CS 498ABD: Algorithms for Big Data

Fast Approximate Regression Lecture 21
 Nov 10, 2022

Linear least squares/Regression

Linear least squares: Given $A \in \mathbb{R}^{\boldsymbol{n \times d}}$ and $b \in \mathbb{R}^{\boldsymbol{d}}$ find x to minimize $\|A x-b\|_{2}$.

Interesting when $\boldsymbol{n} \gg \boldsymbol{d}$ the over constrained case when there is no solution to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ and want to find best fit.

Geometrically $\boldsymbol{A x}$ is a linear combination of columns of \boldsymbol{A}. Hence we are asking what is the vector \boldsymbol{z} in the column space of \boldsymbol{A} that is closest to vector \boldsymbol{b} in ℓ_{2} norm.

Closest vector to \boldsymbol{b} is the projection of \boldsymbol{b} into the column space of \boldsymbol{A} so it is "obvious" geometrically. How do we find it?

Linear least squares/Regression

Linear least squares: Given $A \in \mathbb{R}^{\boldsymbol{n \times d}}$ and $b \in \mathbb{R}^{\boldsymbol{d}}$ find x to minimize $\|A x-b\|_{2}$.

Interesting when $\boldsymbol{n} \gg \boldsymbol{d}$ the over constrained case when there is no solution to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ and want to find best fit.

Geometrically $\boldsymbol{A x}$ is a linear combination of columns of \boldsymbol{A}. Hence we are asking what is the vector \boldsymbol{z} in the column space of \boldsymbol{A} that is closest to vector \boldsymbol{b} in ℓ_{2} norm.

Closest vector to \boldsymbol{b} is the projection of \boldsymbol{b} into the column space of \boldsymbol{A} so it is "obvious" geometrically. How do we find it? Find an orthonormal basis $z_{1}, z_{2}, \ldots, z_{r}$ for the columns of \boldsymbol{A}. Compute projection \boldsymbol{c} as $\boldsymbol{c}=\sum_{j=1}^{r}\left\langle\boldsymbol{b}, z_{j}\right\rangle z_{j}$ and output answer as $\|\boldsymbol{b}-\boldsymbol{c}\|_{2}$.

Linear least square/Regression and SVD

Linear least squares: Given $\boldsymbol{A} \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}$ and $\boldsymbol{b} \in \mathbb{R}^{\boldsymbol{m}}$ find x to minimize $\|A x-b\|_{2}$.

Closest vector to \boldsymbol{b} is the projection of \boldsymbol{b} into the column space of \boldsymbol{A} so it is "obvious" geometrically. Find an orthonormal basis $z_{1}, z_{2}, \ldots, z_{r}$ for the columns of \boldsymbol{A}. Compute projection \boldsymbol{b}^{\prime} as $\boldsymbol{b}^{\prime}=\sum_{\boldsymbol{j}=1}^{\boldsymbol{r}}\left\langle\boldsymbol{b}, z_{\boldsymbol{j}}\right\rangle z_{j}$ and output answer as $\left\|\boldsymbol{b}-\boldsymbol{b}^{\prime}\right\|_{2}$.

Finding the basis is the expensive part. Recall SVD gives $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, v_{r}$ which form a basis for the row space of \boldsymbol{A} but then $\boldsymbol{u}_{1}^{T}, \boldsymbol{u}_{2}^{T}, \ldots, \boldsymbol{u}_{\boldsymbol{m}}^{T}$ form a basis for the column space of \boldsymbol{A}. Hence SVD gives us all the information to find \boldsymbol{b}^{\prime}. In fact we have

$$
\min _{x}\|A x-b\|_{2}^{2}=\sum_{i=r+1}^{m}\left\langle u_{i}^{T}, b\right\rangle^{2}
$$

Subspace Embedding

Question: Suppose we have linear subspace E of $\mathbb{R}^{\boldsymbol{n}}$ of dimension d. Can we find a projection $\Pi: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}^{\boldsymbol{k}}$ such that for every $x \in E,\|\Pi x\|_{2}=(1 \pm \epsilon)\|x\|_{2}$?

