CS 498ABD: Algorithms for Big Data

Fast and Space Efficient NLA Lecture 20
 Nov 3, 2022

Some topics today

We have seen fast "approximation" algorithms for matrix multiplication

- random sampling
- Using JL

Today:

- Subspace embeddings for faster linear least squares and low-rank approximation
- Frequent directions algorithms for one/two pass approximate SVD

Subspace Embedding

Question: Suppose we have linear subspace E of $\mathbb{R}^{\boldsymbol{n}}$ of dimension d. Can we find a projection $\Pi: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}^{\boldsymbol{k}}$ such that for every $x \in E,\|\Pi x\|_{2}=(1 \pm \epsilon)\|x\|_{2}$?

- Not possible if $\boldsymbol{k}<\boldsymbol{d}$.
- Possible if $\boldsymbol{k}=\boldsymbol{d}$. Pick Π to be an orthonormal basis for \boldsymbol{E}. Disadvantage: This requires knowing E and computing orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based on random projections

Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of $\mathbb{R}^{\boldsymbol{n}}$ of dimension \boldsymbol{d}. Let Π be a $D J L$ matrix $\Pi \in \mathbb{R}^{\boldsymbol{k} \times \boldsymbol{n}}$ with $\boldsymbol{k}=\boldsymbol{O}\left(\frac{\boldsymbol{d}}{\epsilon^{2}} \log (1 / \boldsymbol{\delta})\right)$ rows. Then with probability $(1-\delta)$ for every $x \in E$,

$$
\left\|\frac{1}{\sqrt{k}} \Pi x\right\|_{2}=(1 \pm \epsilon)\|x\|_{2}
$$

In other words JL Lemma extends from one dimension to arbitrary number of dimensions in a graceful way.

Part I

Faster algorithms via subspace embeddings

Linear least squares/Regression

Linear least squares: Given $A \in \mathbb{R}^{\boldsymbol{n \times d}}$ and $b \in \mathbb{R}^{\boldsymbol{d}}$ find x to minimize $\|A x-b\|_{2}$.

Interesting when $\boldsymbol{n} \gg \boldsymbol{d}$ the over constrained case when there is no solution to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ and want to find best fit.

Geometrically $\boldsymbol{A x}$ is a linear combination of columns of \boldsymbol{A}. Hence we are asking what is the vector \boldsymbol{z} in the column space of \boldsymbol{A} that is closest to vector \boldsymbol{b} in ℓ_{2} norm.

Closest vector to \boldsymbol{b} is the projection of \boldsymbol{b} into the column space of \boldsymbol{A} so it is "obvious" geometrically. How do we find it?

Linear least squares/Regression

Linear least squares: Given $A \in \mathbb{R}^{\boldsymbol{n \times d}}$ and $b \in \mathbb{R}^{\boldsymbol{d}}$ find x to minimize $\|A x-b\|_{2}$.

Interesting when $\boldsymbol{n} \gg \boldsymbol{d}$ the over constrained case when there is no solution to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ and want to find best fit.

Geometrically $\boldsymbol{A x}$ is a linear combination of columns of \boldsymbol{A}. Hence we are asking what is the vector \boldsymbol{z} in the column space of \boldsymbol{A} that is closest to vector \boldsymbol{b} in ℓ_{2} norm.

Closest vector to \boldsymbol{b} is the projection of \boldsymbol{b} into the column space of \boldsymbol{A} so it is "obvious" geometrically. How do we find it? Find an orthonormal basis $z_{1}, z_{2}, \ldots, z_{r}$ for the columns of \boldsymbol{A}. Compute projection \boldsymbol{c} as $\boldsymbol{c}=\sum_{\boldsymbol{j}=1}^{r}\left\langle\boldsymbol{b}, z_{\boldsymbol{j}}\right\rangle z_{j}$ and output answer as $\|\boldsymbol{b}-\boldsymbol{c}\|_{2}$.

Linear least squares via Subspace embeddings

Let $a_{1}, a_{2}, \ldots, a_{\boldsymbol{d}}$ be the columns of \boldsymbol{A} and let \boldsymbol{E} be the subspace spanned by $\left\{a_{1}, a_{2}, \ldots, a_{d}, b\right\}$
\boldsymbol{E} has dimension at most $\boldsymbol{d}+1$.

