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Sparse recovery

Recall:

Vector x ∈ Rn and integer k
x updated in streaming setting one coordinate at a time (can be
positive or negative changes)

Want to find best k-sparse vector x̃ that approximates x .
miny ,‖y‖0≤k‖y − x‖2. Optimum solution is clear: take y to be
the largest k coordinates of x in absolute value.

Using Count-Sketch: O( k
ε2

polylog(n)) space one can find
k-sparse z such that ‖z − x‖2 ≤ (1 + ε)‖y∗ − x‖2 with high
probability.

Count-Sketch can be seen as Πx for some Π ∈ Rm×n where
m = O( k

ε2
polylog(n)).
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Compressed Sensing

Compressed sensing: we want to create projection matrix Π such
that for any x we can create from Πx a good k-sparse approximation
to x

Doable! With Π that has O(k log(n/k)) rows. Creating Π requires
randomization but once found it can be used. Called RIP matrices.
First due to Candes, Romberg, Tao and Donoho. Lot of work in
signal processing and algorithms.
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Compressed Sensing

Theorem (Candes-Romberg-Tao, Donoho)

For every n, k there is a matrix Π ∈ Rm×n with
m = O(k log(n/k)) and a polytime algorithm such that for any
x ∈ Rn, the algorithm given Πx outputs a k-sparse vector x̃ such
that ‖x̃ − x‖2 ≤ O( 1√

k
)‖xtail(k)‖1. In particular it recovers x

exactly if it is k-sparse.

Matrix that satisfies above property are called RIP matrices
(restricted isometry property)

Closely connected to JL matrices
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Understanding RIP matrices

Suppose x, x ′ are two distinct k-sparse vectors in Rn

Basic requirement: Πx 6= Πx ′ otherwise cannot recover exactly

Let S, S ′ ⊂ [n] be the indices in the support of x, x ′ respectively.
Πx is in the span of columns of ΠS and Πx ′ is in the span of
columns of ΠS′

Thus we need columns of ΠS∪S′ to be linearly independent for any
S, S ′ with S 6= S ′ and |S| ≤ k and |S ′| ≤ k . Any 2k columns of
Π should be linearly independent.

Sufficient information theoretically. Computationally?
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Recovery

Suppose we have Π such that any 2k columns are linearly
independent.

Suppose x is k-sparse and we have Πx . How do we recover x?

Solve the following:

min‖z‖0 such that Πz = Πx

Guaranteed to recover x by uniqueness but NP-Hard!
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Recovery

Instead of solving

min‖z‖0 such that Πz = Πx

solve

min‖z‖1 such that Πz = Πx

which is a linear/convex programming problem and hence can be
solved in polynomial-time.

If Π satisfies additional properties then one can show that above
recovers x .
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RIP Property

Definition

A m × n matrix Π has the (ε, k)-RIP property if for every k-sparse
x ∈ Rn,

(1− ε)‖x‖22 ≤ ‖Πx‖22 ≤ (1 + ε)‖x‖22
.

Equivalent, whenever |S| ≤ k we have

‖ΠT
S ΠS − Ik‖2 ≤ ε

which is equivalent to saying that if σ1 and σk are the largest and

smallest singular value of ΠS then
σ2
1

σ2
k
≤ (1 + ε)

Every k columns of Π are approximately orthonormal.
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Recovery theorem

Suppose Π is (ε, 2k)-RIP with ε <
√

2− 1 and let x̃ be optimum
solution to the following LP

min‖z‖1 such that Πz = Πx

Then ‖x̃ − x‖2 ≤ O( 1√
k

)‖xtail(k)‖1.

Called `2/`1 guarantee. Proof is somewhat similar to the one for
sparse recovery with Count-Sketch.

More efficient “combinatorial” algorithms that avoid solving LP.
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RIP matrices and subspace embeddings

Definition

A m × n matrix Π has the (ε, k)-RIP property if for every k-sparse
x ∈ Rn,

(1− ε)‖x‖22 ≤ ‖Πx‖22 ≤ (1 + ε)‖x‖22
.

Fix S ⊂ [n] with |S| = k . S defines a subspace of k-sparse vectors.

Total of
(n
k

)
different subspaces. Want to preserve the length of

vectors in all of these subspaces.
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Fix S ⊂ [n] with |S| = k . S defines a subspace of k-sparse vectors.
Total of

(n
k

)
different subspaces. Want to preserve the length of

vectors in all of these subspaces.

Given a subspace W of dimension d we saw that if Π is JL matrix
with m = O(d/ε2) rows we have the property that for every
x ∈ W : ‖Πx‖22 ' (1± ε)‖x‖22. Via a net argument where net size
is eO(k).

If we want to preserve
(n
k

)
different subspaces need to preserve nets

of all subspaces

Hence via union bound we get m = O( 1
ε2

log(eO(k)
(n
k

)
)) which is

O( k
ε2

log n).

Other techniques give m = O(k2/ε2).
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