- Not possible if $\boldsymbol{k}<\boldsymbol{d}$.
- Possible if $\boldsymbol{k}=\boldsymbol{d}$. Pick Π to be an orthonormal basis for \boldsymbol{E}. Disadvantage: This requires knowing E and computing orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based on random projections

Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of $\mathbb{R}^{\boldsymbol{n}}$ of dimension \boldsymbol{d}. Let Π be a $D J L$ matrix $\Pi \in \mathbb{R}^{\boldsymbol{k} \times \boldsymbol{n}}$ with $\boldsymbol{k}=\boldsymbol{O}\left(\frac{\boldsymbol{d}}{\epsilon^{2}} \log (1 / \boldsymbol{\delta})\right)$ rows. Then with probability $(1-\delta)$ for every $x \in E$,

$$
\left\|\frac{1}{\sqrt{k}} \Pi x\right\|_{2}=(1 \pm \epsilon)\|x\|_{2}
$$

In other words JL Lemma extends from one dimension to arbitrary number of dimensions in a graceful way.

Linear least squares via Subspace embeddings

Let $a_{1}, a_{2}, \ldots, a_{\boldsymbol{d}}$ be the columns of \boldsymbol{A} and let \boldsymbol{E} be the subspace spanned by $\left\{a_{1}, a_{2}, \ldots, a_{\boldsymbol{d}}, b\right\}$
\boldsymbol{E} has dimension at most $\boldsymbol{d}+1$.

Use subspace embedding on E. Applying JL matrix Π with $\boldsymbol{k}=\boldsymbol{O}\left(\frac{d}{\epsilon^{2}}\right)$ rows we reduce $a_{1}, a_{2}, \ldots, a_{\boldsymbol{d}}, b$ to $a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{d}^{\prime}, b^{\prime}$ which are vectors in \mathbb{R}^{k}.

Solve $\min _{x^{\prime} \in \mathbb{R}^{\boldsymbol{d}}}\left\|\boldsymbol{A}^{\prime} \boldsymbol{x}^{\prime}-\boldsymbol{b}^{\prime}\right\|_{2}$

Faster Linear least squares via Subspace embeddings

Let $a_{1}, a_{2}, \ldots, a_{\boldsymbol{d}}$ be the columns of \boldsymbol{A} and let \boldsymbol{E} be the subspace spanned by $\left\{a_{1}, a_{2}, \ldots, a_{d}, b\right\}$
\boldsymbol{E} has dimension at most $\boldsymbol{d}+1$.

Use subspace embedding on E. Applying JL matrix Π with $k=O\left(\frac{d}{\epsilon^{2}}\right)$ rows we reduce $a_{1}, a_{2}, \ldots, a_{d}, b$ to $a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{d}^{\prime}, b^{\prime}$ which are vectors in \mathbb{R}^{k}.

Solve $\min _{x^{\prime} \in \mathbb{R}^{\boldsymbol{d}}}\left\|\boldsymbol{A}^{\prime} \boldsymbol{x}^{\prime}-\boldsymbol{b}^{\prime}\right\|_{2}$
Claim: Answer is a $(1+\boldsymbol{O}(\boldsymbol{\epsilon}))$-approximation to original problem if Π is a $(1+\epsilon)$-approximate subspace embedding.

Faster Linear least squares via Subspace embeddings

Apply subspace embedding Π to $\boldsymbol{A}, \boldsymbol{b}$ to obtain $\boldsymbol{A}^{\prime}, \boldsymbol{b}^{\prime}$
Solve $\min _{x^{\prime} \in \mathbb{R}^{d}}\left\|\boldsymbol{A}^{\prime} \boldsymbol{x}^{\prime}-\boldsymbol{b}^{\prime}\right\|_{2}$
Claim: Answer is a $(1+O(\epsilon))$-approximation to original problem if Π is a $(1+\epsilon)$-approximate subspace embedding.

Advantage: Reduces A from $\boldsymbol{n} \times \boldsymbol{d}$ to $\boldsymbol{k} \times \boldsymbol{d}$ where $\boldsymbol{k}=\boldsymbol{O}\left(\boldsymbol{d} / \epsilon^{2}\right)$. Use any fast approximate regression method on $\boldsymbol{A}^{\prime}, b^{\prime}$ as a black box.

Disadvantage: Dependence of $1 / \epsilon^{2}$ is high if one wants to choose small $\boldsymbol{\epsilon}$. In particular if \boldsymbol{n} and \boldsymbol{d} are large and comparable.