Use subspace embedding on E. Applying JL matrix Π with $\boldsymbol{k}=\boldsymbol{O}\left(\frac{d}{\epsilon^{2}}\right)$ rows we reduce $a_{1}, a_{2}, \ldots, a_{d}, b$ to $a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{d}^{\prime}, b^{\prime}$ which are vectors in $\mathbb{R}^{\boldsymbol{k}}$.

Solve $\min _{x^{\prime} \in \mathbb{R}^{\boldsymbol{d}}}\left\|\boldsymbol{A}^{\prime} \boldsymbol{x}^{\prime}-\boldsymbol{b}^{\prime}\right\|_{2}$

Low-rank approximation

Recall: Given $\boldsymbol{A} \in \mathbb{R}^{\boldsymbol{n} \times \boldsymbol{d}}$ and integer k want to find best rank matrix B to minimize $\|A-B\|_{F}$

- SVD gives optimum for all k. If $A=U D V^{\top}=\sum_{i=1}^{d} \sigma_{i} u_{i} v_{i}^{\top}$ then $A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}{ }^{\top}$ is optimum for every k.
- $\left\|A-A_{k}\right\|_{F}^{2}=\sum_{i>k} \sigma_{i}^{2}$.
- $v_{1}, v_{2}, \ldots, v_{k}$ are k orthogonal unit vectors from \mathbb{R}^{d} and maximize the sum of squares of the projection of the rows of \boldsymbol{A} onto the space spanned by them
- $u_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}$ are k orthogonal unit vectors from $\mathbb{R}^{\boldsymbol{n}}$ that maximize the sum of squares of the projections of the columns of \boldsymbol{A} onto the space spanned

Low-rank approximation via subspace embeddings

Column view of SVD: $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{\boldsymbol{k}}$ are \boldsymbol{k} orthogonal unit vectors from $\mathbb{R}^{\boldsymbol{n}}$ that maximize the sum of squares of the projections of the columns of \boldsymbol{A} onto the space spanned

Let $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{\boldsymbol{d}}$ be the columns of \boldsymbol{A} and let \boldsymbol{E} be subspace spanned by them. $\operatorname{dim}(E) \leq \boldsymbol{d}$ obviously.
$W \log \boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{\boldsymbol{k}} \in E$. Why?

Low-rank approximation via subspace embeddings

Column view of SVD: $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{\boldsymbol{k}}$ are \boldsymbol{k} orthogonal unit vectors from $\mathbb{R}^{\boldsymbol{n}}$ that maximize the sum of squares of the projections of the columns of \boldsymbol{A} onto the space spanned

Let $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{\boldsymbol{d}}$ be the columns of \boldsymbol{A} and let \boldsymbol{E} be subspace spanned by them. $\operatorname{dim}(E) \leq \boldsymbol{d}$ obviously.
$W \log u_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k} \in E$. Why?
If $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{\boldsymbol{k}}$ fixed then $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{k}}$ are determined. Why?

Low-rank approximation via subspace embeddings

Column view of SVD: $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{\boldsymbol{k}}$ are \boldsymbol{k} orthogonal unit vectors from $\mathbb{R}^{\boldsymbol{n}}$ that maximize the sum of squares of the projections of the columns of \boldsymbol{A} onto the space spanned

Let $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{\boldsymbol{d}}$ be the columns of \boldsymbol{A} and let \boldsymbol{E} be subspace spanned by them. $\operatorname{dim}(E) \leq \boldsymbol{d}$ obviously.
$W \log u_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k} \in E$. Why?
If $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{\boldsymbol{k}}$ fixed then $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{k}}$ are determined. Why?

Low-rank approximation via subspace embeddings

Column view of SVD: $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{\boldsymbol{k}}$ are \boldsymbol{k} orthogonal unit vectors from $\mathbb{R}^{\boldsymbol{n}}$ that maximize the sum of squares of the projections of the columns of \boldsymbol{A} onto the space spanned

Let $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{\boldsymbol{d}}$ be the columns of \boldsymbol{A} and let \boldsymbol{E} be subspace spanned by them. $\operatorname{dim}(E) \leq \boldsymbol{d}$ obviously.

