CS 498ABD: Algorithms for Big Data

Fast and Space Efficient NLA

Lecture 20 Nov 3, 2022

Some topics today

We have seen fast "approximation" algorithms for matrix multiplication

- random sampling
- Using JL

Today:

- Subspace embeddings for faster linear least squares and low-rank approximation
- Frequent directions algorithms for one/two pass approximate SVD

Subspace Embedding

Question: Suppose we have linear subspace E of \mathbb{R}^n of dimension d. Can we find a projection $\Pi : \mathbb{R}^n \to \mathbb{R}^k$ such that for *every* $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon) \|x\|_2$?

- Not possible if k < d.
- Possible if k = d. Pick Π to be an orthonormal basis for E.
 Disadvantage: This requires knowing E and computing orthonormal basis which is slow.

What we really want: *Oblivious* subspace embedding ala JL based on random projections

Oblivious Supspace Embedding

Theorem

Suppose **E** is a linear subspace of \mathbb{R}^n of dimension **d**. Let Π be a DJL matrix $\Pi \in \mathbb{R}^{k \times n}$ with $k = O(\frac{d}{\epsilon^2} \log(1/\delta))$ rows. Then with probability $(1 - \delta)$ for every $x \in E$,

$$\|rac{1}{\sqrt{k}} {{\mathbb T} x}\|_2 = (1\pm\epsilon) \|x\|_2.$$

In other words JL Lemma extends from one dimension to arbitrary number of dimensions in a graceful way.

Part I

Faster algorithms via subspace embeddings

Linear least squares/Regression

Linear least squares: Given $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^{d}$ find x to minimize $||Ax - b||_2$.

Interesting when $n \gg d$ the over constrained case when there is no solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we are asking what is the vector z in the column space of A that is closest to vector b in ℓ_2 norm.

Closest vector to \boldsymbol{b} is the projection of \boldsymbol{b} into the column space of \boldsymbol{A} so it is "obvious" geometrically. How do we find it?

Linear least squares/Regression

Linear least squares: Given $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^{d}$ find x to minimize $||Ax - b||_2$.

Interesting when $n \gg d$ the over constrained case when there is no solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we are asking what is the vector z in the column space of A that is closest to vector b in ℓ_2 norm.

Closest vector to **b** is the projection of **b** into the column space of **A** so it is "obvious" geometrically. How do we find it? Find an orthonormal basis z_1, z_2, \ldots, z_r for the columns of **A**. Compute projection **c** as $\mathbf{c} = \sum_{j=1}^r \langle \mathbf{b}, z_j \rangle z_j$ and output answer as $\|\mathbf{b} - \mathbf{c}\|_2$.

Linear least squares via Subspace embeddings

Let a_1, a_2, \ldots, a_d be the columns of A and let E be the subspace spanned by $\{a_1, a_2, \ldots, a_d, b\}$

E has dimension at most d + 1.

Use subspace embedding on E. Applying JL matrix Π with $k = O(\frac{d}{\epsilon^2})$ rows we reduce a_1, a_2, \ldots, a_d, b to $a'_1, a'_2, \ldots, a'_d, b'$ which are vectors in \mathbb{R}^k .

Solve $\min_{x' \in \mathbb{R}^d} \| \mathbf{A}' \mathbf{x}' - \mathbf{b}' \|_2$

Low-rank approximation

Recall: Given $A \in \mathbb{R}^{n \times d}$ and integer k want to find best rank matrix B to minimize $||A - B||_F$

• SVD gives optimum for all k. If $A = UDV^T = \sum_{i=1}^{d} \sigma_i u_i v_i^T$ then $A_k = \sum_{i=1}^{k} \sigma_i u_i v_i^T$ is optimum for every k.

•
$$\|\mathbf{A}-\mathbf{A}_k\|_F^2 = \sum_{i>k} \sigma_i^2$$
.

- v₁, v₂,..., v_k are k orthogonal unit vectors from ℝ^d and maximize the sum of squares of the projection of the rows of A onto the space spanned by them
- *u*₁, *u*₂, ..., *u_k* are *k* orthogonal unit vectors from ℝⁿ that maximize the sum of squares of the projections of the columns of *A* onto the space spanned

Column view of SVD: u_1, u_2, \ldots, u_k are k orthogonal unit vectors from \mathbb{R}^n that maximize the sum of squares of the projections of the columns of A onto the space spanned

Let a_1, a_2, \ldots, a_d be the columns of A and let E be subspace spanned by them. dim $(E) \leq d$ obviously.

Wlog $u_1, u_2, \ldots, u_k \in E$. Why?

Column view of SVD: u_1, u_2, \ldots, u_k are k orthogonal unit vectors from \mathbb{R}^n that maximize the sum of squares of the projections of the columns of A onto the space spanned

Let a_1, a_2, \ldots, a_d be the columns of A and let E be subspace spanned by them. dim $(E) \leq d$ obviously.

Wlog $u_1, u_2, \ldots, u_k \in E$. Why? If u_1, u_2, \ldots, u_k fixed then v_1, v_2, \ldots, v_k are determined. Why?