Accelerating Iterative Solvers via Sketching

- Iterative solvers that converge to solution are very common in numerical linear algebra. Each iteration is fast and goal is to reduce number of iterations
- Typically the number of iterations depends on how well-behaved the data is. An example is the condition number of the matrix.
- Iterative solvers can be sped up by pre-conditioning to make data well-behaved.
Goal: show that sketching techniques such as oblivious supspace embeddings can be viewed as preconditioning tools. Demonstrate on least squares regression.

Gradient Descent

Let $f: \mathbb{R}^{\boldsymbol{d}} \rightarrow \mathbb{R}$ be a real-valued differentiable function. Recall $\nabla f(x)$ is the gradient of f at x which is a vector in \mathbb{R}^{d} with $(\nabla f(x))_{i}=\frac{\partial f}{\partial x_{i}}$. Gradient descent is a common search technique to find a local minimum/optimum of f in the unconstrained setting. A local optimum is a point x where $\nabla f(x)=0$. When f is a convex function then any local optimum is a global optimum. There are many variants of gradient descent. Simplest one is based on having only access to the gradient and works with a fixed step size $\boldsymbol{\eta}$.

```
GradientDescent \((\boldsymbol{f}, \boldsymbol{\eta})\) :
    Choose a good strating point \(\boldsymbol{x}^{(0)} \in \mathbb{R}\)
    For \(t=1\) to \(\boldsymbol{T}\) to
        \(x^{(t)} \leftarrow x^{(t-1)}-\eta \nabla \boldsymbol{f}\left(x^{(t-1)}\right)\)
    Output \(\boldsymbol{x}^{(\boldsymbol{T})}\)
```


Gradient Descent

The choice of $\boldsymbol{\eta}$ (step size) is important for convergence and it depends on the smoothness of the function. If the gradient changes very rapidly it is difficult to find a local minimum since we may overshoot. An important parameter in the analysis is the smoothness which upper bounds the rate of change of the gradient.

Definition

f is L-smooth if $\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}$ for all x, y.
One can show that GD converges if $\boldsymbol{\eta} \leq 1 / L$. Convergence is much faster if the function is in addition strongly convex.

Convex functions

Definition

A real-valued continuous function $f: \mathbb{R}^{\boldsymbol{d}} \rightarrow \mathbb{R}$ is convex over a domain $D \subseteq \mathbb{R}^{\boldsymbol{d}}$ if for all $x, y \in D$ and for all $\boldsymbol{\theta} \in[0,1]$, $\boldsymbol{f}(\boldsymbol{\theta} \boldsymbol{x}+(1-\theta) \boldsymbol{y}) \leq \boldsymbol{\theta}(x)+(1-\theta) \boldsymbol{f}(\boldsymbol{y})$.

We will be interested in differentiable functions and twice-differentiable functions.

Fact: Differentiable function f is convex iff
$f(x) \geq f\left(x_{0}\right)+\left(x-x_{0}\right)^{T} \nabla f\left(x_{0}\right)$ for all $x, x_{0} \in D$.
f at any point x_{0} lies above the tangent at point x_{0}.
f is strictly convex if $f(x)>f\left(x_{0}\right)+\left(x-x_{0}\right)^{T} \nabla f\left(x_{0}\right)$ for all x, x_{0}.

Convex functions

Suppose f is twice differentiable function. $H(x)=\nabla^{2} f(x)$ is the Hessian of \boldsymbol{f} at \boldsymbol{x}. It is a $\boldsymbol{d} \times \boldsymbol{d}$ symmetric matrix where $H(x)_{i, j}=\boldsymbol{H}(x)_{j, i}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$.

Fact: Twice-differentiable function f is convex iff $\nabla^{2} f(x) \succeq 0$, that is, it is a positive semi-definite matrix. Alternatively, $y^{\top}\left(\nabla^{2} f(x)\right) y \geq 0$ for all y, x.

A real-symmetric matrix has all real eigen values and hence $\boldsymbol{H}(x)$ has real eigen-values for all twice-differentiable functions. When $H(x) \succeq 0$ (psd matrix) all the eigen-values are non-negative which means that the function's curvature is non-negative in all directions and hence bowl shaped (convex).

Strongly convex functions

Definition

A differentiable function f is strongly convex with parameter $\boldsymbol{\mu}$ if $f(x) \geq f\left(x_{0}\right)+\left(\nabla \boldsymbol{f}(x)-\nabla f\left(x_{0}\right)\right)^{\boldsymbol{T}}\left(x-x_{0}\right)+\frac{\mu}{2}\left\|x-x_{0}\right\|_{2}^{2}$ for all $x, x_{0} \in D$. Equivalently,
$\left(\nabla f(x)-\nabla f\left(x_{0}\right)\right)^{T}\left(x-x_{0}\right) \geq \mu\left\|x-x_{0}\right\|_{2}^{2}$.

