum length (depending on how
much space M takes on the tape. Let H denote the subset of II that has the halting
state: H = I' X HQ, where HQ C Q are the halting states. Hence M halts iff there
is a sequence of configurations that represents valid moves of M that has the halting
configuration, i.e., where some element of H occurs.

We now encode the halting of M as the existence of a number whose p-ary
representation encodes a valid halting computation of M.

A finite computation sequence oy, 01, .. ., 0, will be encoded as large enough
blocks so that each o7 fits into a block. If C is a large enough length to encode each
configuration, we will use ¢ = p€ to capture this number. (In general, most numbers
k related to the Turind machine that we need will be captured using p* instead of
k.) This number ¢ will eventually be quantified in the formula we reduce to.

In order to say that a configuration sequence is correct, it is sufficient to demand
that successive configurations are correct. In order to demand o, sigma’, two suc-
cessive configurations (encoded with sequence of the same length C) are correct, it
is sufficient to check every three-element subsequence of o~ with the corresponding
three-element subsequence in o’ (since Turing machines make only local changes
on the tape). The three element sequences either does not encode a state (i.e., is over
I" only), in which they must be the same, or the three element sequence in o encodes
a state in the middle, in which case the corresponding three-element sequence in o’
depicts the correct evolution according to the transitions of the Turing machine.

Let V be the set of all 6-tuples (ay, az, as, by, by, b3) that denote valid pairs of
three-tuples. V includes all:

e Every (al, a»,as, by, by, b3) such that a, az,as, by, by, b3 €T

¢ Forevery transition §(g, a) = (b, q’, R), the triples (a1, (g, a), az,ay, b, (¢’, az)),
((g,a),ai,az,b,(q’,a1),az), and (ay,az, (g,a),a;,as,b) are in V, for every
aj,aj € T.

» Forevery transition §(g, a) = (b, q’, L), thetriples (a1, (¢, a), a», (¢, a1), b, az),
(Cll, (Q’a)’a33 (q,’al)9b’a3)a

7.2 Incompleteness of the theory of natural numbers with additional and multiplication 77

arein V, for every aj, a3 € I'.

Note that check inconsistencies of sequences only in tuples where the “middle”
symbol in the first configuration, i.e., a», encodes a state.

We will write a formula that ensures that in a number encoding sequences of con-
figurations, for every two consecutive configuration o~ and o', every three-element
subsequence in o and the corresponding three-element subsequence in ¢o”’, the 6
elements are related by V. This will ensure that the entire sequence of configurations
is valid.

The crucial power of arithmetic with addition and multiplication is that we can
encode sequences as numbers, and also decode sequences into their components.
Here is an important formula, which says that the character in position Y of a sequence
encoded by the number v is a (where a € [0, p — 1]. As we said before, we encode
the position Y using the number y = p¥ . So the following really says that the position
encoded in y of the sequence encoded by v is b (assuming y is a power of p):

Digit(v,y,a) =3u. Ir. (v=r+ay+upy Ar <y Aa<p)

Intuitively, let’s say v’s p-ary representation can be split into p; - a - pp, where
|p2| = Y. Then clearly v = r + ap¥ + up¥*!, for some » < y (where r encodes
the number corresponding to p, and u# encodes the number corresponding to pp).
Replacing p¥ by y gives v = r+ay+upy, which is what the above formula demands.

The intuition for the following formulae follow along similar lines, and we let the
reader work this out for themselves.