Wlog $u_{1}, \boldsymbol{u}_{2}, \ldots, u_{k} \in E$. Why?
If $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{\boldsymbol{k}}$ fixed then $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{k}}$ are determined. Why?
Let Π be an $\boldsymbol{\epsilon}$-approximate subspace preserving embedding for \boldsymbol{E}
Claim: $\left\|(\Pi A)-(\Pi A)_{k}\right\|_{F} \leq(1+\epsilon)\left\|A-A_{k}\right\|_{F}$

Analysis

Claim: $\left\|(П A)-(П A)_{k}\right\|_{F} \leq(1+\epsilon)\left\|A-A_{k}\right\|_{F}$

Analysis

Claim: $\left\|(\Pi A)-(\Pi A)_{k}\right\|_{F} \leq(1+\epsilon)\left\|A-A_{k}\right\|_{F}$
Proof sketch: Let $a_{1}^{\prime}, \ldots, a_{d}^{\prime}$ be columns of ΠA and let $u_{1}^{\prime}, \ldots, u_{k}^{\prime}$ be $\Pi u_{1}, \ldots, \Pi u_{k}$.

Analysis

Claim: $\left\|(\Pi A)-(\Pi A)_{k}\right\|_{F} \leq(1+\epsilon)\left\|A-A_{k}\right\|_{F}$
Proof sketch: Let $a_{1}^{\prime}, \ldots, a_{d}^{\prime}$ be columns of ΠA and let $u_{1}^{\prime}, \ldots, u_{k}^{\prime}$ be $\Pi u_{1}, \ldots, \Pi u_{k}$.

$$
\left\|A-A_{k}\right\|_{F}^{2}=\sum_{i=1}^{d}\left\|a_{i}-\sum_{j=1}^{k} v_{j}(i) u_{j}\right\|_{2}^{2}
$$

Analysis

Claim: $\left\|(\Pi A)-(\Pi A)_{k}\right\|_{F} \leq(1+\epsilon)\left\|A-A_{k}\right\|_{F}$
Proof sketch: Let $a_{1}^{\prime}, \ldots, a_{d}^{\prime}$ be columns of ΠA and let $u_{1}^{\prime}, \ldots, u_{k}^{\prime}$ be $\Pi u_{1}, \ldots, \Pi u_{k}$.
$\left\|A-A_{k}\right\|_{F}^{2}=\sum_{i=1}^{d}\left\|a_{i}-\sum_{j=1}^{k} v_{j}(i) u_{j}\right\|_{2}^{2}$
From subspace embedding property of Π, $\left\|\Pi\left(a_{i}-\sum_{j=1}^{k} v_{j}(i) u_{j}\right)\right\|_{2} \leq(1+\epsilon)\left\|a_{i}-\sum_{j=1}^{k} v_{j}(i) u_{j}\right\|_{2}$

Since $u_{1}^{\prime}, u_{2}^{\prime}, \ldots, \boldsymbol{u}_{k}^{\prime}$ is a feasible solution for \boldsymbol{k}-rank approximation to $П А$.

Analysis

Claim: $\left\|(\Pi A)-(\Pi A)_{k}\right\|_{F} \leq(1+\epsilon)\left\|A-A_{k}\right\|_{F}$
Proof sketch: Let $a_{1}^{\prime}, \ldots, a_{d}^{\prime}$ be columns of ΠA and let $u_{1}^{\prime}, \ldots, u_{k}^{\prime}$ be $\Pi u_{1}, \ldots, \Pi u_{k}$.
$\left\|A-A_{k}\right\|_{F}^{2}=\sum_{i=1}^{d}\left\|a_{i}-\sum_{j=1}^{k} v_{j}(i) u_{j}\right\|_{2}^{2}$
From subspace embedding property of Π, $\left\|\Pi\left(a_{i}-\sum_{j=1}^{k} v_{j}(i) u_{j}\right)\right\|_{2} \leq(1+\epsilon)\left\|a_{i}-\sum_{j=1}^{k} v_{j}(i) u_{j}\right\|_{2}$

Since $u_{1}^{\prime}, u_{2}^{\prime}, \ldots, \boldsymbol{u}_{k}^{\prime}$ is a feasible solution for \boldsymbol{k}-rank approximation to Π.