Fact: Twice differentiable f is strongly convex with parameter $\boldsymbol{\mu}$ iff $\boldsymbol{\lambda}_{\text {min }}(\boldsymbol{H}(\boldsymbol{x})) \geq \boldsymbol{\mu}$ for all \boldsymbol{x} where $\boldsymbol{\lambda}_{\text {min }}(\boldsymbol{H}(\boldsymbol{x}))$ is the smallest eigen-value of $\boldsymbol{H}(x)$.

Fact: f is strongly convex with parameter $\boldsymbol{\mu}$ iff the function $g(x)=f(x)-\frac{\mu}{2}\|x\|_{2}^{2}$ is convex.

Regression as convex optimization problem

Consider

$$
f(x)=\|A x-b\|_{2}^{2}=x^{\boldsymbol{T}} \boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A} x-2 x^{\boldsymbol{T}} \boldsymbol{A} \boldsymbol{b}+\|\boldsymbol{b}\|_{2}^{2}
$$

The gradient is easy to compute explicitly:

$$
\nabla f(x)=2 A^{T} A x-2 A b
$$

One can see that the Hessian $\nabla^{2} \boldsymbol{f}(\boldsymbol{x})=2 \boldsymbol{A}^{T} \boldsymbol{A}$ and since $\boldsymbol{A}^{T} \boldsymbol{A}$ is psd it also shows that f is convex

Setting gradient to 0 one can see that the optimum solution value is $\boldsymbol{x}^{*}=\left(\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}\right)^{-1} \boldsymbol{A} \boldsymbol{b}$. Even though we have an explicit solution, iterative methods are preferred since maxtrix multiplication and computing the inverse are expensive.

Smoothness of regression

Suppose $f(x)=\|A x-b\|_{2}^{2}=x^{\top} A^{T} A x-2 x^{\top} A b+\|b\|_{2}^{2}$. It is a convex function with gradient $\nabla f(x)=2 A^{\top} A x-2 A b$.

For x, y we have $\|\nabla f(x)-\nabla f(y)\|_{2}=2\left\|A^{T} A(x-y)\right\|_{2}$. It follows that

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq 2 \sigma_{1}^{2}\|x-y\|_{2}
$$

where σ_{1} is the top singular value of \boldsymbol{A}.
Thus, for the regression problem, f is L-smooth where $L=2 \sigma_{1}^{2}$.

Condition number of a matrix

Suppose $\boldsymbol{f}(x)=\|\boldsymbol{A x}-\boldsymbol{b}\|_{2}^{2}=x^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} x-2 \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{b}+\|\boldsymbol{b}\|_{2}^{2}$. It is a convex function with gradient $\nabla f(x)=2 A^{T} A x-2 A b$.

Let $\sigma_{\text {max }}(\boldsymbol{A})=\sup _{\|x\|_{2}=1}\|\boldsymbol{A x}\|_{2}$ and let $\sigma_{\text {min }}(\boldsymbol{A})=\inf _{\|x\|_{2}=1}\|\boldsymbol{A x}\|_{2}$.

Definition

The condition number of \boldsymbol{A}, denoted by $\boldsymbol{\kappa}(\boldsymbol{A})$, is $\frac{\sigma_{\text {max }}(\boldsymbol{A})}{\sigma_{\text {min }}(\boldsymbol{A})}$.
Recall that $\boldsymbol{\lambda}_{\text {min }}(\boldsymbol{H}(x))$ is the strong convexity parameter of f. For regression $2 \boldsymbol{A}^{T} \boldsymbol{A}$ is the Hessian and hence $\boldsymbol{\lambda}_{\text {min }}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)=\boldsymbol{\sigma}_{\text {min }}^{2}$. Thus $\kappa(A)=L / \mu$ where L is the smoothness parameter and μ is the strong convexity parameter.

Gradient descent convergence when condition number is small

It is known that gradient descent converges very fast when $L / \boldsymbol{\mu}$ is bounded. We state a lemma that captures this in a special case of regression while also making an additional assumption.