We can demand that the 3-digit sequence of v at positions encoded by y are by,b,,
and b3, using the formula:

3Digit(v,y,b1,by,b3) : Ju. Ar. (v =r+ b1y +bypy+bsppy+upppy

AFr<y Abi<p A by<p A b3<p)

Now we can demand that the three digits of v at the position encoded by y match
correctly the three digits of v at the position encoded by z:

Match(v,y,z) : \/ (3Digit(v,y, a1, az,as) A 3Digit(v, z, b1, ba, b3))
(ar,az,a3,b1,by,b3) €V

We can now write a formula that says that the p-ary string that represents v encodes
a valid sequence of configurations of the TM evolution. For technical reasons, we
will parameterize this with ¢ and d— c is the number that encodes the size of
configurations (i.e., p raised to the power of the length of configurations) and d will
encode a bound on the entire length of the sequence v. The formula checks whether
all pairs of three-digit sequences precisely ¢ apart (or rather log,(c) apart) in v
match according to the Turing machine’s moves, up to d:

ValidMoves(v, c,d) : Vy.(Power,(y) A yppc < d) = Match(v,y, yc)

78 7 Number Theory and Correctness of Programs: Incompleteness

We can state the sequence representing v starts with the initial configuration. Let
init be the number encoding the symbol (g, #), the Turing machine reading the
blank symbol. Let blank denote the number encoding the blank symbol #. Note that
the start configuration is then (g, #) - # - #. . . - #. The following formula forces this
as the first configuration of v:

Start(v, ¢) : Digit(v, 1,init) A\Vy. (Power,(y) Ay > 1 Ay < ¢ = Digit(v, y, blank))
We can also state that the halting configuration occurs in v before d by the formula:
Halt(v,d) : 3y. | Power,(y) Ay < d A \/ Digit(v,y, b)
beH

We can now ready to write a formula that says that v is a valid sequence of
configurations that halts. In order to do this, we first express that the number d
represents an upper bound on the length of v (we then interpret v using the p-ary
representation of v, with 0’s padded to the left, if necessary):

Length(v,d) : Powerp(d) Av < d

Note that v along with d (where Length(v, d) holds) represents the precise p-ary
sequence we wish to express properties about. We can now write that this sequence
represents a valid halting computation:

ValidHaltComp(v) : 3d. 3c. (Length(v,d) A Powerp(c) A c<d

A Start(v, c) A ValidMoves(v, ¢, d) A Halt(v, d))

We can now finally write a sentence that says that the Turing machine M does not
halt:

—3v. ValidHaltComp(v)

The above formula is valid over the standard model of natural numbers with
addition and multiplication iff the Turing machine does not halt. The relation < can
be expressed with the other relations using the following equivalence:

x<y&edz-(z=0)Ax+z=y
‘We hence have:

Theorem 7.2 The first-order theory of natural numbers with addition and multipli-
cation, Th((N, 0, 1, +, X, =)) is not recursively enumerable.

7.3 Further Remarks 79

7.3 Further Remarks
Godel’s proof and strengthenings

The crux of the above proof is that sequences over an alphabet, related in simple
syntactic ways (like the moves of a Turing machine) can be encoded in arithmetic.
Godel was the first to discover this, and he used it in what’s called Godel numbering
in order to encode proofs into numbers; proofs are also sequences whose validity
is syntactic. This was done before a solid notion of computation (such as Turing
machines or lambda calculus) existed. In fact, G6del showed that one can encode
a self-referential formula, where for any reasonable proof system, one can state in
arithmetic a statement that says: “There is no proof of this statement.” A proof system
is damned it it proves this statement, and damned if it does not. If it proves it, then
it’s proved a wrong statement! And if it doesn’t prove it, it’s a correct statement it
cannot prove! Godel’s proof combines encoding proofs/sequences as numbers and a
diagonalization argument. In our proofs, we proved undecidability and hence non-
r.e.-ness of Turing machine non-halting using diagonalization, and a separate proof
of encoding existence of sequences into statements about numbers.

Note that the above proof extends beyond first-order arithmetic. Any logic that
is more powerful than first-order arithmetic does not have a complete proof system.
In fact, it turns out that the above theorem can be strengthened to show that even
quantifier-free arithmetic with addition and multiplication (i.e., implicitly universally
quantified) is undecidable and not recursively enumerable. In fact, the even simpler
problem of solving Diophantine equations (given a set of polynomial equations,
deciding whether there is solution using integer values) is undecidable, and checking
whether there is no solution to them is not r.e.. This is a celebrated problem, called
Hilbert’s Tenth Problem, which was open for a long time and settled in a famous
theorem by Yuri Matiyasevich in 1970.

