CS 498ABD: Algorithms for Big Data

Median in Random Order Streams

Lecture 17
October 25, 2022

Quantiles and Selection

Input: stream of numbers $x_{1}, x_{2}, \ldots, x_{\boldsymbol{n}}$ (or elements from a total order) and integer k

Selection: (Approximate) rank k element in the input.

Quantile summary: A compact data structure that allows approximate selection queries.

Summary of previous lecture

Randomized: Pick $\Theta\left(\frac{1}{\epsilon} \log (1 / \delta)\right)$ elements. With probability $(1-1 / \delta)$ will provide ϵ-approximate quantile summary

Deterministic: ϵ-approximate quantile summary using $O\left(\frac{1}{\epsilon} \log ^{2} n\right)$ elements and can be improved to $\boldsymbol{O}\left(\frac{1}{\epsilon} \log \boldsymbol{n}\right)$ elements

Exact selection: With $O\left(n^{1 / p} \log n\right)$ memory and p passes. Median in 2 passes with $O(\sqrt{n} \log n)$ memory.

Random order streams

Question: Can we improve bounds/algorithms if we move beyond worst case?

Random order streams

Question: Can we improve bounds/algorithms if we move beyond worst case?

Two models:

- Elements $x_{1}, x_{2}, \ldots, x_{\boldsymbol{n}}$ chosen iid from some probability distribution. For instance each $x_{i} \in[0,1]$
- Elements $x_{1}, x_{2}, \ldots, x_{n}$ chosen adversarially but stream is a uniformaly random permutation of elements.

Median in random order streams

[Munro-Paterson 1980]
Theorem
Median in $O(\sqrt{n} \log n)$ memory in one pass with high probability if stream is random order.

More generally in p passes with memory $O\left(n^{1 / 2 p} \log n\right)$

Munro-Paterson algorithm

- Given a space parameter s algorithm stores a set of s consecutive elements seen so far in the stream
- Maintains counters ℓ and h
- ℓ is number of elements seen so far that are less than $\min S$
- \boldsymbol{h} is number of elements seen so far that are more than max S.
- Tries to keep ℓ and \boldsymbol{h} balanced

Munro-Paterson algorithm

MP-Median (s):
Store the first s elements of the stream in S
$\ell=\boldsymbol{h}=0$
While (stream is not empty) do
\boldsymbol{x} is new element
If ($\boldsymbol{x}>\max \boldsymbol{S}$) then $\boldsymbol{h}=\boldsymbol{h}+1$
Else If $(x<\min S)$ then $\ell=\ell+1$
Else
Insert x into S
If $\boldsymbol{h}>\boldsymbol{\ell}$ discard $\min \boldsymbol{S}$ from \boldsymbol{S} and $\boldsymbol{\ell}=\boldsymbol{\ell}+1$
Else discard $\max \boldsymbol{S}$ from \boldsymbol{S} and $\boldsymbol{h}=\boldsymbol{h}+1$
endWhile
If $1 \leq \boldsymbol{n} / 2-\boldsymbol{\ell} \leq \boldsymbol{s}$ then
Output $n / 2-\ell$ ranked element from S
Else output FAIL

Example

$$
\begin{aligned}
& \boldsymbol{\sigma}=1,2,3,4,5,6,7,9,10 \text { and } s=3 \\
& \boldsymbol{\sigma}=10,19,1,23,15,11,14,16,3,7 \text { and } s=3
\end{aligned}
$$

Analysis

Theorem

If $\boldsymbol{s}=\Omega(\sqrt{\boldsymbol{n}} \log \boldsymbol{n})$ and stream is random order then algorithm outputs median with high probability.

Recall: Random walk on the line

- Start at origin 0. At each step move left one unit with probability $1 / 2$ and move right with probability $1 / 2$.
- After \boldsymbol{n} steps how far from the origin?

Recall: Random walk on the line

- Start at origin 0 . At each step move left one unit with probability $1 / 2$ and move right with probability $1 / 2$.
- After \boldsymbol{n} steps how far from the origin?

At time \boldsymbol{i} let $\boldsymbol{X}_{\boldsymbol{i}}$ be -1 if move to left and 1 if move to right.
Y_{n} position at time n
$Y_{n}=\sum_{i=1}^{n} X_{i}$
$\mathrm{E}\left[Y_{n}\right]=0$ and $\operatorname{Var}\left(Y_{n}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=n$
By Chebyshev: $\operatorname{Pr}\left[\left|Y_{n}\right| \geq t \sqrt{n}\right] \leq 1 / t^{2}$
By Chernoff:

$$
\operatorname{Pr}\left[\left|Y_{n}\right| \geq t \sqrt{n}\right] \leq 2 \exp \left(-t^{2} / 2\right)
$$

Analysis

Let $\boldsymbol{H}_{\boldsymbol{i}}$ and $L_{\boldsymbol{i}}$ be random variables for the values of \boldsymbol{h} and $\boldsymbol{\ell}$ after seeing i items in the random stream