Lemma

Suppose all singular vectors of \boldsymbol{A} are in the range
$[1-1 / \sqrt{2}, 1+1 / \sqrt{2}]$. If we do gradient descent for regression with $\boldsymbol{\eta}=1 / 2$ then for all $t \geq 0$ we have

$$
\left\|A x^{(t+1)}-A x^{*}\right\|_{2} \leq 2^{-t}\left\|A x^{(0)}-A x^{*}\right\|_{2}
$$

In other words the error of the vector $\boldsymbol{x}^{(\boldsymbol{t})}$ after \boldsymbol{t} steps goes down exponentially with t when compared to the initial error.

Gradient descent convergence when condition number is small

The lemma in the previous slide is a special case of a more general theorem about convergence of gradient descent for strongly convex functions. For a direct proof of the stated lemma for regression in previous slide see Nelson's notes.

Lemma

Suppose \boldsymbol{f} is an \mathbf{L}-smooth and $\boldsymbol{\mu}$-strongly convex function. Gradient descent with $\eta \leq 1 / L$ satisfies the property that

$$
\left\|x^{(t)}-x^{*}\right\|_{2}^{2} \leq(1-\boldsymbol{\alpha} \boldsymbol{\mu})^{\boldsymbol{t}}\left\|\boldsymbol{x}^{(0)}-x^{*}\right\|_{2}^{2}
$$

Implication for Regression

Lemma shows that if condition number of \boldsymbol{A} is small then gradient descent converges very fast. In pariticular if we have a good starting point $\boldsymbol{x}^{(0)}$ such that $\left\|\boldsymbol{A} \boldsymbol{x}^{(0)}-\boldsymbol{b}\right\|_{2} \leq \boldsymbol{c}\left\|\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right\|$ for some constant \boldsymbol{c} then gradient descent has the following property.

Lemma

After $\boldsymbol{t}=\boldsymbol{O}(\log (\boldsymbol{c} / \boldsymbol{\epsilon}))$ steps we have
$\left\|\boldsymbol{A} \boldsymbol{x}^{(\boldsymbol{t})}-\boldsymbol{b}\right\|_{2} \leq(1+\boldsymbol{\epsilon})\left\|\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right\|$.
To see this we observe via triangle inequality and lemma,
$\left\|\boldsymbol{A} \boldsymbol{x}^{(t)}-\boldsymbol{b}\right\|_{2} \leq\left\|\boldsymbol{A} \boldsymbol{x}^{(t)}-\boldsymbol{A} \boldsymbol{x}^{*}\right\|_{2}+\left\|\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right\|_{2} \leq 2^{-\boldsymbol{t}}\left\|\boldsymbol{A} \boldsymbol{x}^{(0)}-\boldsymbol{A} \boldsymbol{x}^{*}\right\|_{2}+\left\|\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right\|_{2}$.
By triangle inequality
$\left\|\boldsymbol{A} \boldsymbol{x}^{(0)}-\boldsymbol{A} \boldsymbol{x}^{*}\right\|_{2} \leq\left\|\boldsymbol{A} \boldsymbol{x}^{(0)}-\boldsymbol{b}\right\|_{2}+\left\|\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right\|_{2}$.
Putting together
$\left\|\boldsymbol{A} \boldsymbol{x}^{(t)}-\boldsymbol{b}\right\|_{2} \leq 2^{-\boldsymbol{t}}\left\|\boldsymbol{A} \boldsymbol{x}^{(0)}-\boldsymbol{b}\right\|_{2}+\left(1+2^{-t}\right)\left\|\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right\|_{2} \leq(1+\boldsymbol{O}(\epsilon))\left\|\boldsymbol{A} \boldsymbol{x}^{*}-\boldsymbol{b}\right\|_{2}$

Oblivious Subspace Embeddings Again

Suppose we use $\boldsymbol{\alpha}$-approximate oblivious subspace embedding for the columns $a_{1}, a_{2}, \ldots, a_{\boldsymbol{d}}$ via a $k \times n$ sketch matrix Π. Thus we obtain $\boldsymbol{A}^{\prime}=\Pi \boldsymbol{A}$. Previously we used $\boldsymbol{\alpha}=(1+\boldsymbol{\epsilon})$ and solved the regression problem $\min _{\boldsymbol{x}^{\prime} \in \mathbb{R}^{\boldsymbol{d}}}\left\|\boldsymbol{A}^{\prime} \boldsymbol{x}^{\prime}-\boldsymbol{b}^{\prime}\right\|_{2}$ where $\boldsymbol{b}^{\prime}=\Pi \boldsymbol{b}$. This required \boldsymbol{k} to be $\Theta\left(\boldsymbol{d} / \boldsymbol{\epsilon}^{2}\right)$. Now we instead use $\boldsymbol{\alpha}=\left(1+\boldsymbol{\epsilon}_{0}\right)$ for some fixed constaint ϵ_{0} (say $1 / 4$).