Claim: $\left\|(\Pi A)-(\Pi A)_{k}\right\|_{F} \geq(1-\epsilon)\left\|A-A_{k}\right\|_{F}$.

Analysis

Claim: $\left\|(\Pi A)-(\Pi A)_{k}\right\|_{F} \leq(1+\epsilon)\left\|A-A_{k}\right\|_{F}$
Proof sketch: Let $a_{1}^{\prime}, \ldots, a_{d}^{\prime}$ be columns of ΠA and let $u_{1}^{\prime}, \ldots, u_{k}^{\prime}$ be $\Pi u_{1}, \ldots, \Pi u_{k}$.
$\left\|A-A_{k}\right\|_{F}^{2}=\sum_{i=1}^{d}\left\|a_{i}-\sum_{j=1}^{k} v_{j}(i) u_{j}\right\|_{2}^{2}$
From subspace embedding property of Π, $\left\|\Pi\left(a_{i}-\sum_{j=1}^{k} v_{j}(i) u_{j}\right)\right\|_{2} \leq(1+\epsilon)\left\|a_{i}-\sum_{j=1}^{k} v_{j}(i) u_{j}\right\|_{2}$

Since $u_{1}^{\prime}, u_{2}^{\prime}, \ldots, \boldsymbol{u}_{k}^{\prime}$ is a feasible solution for \boldsymbol{k}-rank approximation to Π.

Claim: $\left\|(\sqcap A)-(\Pi A)_{k}\right\|_{F} \geq(1-\epsilon)\left\|A-A_{k}\right\|_{F}$. Prove it!

Running Time

- \boldsymbol{A} has \boldsymbol{d} columns in $\mathbb{R}^{\boldsymbol{n}}$ and $\Pi \boldsymbol{A}$ has \boldsymbol{d} columns in $\mathbb{R}^{\boldsymbol{k}}$ where $\boldsymbol{k}=\boldsymbol{O}\left(\frac{d}{\epsilon^{2}} \ln (1 / \delta)\right)$. Hence dimensionality reduction from \boldsymbol{n} to \boldsymbol{k} and one can run SVD on ΠA.
- $\Pi \boldsymbol{A}$ can be computed fast in time roughly proportional to $n n z(A)$ (number of non-zeroes of \boldsymbol{A}).

Part II

Frequent Directions Algorithm

Low-rank approximation

Faster low-rank approximation algorithms based on randomized algorithm: sampling and subspace embeddings

- Can we find a deterministic algorithm?
- Streaming algorithm?

Low-rank approximation and SVD

Given matrix $\boldsymbol{A} \in \mathbb{R}^{\boldsymbol{n} \times \boldsymbol{d}}$ and (small) integer \boldsymbol{k}
Row view of SVD: $v_{1}, v_{2}, \ldots, v_{k}$ are k orthogonal unit vectors from \mathbb{R}^{d} that maximize the sum of squares of the projections of the rows \boldsymbol{A} onto the space spanned

Let $\boldsymbol{a}_{1}, a_{2}, \ldots, a_{\boldsymbol{n}}$ be the rows of \boldsymbol{A} (treated as vectors in $\mathbb{R}^{\boldsymbol{d}}$)
$\sigma_{j}^{2}=\sum_{i=1}^{n}\left\langle a_{i}, v_{j}\right\rangle^{2}$ and $\left\|A-A_{k}\right\|_{F}^{2}=\sum_{j>k} \sigma_{j}^{2}$

Low-rank approximation and SVD

Given matrix $\boldsymbol{A} \in \mathbb{R}^{\boldsymbol{n} \times \boldsymbol{d}}$ and (small) integer \boldsymbol{k}
Row view of SVD: $v_{1}, v_{2}, \ldots, v_{k}$ are k orthogonal unit vectors from \mathbb{R}^{d} that maximize the sum of squares of the projections of the rows \boldsymbol{A} onto the space spanned