Let $D_{i}=H_{i}-L_{i}$

Analysis

Let $\boldsymbol{H}_{\boldsymbol{i}}$ and $L_{\boldsymbol{i}}$ be random variables for the values of \boldsymbol{h} and $\boldsymbol{\ell}$ after seeing i items in the random stream

Let $D_{i}=H_{i}-L_{i}$

Observation: Algorithm fails only if $\left|D_{\boldsymbol{n}}\right| \geq s-1$

Analysis

Let $\boldsymbol{H}_{\boldsymbol{i}}$ and $\boldsymbol{L}_{\boldsymbol{i}}$ be random variables for the values of \boldsymbol{h} and $\boldsymbol{\ell}$ after seeing i items in the random stream

Let $D_{i}=H_{i}-L_{i}$

Observation: Algorithm fails only if $\left|D_{\boldsymbol{n}}\right| \geq s-1$
Will instead analyse the probability that $\left|D_{i}\right| \geq s-1$ at any \boldsymbol{i}

Analysis

Lemma

Suppose $\boldsymbol{D}_{\boldsymbol{i}}=\boldsymbol{H}_{\boldsymbol{i}}-\boldsymbol{L}_{\boldsymbol{i}} \geq 0$ and $\boldsymbol{D}_{\boldsymbol{i}}<\boldsymbol{s}-1$. $\operatorname{Pr}\left[\boldsymbol{D}_{\boldsymbol{i}+1}=\boldsymbol{D}_{\boldsymbol{i}}+1\right]=\boldsymbol{H}_{\boldsymbol{i}} /\left(\boldsymbol{H}_{\boldsymbol{i}}+\boldsymbol{s}+\boldsymbol{L}_{\boldsymbol{i}}\right) \leq 1 / 2$.

Analysis

Lemma

Suppose $\boldsymbol{D}_{\boldsymbol{i}}=\boldsymbol{H}_{\boldsymbol{i}}-L_{\boldsymbol{i}} \geq 0$ and $\boldsymbol{D}_{\boldsymbol{i}}<\boldsymbol{s}-1$.
$\operatorname{Pr}\left[\boldsymbol{D}_{\boldsymbol{i}+1}=\boldsymbol{D}_{\boldsymbol{i}}+1\right]=\boldsymbol{H}_{\boldsymbol{i}} /\left(\boldsymbol{H}_{\boldsymbol{i}}+\boldsymbol{s}+\boldsymbol{L}_{\boldsymbol{i}}\right) \leq 1 / 2$.

Lemma

Suppose $\boldsymbol{D}_{\boldsymbol{i}}=\boldsymbol{H}_{\boldsymbol{i}}-L_{i}<0$ and $\left|D_{i}\right|<s-1$.
$\operatorname{Pr}\left[\boldsymbol{D}_{\boldsymbol{i}+1}=\boldsymbol{D}_{\boldsymbol{i}}-1\right]=\boldsymbol{L}_{\boldsymbol{i}} /\left(\boldsymbol{H}_{\boldsymbol{i}}+\boldsymbol{s}+\boldsymbol{L}_{\boldsymbol{i}}\right) \leq 1 / 2$.

Analysis

Lemma

Suppose $\boldsymbol{D}_{\boldsymbol{i}}=\boldsymbol{H}_{\boldsymbol{i}}-L_{\boldsymbol{i}} \geq 0$ and $\boldsymbol{D}_{\boldsymbol{i}}<\boldsymbol{s}-1$.
$\operatorname{Pr}\left[\boldsymbol{D}_{\boldsymbol{i}+1}=\boldsymbol{D}_{\boldsymbol{i}}+1\right]=\boldsymbol{H}_{\boldsymbol{i}} /\left(\boldsymbol{H}_{\boldsymbol{i}}+\boldsymbol{s}+\boldsymbol{L}_{\boldsymbol{i}}\right) \leq 1 / 2$.

Lemma

Suppose $D_{i}=H_{i}-L_{i}<0$ and $\left|D_{i}\right|<s-1$.
$\operatorname{Pr}\left[\boldsymbol{D}_{\boldsymbol{i}+1}=\boldsymbol{D}_{\boldsymbol{i}}-1\right]=\boldsymbol{L}_{\boldsymbol{i}} /\left(\boldsymbol{H}_{\boldsymbol{i}}+\boldsymbol{s}+\boldsymbol{L}_{\boldsymbol{i}}\right) \leq 1 / 2$.
Thus, process behaves better than random walk on the line (formal proof is technical) and with high probability $\left|D_{i}\right| \leq c \sqrt{n} \log n$ for all i. Thus if $s>c \sqrt{n} \log n$ then algorithm succeeds with high probability.

Other results on selection in random order streams

[Munro-Paterson] extend analysis for $\boldsymbol{p}=1$ and show that $\Theta\left(\boldsymbol{n}^{1 / 2 \boldsymbol{p}} \log \boldsymbol{n}\right)$ memory sufficient for \boldsymbol{p} passes (with high probability). Note that for adversarial stream one needs $\Theta\left(\boldsymbol{n}^{1 / \boldsymbol{p}}\right)$ memory
[Guha-MacGregor] show that $\boldsymbol{O}(\log \log n)$-passes sufficient for exact selection in random order streams