Let $A^{\prime}=\Pi A=U^{\prime} \Sigma^{\prime}\left(V^{\prime}\right)^{\boldsymbol{T}}$ where we compute SVD of \boldsymbol{A}^{\prime}. Note \boldsymbol{U}^{\prime} is an orthonormal basis for the columns of \boldsymbol{A}^{\prime}. Let $R=\boldsymbol{V}^{\prime}\left(\Sigma^{\prime}\right)^{-1}$.

Claim

The singular values of $A R$ are in the range $\left[1-\epsilon_{0}, 1+\epsilon_{0}\right]$.

Oblivious Subspace Embeddings Again

Claim

The singular values of $A R$ are in the range $\left[1-\epsilon_{0}, 1+\epsilon_{0}\right]$.
To see this consider any vector z :

$$
\|z\|_{2}=\left\|U^{\prime} \boldsymbol{z}\right\|_{2}=\|\Pi A R z\|_{2}=\left(1 \pm \epsilon_{0}\right)\|A R z\|_{2}
$$

The first equality is from ortonormality of \boldsymbol{U}^{\prime}, and second ineq is since Π is a $\left(1+\epsilon_{0}\right)$-approximate OBSE.

Claim

The column space of A and $A R$ are the same since V^{\prime} is orthonormal and Σ^{\prime} is a diagonal matrix.

Thus solving $\min _{x}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}$ is same as solving $\min _{y}\|A R y-b\|_{2}$. If y^{*} is solution to latter problem then $x^{*}=R y^{*}$ is a solution to the original problem.

Oblivious Subspace Embeddings Again

The previous two claims imply that gradient descent on $A R$ will converge very fast since its condition number if small and moreover a solution to $\min _{y}\|A R y-b\|_{2}$ allows us to recover a solution to the original regression problem with the same approximation quality.

Since Π is constant factor approximate OBSE, we can use the SVD $U^{\prime} \Sigma^{\prime}\left(V^{\prime}\right)^{\boldsymbol{T}}$ of ΠA to obtain a constant factor approximate starting solution $\boldsymbol{x}^{(0)}$ to start the gradient descent. This implies that the number of iterations required for an eventual $(1+\boldsymbol{\epsilon})$-approximation is $\boldsymbol{O}(\log (1 / \epsilon))$. Each iteration requires computing $A R x^{(t)}$.

Computing $\boldsymbol{A R X} \boldsymbol{x}^{(t)}$ can be done in $\boldsymbol{O}\left(\boldsymbol{d}^{2}+\operatorname{nnz}(\boldsymbol{A})\right)$ where nnz (\boldsymbol{A}) is the number of non-zeroes in \boldsymbol{A}.

Summarizing the algorithm

Input $\boldsymbol{A}, \boldsymbol{b}$ where \boldsymbol{A} is $\boldsymbol{n} \times \boldsymbol{d}$ matrix and $\boldsymbol{b} \in \mathbb{R}^{\boldsymbol{n}}$ with $\boldsymbol{n} \geq \boldsymbol{d}$

- Use ($1+\epsilon_{0}$)-approximate OBSE embedding $\boldsymbol{k} \times \boldsymbol{n}$ matrix Π with $\boldsymbol{k}=\boldsymbol{O}(\boldsymbol{d})$ and compute $\boldsymbol{A}^{\prime}=\Pi \boldsymbol{A}$ (use fast JL)
- Compute SVD $U^{\prime} \Sigma^{\prime}\left(V^{\prime}\right)^{T}$ of \boldsymbol{A}^{\prime} and let $R=V^{\prime}\left(\Sigma^{\prime}\right)^{-1}$
- Use SVD to compute a good starting solution for $\boldsymbol{y}^{(0)}$ for the problem $\min _{y}\|A R y-b\|_{2}$
- Use gradient descent for solving $\min _{y}\|A R y-b\|_{2}$ with starting solution $\boldsymbol{y}^{(0)}$ and terminate in $\boldsymbol{t}=\boldsymbol{O}(\log (1 / \epsilon))$ iterations
- Output Ry ${ }^{(t)}$

We have reduced dependence on ϵ by using ϵ_{0} approximate OBSE for some fixed ϵ_{0} and then using gradient descent which has much better dependence on $\boldsymbol{\epsilon}$. For high accurate solutions this is an advantage.