Column view of SVD: u_1, u_2, \ldots, u_k are k orthogonal unit vectors from \mathbb{R}^n that maximize the sum of squares of the projections of the columns of A onto the space spanned

Let a_1, a_2, \ldots, a_d be the columns of A and let E be subspace spanned by them. dim $(E) \leq d$ obviously.

Wlog $u_1, u_2, \ldots, u_k \in E$. Why? If u_1, u_2, \ldots, u_k fixed then v_1, v_2, \ldots, v_k are determined. Why?

Column view of SVD: u_1, u_2, \ldots, u_k are k orthogonal unit vectors from \mathbb{R}^n that maximize the sum of squares of the projections of the columns of A onto the space spanned

Let a_1, a_2, \ldots, a_d be the columns of A and let E be subspace spanned by them. dim $(E) \leq d$ obviously.

Wlog $u_1, u_2, \ldots, u_k \in E$. Why? If u_1, u_2, \ldots, u_k fixed then v_1, v_2, \ldots, v_k are determined. Why? Let Π be an ϵ -approximate subspace preserving embedding for E

Claim: $\|(\Pi A) - (\Pi A)_k\|_F \le (1 + \epsilon) \|A - A_k\|_F$

Claim: $\|(\Pi A) - (\Pi A)_k\|_F \leq (1+\epsilon)\|A - A_k\|_F$

Claim: $\|(\Pi A) - (\Pi A)_k\|_F \le (1 + \epsilon) \|A - A_k\|_F$

Proof sketch: Let a'_1, \ldots, a'_d be columns of $\prod A$ and let u'_1, \ldots, u'_k be $\prod u_1, \ldots, \prod u_k$.

Claim: $\|(\Pi A) - (\Pi A)_k\|_F \le (1 + \epsilon) \|A - A_k\|_F$

Proof sketch: Let a'_1, \ldots, a'_d be columns of $\prod A$ and let u'_1, \ldots, u'_k be $\prod u_1, \ldots, \prod u_k$.

 $\|A - A_k\|_F^2 = \sum_{i=1}^d \|a_i - \sum_{j=1}^k v_j(i)u_j\|_2^2$

Claim: $\|(\Pi A) - (\Pi A)_k\|_F \le (1 + \epsilon) \|A - A_k\|_F$

Proof sketch: Let a'_1, \ldots, a'_d be columns of $\prod A$ and let u'_1, \ldots, u'_k be $\prod u_1, \ldots, \prod u_k$.

$$\| \mathbf{A} - \mathbf{A}_{k} \|_{F}^{2} = \sum_{i=1}^{d} \| \mathbf{a}_{i} - \sum_{j=1}^{k} \mathbf{v}_{j}(i) \mathbf{u}_{j} \|_{2}^{2}$$

From subspace embedding property of Π , $\|\Pi(\mathbf{a}_i - \sum_{j=1}^k \mathbf{v}_j(i)\mathbf{u}_j)\|_2 \le (1+\epsilon) \|\mathbf{a}_i - \sum_{j=1}^k \mathbf{v}_j(i)\mathbf{u}_j\|_2$

Since u'_1, u'_2, \ldots, u'_k is a feasible solution for *k*-rank approximation to $\prod A$.

Claim: $\|(\Pi A) - (\Pi A)_k\|_F \le (1 + \epsilon) \|A - A_k\|_F$

Proof sketch: Let a'_1, \ldots, a'_d be columns of $\prod A$ and let u'_1, \ldots, u'_k be $\prod u_1, \ldots, \prod u_k$.

$$\| \mathbf{A} - \mathbf{A}_{k} \|_{F}^{2} = \sum_{i=1}^{d} \| \mathbf{a}_{i} - \sum_{j=1}^{k} \mathbf{v}_{j}(i) \mathbf{u}_{j} \|_{2}^{2}$$

From subspace embedding property of Π , $\|\Pi(\mathbf{a}_i - \sum_{j=1}^k \mathbf{v}_j(i)\mathbf{u}_j)\|_2 \le (1+\epsilon) \|\mathbf{a}_i - \sum_{j=1}^k \mathbf{v}_j(i)\mathbf{u}_j\|_2$

Since u'_1, u'_2, \ldots, u'_k is a feasible solution for *k*-rank approximation to $\prod A$.

Claim: $\|(\Pi A) - (\Pi A)_k\|_F \ge (1 - \epsilon) \|A - A_k\|_F$.

Claim: $\|(\Pi A) - (\Pi A)_k\|_F \le (1 + \epsilon) \|A - A_k\|_F$

Proof sketch: Let a'_1, \ldots, a'_d be columns of $\prod A$ and let u'_1, \ldots, u'_k be $\prod u_1, \ldots, \prod u_k$.

$$\| \mathbf{A} - \mathbf{A}_{k} \|_{F}^{2} = \sum_{i=1}^{d} \| \mathbf{a}_{i} - \sum_{j=1}^{k} \mathbf{v}_{j}(i) \mathbf{u}_{j} \|_{2}^{2}$$

From subspace embedding property of Π , $\|\Pi(\mathbf{a}_i - \sum_{j=1}^k \mathbf{v}_j(i)\mathbf{u}_j)\|_2 \le (1+\epsilon) \|\mathbf{a}_i - \sum_{j=1}^k \mathbf{v}_j(i)\mathbf{u}_j\|_2$

Since u'_1, u'_2, \ldots, u'_k is a feasible solution for *k*-rank approximation to $\prod A$.