Axiomatizations

Due to the completeness theorem, we know that any model whose theory is axioma-
tizable is decidable. Since the theory of arithmetic with addition and multiplication
is undecidable, it follows that there can be no recursive axiomatization of it.

The Peano axioms formulated in first-order logic was an attempt to axiomatize
arithmetic. It has an infinite set of axioms, including an axiom schema for induction,
which essentially says that any first-order property about numbers (formulated as a
formula with a single free variable) can be proved by induction. However, as we know
from the results in this section and the completeness theorem, this axiom system,
if sound, must be incomplete. In fact, there are natural concrete theorems that can
be stated in FOL that are not provable in Peano arithmetic (see the results of Paris
and Harrington where a version of Ramsey’s theorem is shown to be unprovable in

80 7 Number Theory and Correctness of Programs: Incompleteness

Peano arithmetic). The Principia Mathematica is another formal system for which
the incompleteness theorem applies, showing that there can be no recursive of it that
is consistent and complete.

Returning to Program Verification: The Method using Invariants

Consider the problem of program verification again. How do people actually prove
programs correct (partially correct, i.e., satisfy their assertions) in practice? The
predominant method is the invariant method, which is basically a proof by induction.
People postulate essentially a set of configurations Inv(x) (called an invariant),
captured as a formula in logic over a set of variables X, and prove the following
properties about it:

¢ The initial states are contained in Inv:
Vx.Init(x) = Inv(X)

 If Post(X,x") represents how the program can change configurations in a single
step, then the invariant is closed under Post:

Vx,x' : (Inv(X) A Post(x,x")) = Inv(X’)

* The invariant set and the set of unsafe states where the assertion is violated, do
not intersect:
Vx(Inv(x) = —Unsafe(X))

Once we postulate such an invariant set, program verification boils down to
proving validity of the above assertions! Clearly, if there is such an invariant set that
contains all the initial states and closed under any move done by the program, then
the set contains all the reachable states, and since it doesn’t intersect the unsafe sets,
it satisfies the assertion.

Verification methodologies such as that of Floyd and Hoare are essentially stylized
proof techniques that follow the above method (expressing invariants at only loop
headers or method boundaries). In fact, these stylistic methods break down (become
too weak) for complex programs (such as concurrent programs or programs that pass
programs/program-pointers as parameters); however, the global invariant method
above is still robust and always is viable.

Now, one could ask whether such an invariant always exists. It clearly does
whenever the program is correct— choose the invariant to be the set of all reachable
states of the program: it satisfies all the above requirements.

So then where exactly lies the problem in not being able to prove a program
correct? It lies in two aspects: (a) invariants may exists but may not be expressible
in logic, and (b) invariants may be expressible in logic, but there may be no proofs
(in a fixed formal system) that the above formulas are valid, i.e., the logic used to
express the above conditions may be incomplete.

7.3 Further Remarks 81

It turns out that either can happen. If we choose a weak enough logic, say a
decidable logic, then we would be able to decide validity of the above formulas...
but the invariant may not be expressible in logic. However, it turns out that for any
reasonable programming language, the invariant (or the precise set of reachable
states) is always expressible in a powerful enough logic, such as arithmetic with
addition and multiplication! However, then, the logic becomes incomplete, and there
may be no proofs for proving the above properties. And hence program verification,
in general, remains incomplete either way. In automated program verification, one
either chooses a weaker logic and builds automated decision procedures to check the
properties above (this is good for shallow properties), or chooses a very expressive
logic, and builds incomplete automation for logical reasoning to find proofs that
establish the above properties!