Part I

Proof of GD Convergence for Strongly Convex Functions

Convergence of GD

Recall strong convexity implies that

$$
f(y) \geq f(x)+(\nabla f(x))^{T}(y-x)+\frac{\mu}{2}\|y-x\|_{2}^{2}
$$

We need a very useful lemma.

Lemma

Suppose f is μ-strongly convex then it also satisfies the Polyak-Lojasiewicz condition that $\|\nabla f(x)\|_{2}^{2} \geq 2 \mu\left(f(x)-f\left(x^{*}\right)\right)$.

Intuition: strongly convex means function is has a strong curvature. Thus, the farther x is from x^{*} (where gradient is 0) the larger the gradient.

Properties from smoothness

Lemma

Suppose f is L-smooth. Then
(1) $f(y)-f(x)-(\nabla f(x))^{T}(y-x) \leq \frac{L}{2}\|x-y\|_{2}^{2}$
(2) $f\left(x-\frac{1}{L} \nabla f(x)\right)-f(x) \leq-\frac{1}{2 L}\|\nabla f(x)\|_{2}^{2}$

Corollary

Suppose \boldsymbol{f} is L-smooth then $\|\nabla f(x)\|_{2}^{2} \leq 2 L\left(f(x)-f\left(x^{*}\right)\right)$.
Follows from part (2) of Lemma since

$$
f\left(x^{*}\right)-f(x) \leq f\left(x-\frac{1}{L} \nabla f(x)\right)-f(x) \leq-\frac{1}{2 L}\|\nabla f(x)\|_{2}^{2}
$$

Properties from smoothness

Suppose \boldsymbol{f} is \boldsymbol{L}-smooth. Then
$f(y)-f(x)-(\nabla f(x))^{T}(y-x) \leq \frac{L}{2}\|x-y\|_{2}^{2}$.
Consider univariate function $g(\cdot)$ where $\boldsymbol{g}(\boldsymbol{t})=\boldsymbol{f}(\boldsymbol{x}+\boldsymbol{t}(\boldsymbol{y}-\boldsymbol{x}))-(\nabla \boldsymbol{f}(\boldsymbol{x}))^{\boldsymbol{T}}(\boldsymbol{x}+\boldsymbol{t}(\boldsymbol{y}-\boldsymbol{x}))$. Note that $\boldsymbol{g}(0)=\boldsymbol{f}(\boldsymbol{x})-(\nabla \boldsymbol{f}(\boldsymbol{x}))^{\boldsymbol{T}} \boldsymbol{x}$ and $\boldsymbol{g}(1)=\boldsymbol{f}(\boldsymbol{y})-(\nabla \boldsymbol{f}(\boldsymbol{x}))^{\boldsymbol{T}} \boldsymbol{y}$.

$$
\begin{aligned}
g(1)-g(0) & =\int_{0}^{1} g^{\prime}(t) d t=\int_{0}^{1}(\nabla f(x+t(y-x))-\nabla f(x))^{T}(y-x) d \\
& \leq \int_{0}^{1}\|(\nabla f(x+t(y-x))-\nabla f(x))\|\|(y-x)\| d t \\
& \leq \int_{0}^{1} L t\|y-x\|^{2} d t=\frac{L}{2}\|y-x\|^{2}
\end{aligned}
$$

We used smoothness to go from second to third line.

Properties from smoothness

Second part: $\boldsymbol{f}\left(\boldsymbol{x}-\frac{1}{\boldsymbol{L}} \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})\right)-\boldsymbol{f}(\boldsymbol{x}) \leq-\frac{1}{2 \boldsymbol{L}}\|\nabla \boldsymbol{f}(\boldsymbol{x})\|_{2}^{2}$
Using first part with $\boldsymbol{y}=\boldsymbol{x}-\frac{1}{L} \nabla \boldsymbol{f}(\boldsymbol{x})$,

$$
f\left(x-\frac{1}{L} \nabla f(x)\right)-f(x)-(\nabla f(x))^{\boldsymbol{T}}\left(-\frac{1}{L} \nabla f(x)\right) \leq \frac{L}{2}\left\|\frac{1}{L} \nabla f(x)\right\|_{2}^{2}
$$

Simplifying and rearranging terms gives the desired property.