Let $\boldsymbol{a}_{1}, a_{2}, \ldots, a_{\boldsymbol{n}}$ be the rows of \boldsymbol{A} (treated as vectors in $\mathbb{R}^{\boldsymbol{d}}$)
$\sigma_{j}^{2}=\sum_{i=1}^{n}\left\langle a_{i}, v_{j}\right\rangle^{2}$ and $\left\|A-A_{k}\right\|_{F}^{2}=\sum_{j>k} \sigma_{j}^{2}$
Consider matrix $D_{k} V_{k}^{T}$ whose rows are $\sigma_{1} v_{1}, \sigma_{2} v_{2}, \ldots, \sigma_{k} v_{k}$. $\left\|D_{k} V_{k}^{T}\right\|_{F}^{2}=\sum_{j=1}^{k} \sigma_{j}^{2}=\left\|A_{k}\right\|_{F}^{2}$

Frequent Directions Algorithm

[Liberty] and analyzed for relative error guarantee by [Ghashami-Phillips]
Liberty inspired by Misra-Greis frequent items algorithm.
Rows of \boldsymbol{A} come one by one
Algorithm maintains a matrix $Q \in \mathbb{R}^{\ell \times d}$ where $\ell=\boldsymbol{k}(1+1 / \epsilon)$. Hence memory is $O(k d / \epsilon)$

At end of algorithm let \boldsymbol{Q}_{k} be best rank k-approximation for \boldsymbol{Q}. Then $\left\|\boldsymbol{A}-\operatorname{Proj}_{Q_{k}}(\boldsymbol{A})\right\|_{F} \leq(1+\boldsymbol{\epsilon})\left\|\boldsymbol{A}-\boldsymbol{A}_{\boldsymbol{k}}\right\|_{\boldsymbol{F}}$.

Thus a $(1+\boldsymbol{\epsilon})$-approximate \boldsymbol{k}-dimensional subspace for rows of \boldsymbol{A} be identified by storing $O(k / \epsilon)$ rows.

FD Algorithm

Frequent-Directions

Initialize \boldsymbol{Q}^{0} as an all zeroes $\ell \times \boldsymbol{d}$ matrix
For each row $\boldsymbol{a}_{\boldsymbol{i}} \in \boldsymbol{A}$ do
Set $\boldsymbol{Q}_{+} \leftarrow \boldsymbol{Q}^{i-1}$ with last row replaced by $\boldsymbol{a}_{\boldsymbol{i}}$ Compute SVD of \boldsymbol{Q}_{+}as $\boldsymbol{U D} V^{T}$
$\boldsymbol{C}^{\boldsymbol{i}}=\boldsymbol{D} V^{\boldsymbol{T}}$ (for analysis)
$\delta_{i}=\sigma_{\ell}^{2}$ (for analysis)

$$
\begin{aligned}
& \boldsymbol{D}^{\prime}=\operatorname{diag}\left(\sqrt{\sigma_{1}^{2}-\delta_{\boldsymbol{i}}}, \sqrt{\boldsymbol{\sigma}_{2}^{2}-\delta_{\boldsymbol{i}}}, \ldots, \sqrt{\boldsymbol{\sigma}_{\ell-1}^{2}-\delta_{\boldsymbol{i}}}, 0\right) \\
& \boldsymbol{Q}^{\boldsymbol{i}}=\boldsymbol{D}^{\prime} \boldsymbol{V}^{\boldsymbol{T}}
\end{aligned}
$$

EndFor
Return $\boldsymbol{Q}=\boldsymbol{Q}^{\boldsymbol{n}}$
If $\boldsymbol{\ell}=\lceil\boldsymbol{k}(1+1 / \boldsymbol{\epsilon})\rceil$ and $\boldsymbol{Q}_{\boldsymbol{k}}$ is the rank \boldsymbol{k} approximation to output Q then

$$
\left\|\boldsymbol{A}-\operatorname{Proj}_{Q_{k}}(\boldsymbol{A})\right\|_{F} \leq(1+\boldsymbol{\epsilon})\left\|\boldsymbol{A}-\boldsymbol{A}_{k}\right\|_{F}
$$

Running time

- One pass algorithm but requires second pass to compute actual singular values etc
- Space $O(k d / \epsilon)$
- Run time: \boldsymbol{n} computations of SVD on $\boldsymbol{k} / \boldsymbol{\epsilon} \times \boldsymbol{d}$ matrix. Can be improved (see home work problem).

Interesting even when $\boldsymbol{k}=1$. Alternative to power method to find top singular value/vector. Deterministic.