Claim: $\|(\Pi A) - (\Pi A)_k\|_F \ge (1 - \epsilon)\|A - A_k\|_F$. Prove it!

Running Time

- A has d columns in \mathbb{R}^n and ΠA has d columns in \mathbb{R}^k where $k = O(\frac{d}{\epsilon^2} \ln(1/\delta))$. Hence dimensionality reduction from n to k and one can run SVD on ΠA .
- □*A* can be computed fast in time roughly proportional to *nnz*(*A*) (number of non-zeroes of *A*).

Part II

Frequent Directions Algorithm

Low-rank approximation

Faster low-rank approximation algorithms based on randomized algorithm: sampling and subspace embeddings

- Can we find a deterministic algorithm?
- Streaming algorithm?

Low-rank approximation and SVD

Given matrix $A \in \mathbb{R}^{n \times d}$ and (small) integer k

Row view of SVD: v_1, v_2, \ldots, v_k are k orthogonal unit vectors from \mathbb{R}^d that maximize the sum of squares of the projections of the rows A onto the space spanned

Let a_1, a_2, \ldots, a_n be the rows of A (treated as vectors in \mathbb{R}^d)

$$\sigma_j^2 = \sum_{i=1}^n \langle a_i, v_j
angle^2$$
 and $\|m{A} - m{A}_k\|_F^2 = \sum_{j>k} \sigma_j^2$

Low-rank approximation and SVD

Given matrix $A \in \mathbb{R}^{n \times d}$ and (small) integer k

Row view of SVD: v_1, v_2, \ldots, v_k are k orthogonal unit vectors from \mathbb{R}^d that maximize the sum of squares of the projections of the rows A onto the space spanned

Let a_1, a_2, \ldots, a_n be the rows of A (treated as vectors in \mathbb{R}^d)

$$\sigma_j^2 = \sum_{i=1}^n \langle a_i, v_j
angle^2$$
 and $\|m{A} - m{A}_k\|_F^2 = \sum_{j>k} \sigma_j^2$

Consider matrix $D_k V_k^T$ whose rows are $\sigma_1 v_1, \sigma_2 v_2, \ldots, \sigma_k v_k$. $\|D_k V_k^T\|_F^2 = \sum_{j=1}^k \sigma_j^2 = \|A_k\|_F^2$

Frequent Directions Algorithm

[Liberty] and analyzed for relative error guarantee by [Ghashami-Phillips] Liberty inspired by Misra-Greis frequent items algorithm.

Rows of **A** come one by one

Algorithm maintains a matrix $Q \in \mathbb{R}^{\ell \times d}$ where $\ell = k(1 + 1/\epsilon)$. Hence memory is $O(kd/\epsilon)$

At end of algorithm let Q_k be best rank k-approximation for Q. Then $||A - \operatorname{Proj}_{Q_k}(A)||_F \leq (1 + \epsilon) ||A - A_k||_F$.

Thus a $(1 + \epsilon)$ -approximate *k*-dimensional subspace for rows of *A* be identified by storing $O(k/\epsilon)$ rows.

FD Algorithm

Frequent-Directions Initialize Q^0 as an all zeroes $\ell \times d$ matrix For each row $a_i \in A$ do Set $Q_+ \leftarrow Q^{i-1}$ with last row replaced by a_i Compute SVD of Q_+ as UDV^T $C^{i} = DV^{T}$ (for analysis) $\delta_i = \sigma_\ell^2$ (for analysis) $m{D}' = ext{diag}(\sqrt{\sigma_1^2 - \delta_i}, \sqrt{\sigma_2^2 - \delta_i}, \dots, \sqrt{\sigma_{\ell-1}^2 - \delta_i}, 0)$ $Q^i = D'V^T$ EndFor Return $Q = Q^n$

If $\ell = \lceil k(1+1/\epsilon) \rceil$ and Q_k is the rank k approximation to output Q then

$$\|oldsymbol{A}-\mathsf{Proj}_{oldsymbol{Q}_k}(oldsymbol{A})\|_{oldsymbol{F}} \leq (1+\epsilon)\|oldsymbol{A}-oldsymbol{A}_k\|_{oldsymbol{F}}$$

Running time

- One pass algorithm but requires second pass to compute actual singular values etc
- Space $O(kd/\epsilon)$
- Run time: *n* computations of SVD on *k*/*\epsilon \times d* matrix. Can be improved (see home work problem).

Interesting even when $\mathbf{k} = 1$. Alternative to power method to find top singular value/vector. Deterministic.