Polyak-Lojasiewicz condition

We don't need this but it is a nice contrast to the previous lemma.

Lemma

Suppose \boldsymbol{f} is $\boldsymbol{\mu}$-strongly convex then it also satisfies the Polyak-Lojasiewicz condition that $\|\nabla f(x)\|_{2}^{2} \geq 2 \mu\left(f(x)-f\left(x^{*}\right)\right)$.

Applying strong convexity with $y=x^{*}$ and rearranging

$$
\begin{aligned}
f(x)-f\left(x^{*}\right) & \leq(\nabla f(x))^{T}\left(x-x^{*}\right)-\frac{\mu}{2}\left\|x-x^{*}\right\|_{2}^{2} \\
& =\frac{1}{2 \mu}\|\nabla f(x)\|_{2}^{2}-\frac{1}{2}\left\|\sqrt{\mu}\left(x-x^{*}\right)-\frac{1}{\sqrt{\mu}} \nabla f(x)\right\|_{2}^{2} \\
& \leq \frac{1}{2 \mu}\|\nabla f(x)\|_{2}^{2} .
\end{aligned}
$$

Rearranging gives the desired claim.

Proof of convergence of GD for strongly convex functions

Lemma

Suppose f is an L-smooth and μ-strongly convex function. Gradient descent with $\eta \leq 1 / L$ satisfies the property that $\left\|x^{(t)}-x^{*}\right\|_{2}^{2} \leq(1-\alpha \mu)^{t}\left\|x^{(0)}-x^{*}\right\|_{2}^{2}$.

Suffices to prove the following

$$
\left\|x^{(t+1)}-x^{*}\right\|_{2}^{2} \leq(1-\alpha \boldsymbol{\mu})\left\|x^{(t)}-x^{*}\right\|_{2}^{2}
$$

and apply it repeatedly.

Proof contd

$$
\begin{aligned}
\left\|x^{(t+1)}-x^{*}\right\|_{2}^{2} & =\left\|x^{(t)}-\eta \nabla f\left(x^{(t)}\right)-x^{*}\right\|_{2}^{2} \quad \text { from GD algorithm } \\
& =\left\|x^{(t)}-x^{*}\right\|_{2}^{2}-2 \boldsymbol{\eta}\left(\nabla f\left(x^{(t)}\right)\right)^{\boldsymbol{T}}\left(x^{(t)}-x^{*}\right)+\eta^{2}\left\|\nabla f\left(x^{(t)}\right)\right\|_{2}^{2} \\
& \leq(1-\alpha \boldsymbol{\mu})\left\|x^{(t)}-x^{*}\right\|_{2}^{2}-2 \boldsymbol{\eta}\left(\boldsymbol{f}\left(x^{(t)}\right)-\boldsymbol{f}\left(x^{*}\right)\right)+2 \eta^{2} L\left\|\nabla f\left(x^{(t)}\right)\right\|_{2}^{2} \quad \text { (strong convexity ineq) } \\
& \leq(1-\alpha \boldsymbol{\mu})\left\|x^{(t)}-x^{*}\right\|_{2}^{2}-2 \boldsymbol{\eta}\left(\boldsymbol{f}\left(x^{(t)}\right)-\boldsymbol{f}\left(x^{*}\right)\right)+2 \eta^{2} L\left(f\left(x^{(t)}\right)-\boldsymbol{f}\left(x^{*}\right)\right) \quad \text { (smoothness corollary } \\
& \leq(1-\alpha \boldsymbol{\mu})\left\|x^{(t)}-x^{*}\right\|_{2}^{2}-2 \boldsymbol{\eta}(1-\eta L)\left(\boldsymbol{f}\left(x^{(t)}\right)-\boldsymbol{f}\left(x^{*}\right)\right) \\
& \leq(1-\alpha \boldsymbol{\mu})\left\|x^{(t)}-x^{*}\right\|_{2}^{2} \quad\left(\text { since } \boldsymbol{\eta} \leq 1 / L \text { and } \boldsymbol{f}\left(x^{(t)}\right)-\boldsymbol{f}\left(x^{*}\right)\right.
\end{aligned}
$$

