CS 498ABD: Algorithms for Big Data

Median in Random Order Streams

Lecture 17 October 25, 2022

Quantiles and Selection

Input: stream of numbers x_1, x_2, \ldots, x_n (or elements from a total order) and integer k

Selection: (Approximate) rank *k* element in the input.

Quantile summary: A compact data structure that allows approximate selection queries.

Summary of previous lecture

Randomized: Pick $\Theta(\frac{1}{\epsilon} \log(1/\delta))$ elements. With probability $(1 - 1/\delta)$ will provide ϵ -approximate quantile summary

Deterministic: ϵ -approximate quantile summary using $O(\frac{1}{\epsilon} \log^2 n)$ elements and can be improved to $O(\frac{1}{\epsilon} \log n)$ elements

Exact selection: With $O(n^{1/p} \log n)$ memory and p passes. Median in 2 passes with $O(\sqrt{n} \log n)$ memory.

Random order streams

Question: Can we improve bounds/algorithms if we move beyond worst case?

Random order streams

Question: Can we improve bounds/algorithms if we move beyond worst case?

Two models:

- Elements x₁, x₂, ..., x_n chosen iid from some probability distribution. For instance each x_i ∈ [0, 1]
- Elements x_1, x_2, \ldots, x_n chosen adversarially but stream is a uniformaly random permutation of elements.

Median in random order streams

[Munro-Paterson 1980]

Theorem

Median in $O(\sqrt{n} \log n)$ memory in one pass with high probability if stream is random order.

More generally in **p** passes with memory $O(n^{1/2p} \log n)$

Munro-Paterson algorithm

- Given a space parameter *s* algorithm stores a set of *s* consecutive elements seen so far in the stream
- Maintains counters ℓ and h
- ℓ is number of elements seen so far that are less than min S
- *h* is number of elements seen so far that are more than max *S*.
- Tries to keep ℓ and h balanced

Munro-Paterson algorithm

```
MP-Median (s):
     Store the first s elements of the stream in S
     \boldsymbol{\ell} = \boldsymbol{h} = 0
     While (stream is not empty) do
           x is new element
           If (\mathbf{x} > \max \mathbf{S}) then \mathbf{h} = \mathbf{h} + 1
           Else If (\mathbf{x} < \min \mathbf{S}) then \ell = \ell + 1
           Else
                 Insert x into S
                 If h > \ell discard min S from S and \ell = \ell + 1
                 Else discard max S from S and \mathbf{h} = \mathbf{h} + 1
     endWhile
     If 1 < \boldsymbol{n}/2 - \boldsymbol{\ell} < \boldsymbol{s} then
           Output n/2 - \ell ranked element from S
     Else output FAIL
```

Example

 $\sigma = 1, 2, 3, 4, 5, 6, 7, 9, 10 \text{ and } s = 3$ $\sigma = 10, 19, 1, 23, 15, 11, 14, 16, 3, 7 \text{ and } s = 3.$

Theorem

If $s = \Omega(\sqrt{n} \log n)$ and stream is random order then algorithm outputs median with high probability.

Recall: Random walk on the line

- Start at origin 0. At each step move left one unit with probability 1/2 and move right with probability 1/2.
- After *n* steps how far from the origin?

Recall: Random walk on the line

- Start at origin 0. At each step move left one unit with probability 1/2 and move right with probability 1/2.
- After *n* steps how far from the origin?

At time *i* let X_i be -1 if move to left and 1 if move to right. Y_n position at time *n* $Y_n = \sum_{i=1}^n X_i$

$$\mathsf{E}[\mathbf{Y}_{n}]=0$$
 and $Var(\mathbf{Y}_{n})=\sum_{i=1}^{n}Var(\mathbf{X}_{i})=n$

By Chebyshev: $\Pr[|Y_n| \ge t\sqrt{n}] \le 1/t^2$

By Chernoff:

$$\Pr[|\mathbf{Y}_n| \ge t\sqrt{n}] \le 2exp(-t^2/2).$$

Let H_i and L_i be random variables for the values of h and ℓ after seeing i items in the random stream

Let $D_i = H_i - L_i$

Let H_i and L_i be random variables for the values of h and ℓ after seeing i items in the random stream

Let $D_i = H_i - L_i$

Observation: Algorithm fails only if $|D_n| \ge s - 1$

Let H_i and L_i be random variables for the values of h and ℓ after seeing i items in the random stream

Let $D_i = H_i - L_i$

Observation: Algorithm fails only if $|D_n| \ge s - 1$

Will instead analyse the probability that $|D_i| \ge s - 1$ at any i

Lemma

Suppose $D_i = H_i - L_i \ge 0$ and $D_i < s - 1$. $\Pr[D_{i+1} = D_i + 1] = H_i / (H_i + s + L_i) \le 1/2$.

Lemma

Suppose
$$D_i = H_i - L_i \ge 0$$
 and $D_i < s - 1$.
 $\Pr[D_{i+1} = D_i + 1] = H_i / (H_i + s + L_i) \le 1/2$.

Lemma

Suppose
$$D_i = H_i - L_i < 0$$
 and $|D_i| < s - 1$.
 $\Pr[D_{i+1} = D_i - 1] = L_i / (H_i + s + L_i) \le 1/2$.

Lemma

Suppose
$$D_i = H_i - L_i \ge 0$$
 and $D_i < s - 1$.
 $\Pr[D_{i+1} = D_i + 1] = H_i / (H_i + s + L_i) \le 1/2$.

Lemma

Suppose
$$D_i = H_i - L_i < 0$$
 and $|D_i| < s - 1$.
 $\Pr[D_{i+1} = D_i - 1] = L_i / (H_i + s + L_i) \le 1/2$.

Thus, process behaves better than random walk on the line (formal proof is technical) and with high probability $|D_i| \le c\sqrt{n} \log n$ for all *i*. Thus if $s > c\sqrt{n} \log n$ then algorithm succeeds with high probability.

Other results on selection in random order streams

[Munro-Paterson] extend analysis for p = 1 and show that $\Theta(n^{1/2p} \log n)$ memory sufficient for p passes (with high probability). Note that for adversarial stream one needs $\Theta(n^{1/p})$ memory

[Guha-MacGregor] show that $O(\log \log n)$ -passes sufficient for exact selection in random order streams