CS 498ABD: Algorithms for Big Data

JL Lemma, Dimensionality Reduction, and Subspace **Embeddings**

Lecture 11 September 29, 2022

> Chandra (UIUC) CS498ABD Fall 2022 1/28

F_2 estimation in turnstile setting

```
\begin{array}{l} \textbf{AMS-}\ell_2\textbf{-Estimate}\colon\\ \text{Let } \textbf{\textit{Y}}_1, \textbf{\textit{Y}}_2, \dots, \textbf{\textit{Y}}_n \text{ be } \{-1, +1\} \text{ random variables that are }\\ \textbf{\textit{4}-wise independent}\\ \textbf{\textit{z}} \leftarrow 0\\ \text{While (stream is not empty) do}\\ \textbf{\textit{a}}_j = (\textbf{\textit{i}}_j, \Delta_j) \text{ is current update}\\ \textbf{\textit{z}} \leftarrow \textbf{\textit{z}} + \Delta_j \textbf{\textit{Y}}_{i_j}\\ \text{endWhile}\\ \text{Output } \textbf{\textit{z}}^2 \end{array}
```

Claim: Output estimates $||x||_2^2$ where x is the vector at end of stream of updates.

Chandra (UIUC) CS498ABD 2 Fall 2022 2 / 28

Analysis

$$Z = \sum_{i=1}^{n} x_i Y_i$$
 and output is Z^2

$$Z^2 = \sum_{i} x_i^2 Y_i^2 + 2 \sum_{i \neq j} x_i x_j Y_i Y_j$$

and hence

$$E[Z^2] = \sum_{i} x_i^2 = ||x||_2^2.$$

One can show that $Var(Z^2) \leq 2(E[Z^2])^2$.

Linear Sketching View

Recall that we take average of independent estimators and take median to reduce error. Can we view all this as a sketch?

```
AMS-l<sub>2</sub>-Sketch:
     \mathbf{k} = \mathbf{c} \log(1/\delta)/\epsilon^2
     Let M be a k \times n matrix with entries in \{-1,1\} s.t
          (i) rows are independent and
          (ii) in each row entries are 4-wise independent
     z is a \ell \times 1 vector initialized to 0
     While (stream is not empty) do
          a_i = (i_i, \Delta_i) is current update
          z \leftarrow z + \Delta_i Me_i
     endWhile
     Output vector z as sketch.
```

M is compactly represented via k hash functions, one per row, independently chosen from 4-wise independent hash family.

Geometric Interpretation

Given vector $x \in \mathbb{R}^n$ let M the random map z = Mx has the following features

- $E[z_i] = 0$ and $E[z_i^2] = ||x||_2^2$ for each $1 \le i \le k$ where k is number of rows of M
- Thus each z_i^2 is an estimate of length of x in Euclidean norm
- When $k = \Theta(\frac{1}{\epsilon^2} \log(1/\delta))$ one can obtain an $(1 \pm \epsilon)$ estimate of $||x||_2$ by averaging and median ideas

Thus we are able to compress x into k-dimensional vector z such that z contains information to estimate $||x||_2$ accurately

Chandra (UIUC) CS498ABD 5 Fall 2022 5 / 28

Geometric Interpretation

Given vector $x \in \mathbb{R}^n$ let M the random map z = Mx has the following features

- $E[z_i] = 0$ and $E[z_i^2] = ||x||_2^2$ for each $1 \le i \le k$ where k is number of rows of M
- Thus each z_i^2 is an estimate of length of x in Euclidean norm
- When $k = \Theta(\frac{1}{\epsilon^2} \log(1/\delta))$ one can obtain an $(1 \pm \epsilon)$ estimate of $||x||_2$ by averaging and median ideas

Thus we are able to compress x into k-dimensional vector z such that z contains information to estimate $||x||_2$ accurately

Question: Do we need median trick? Will averaging do?

Chandra (UIUC) CS498ABD 5 Fall 2022 5 / 28

Distributional JL Lemma

Lemma (Distributional JL Lemma)

Fix vector $\mathbf{x} \in \mathbb{R}^d$ and let $\Pi \in \mathbb{R}^{k \times d}$ matrix where each entry Π_{ij} is chosen independently according to standard normal distribution $\mathcal{N}(0,1)$ distribution. If $\mathbf{k} = \Omega(\frac{1}{\epsilon^2}\log(1/\delta))$, then with probability $(1-\delta)$

$$\|\frac{1}{\sqrt{k}}\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2.$$

Can choose entries from $\{-1,1\}$ as well.

Note: unlike ℓ_2 estimation, entries of Π are independent.

Letting $z=\frac{1}{\sqrt{k}}\Pi x$ we have projected x from d dimensions to $k=O(\frac{1}{\epsilon^2}\log(1/\delta))$ dimensions while preserving length to within $(1\pm\epsilon)$ -factor.

Chandra (UIUC)

Dimensionality reduction

Theorem (Metric JL Lemma)

Let v_1, v_2, \ldots, v_n be any n points/vectors in \mathbb{R}^d . For any $\epsilon \in (0, 1/2)$, there is linear map $f : \mathbb{R}^d \to \mathbb{R}^k$ where $k < 8 \ln n/\epsilon^2$ such that for all 1 < i < j < n,

$$(1-\epsilon)||v_i-v_j||_2 \leq ||f(v_i)-f(v_j)||_2 \leq ||v_i-v_j||_2.$$

Moreover \mathbf{f} can be obtained in randomized polynomial-time.

Linear map f is simply given by random matrix Π : $f(v) = \Pi v$.

Chandra (UIUC) CS498ABD Fall 2022 7 / 28

Dimensionality reduction

Theorem (Metric JL Lemma)

Let v_1, v_2, \ldots, v_n be any n points/vectors in \mathbb{R}^d . For any $\epsilon \in (0, 1/2)$, there is linear map $f : \mathbb{R}^d \to \mathbb{R}^k$ where $k \leq 8 \ln n / \epsilon^2$ such that for all $1 \leq i < j \leq n$,

$$(1-\epsilon)||v_i-v_j||_2 \leq ||f(v_i)-f(v_j)||_2 \leq ||v_i-v_j||_2.$$

Moreover f can be obtained in randomized polynomial-time.

Linear map f is simply given by random matrix Π : $f(v) = \Pi v$.

Proof.

Apply DJL with $\delta = 1/n^2$ and apply union bound to $\binom{n}{2}$ vectors $(v_i - v_i)$, $i \neq j$.

DJL and Metric JL

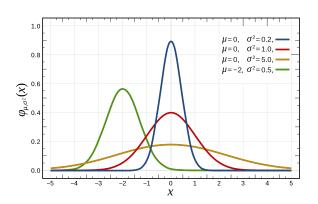
Key advantage: mapping is oblivious to data!

Chandra (UIUC) CS498ABD 8 Fall 2022 8 / 28

Normal Distribution

Density function: $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

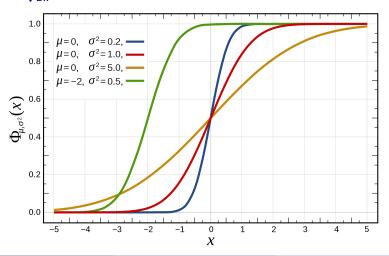
Standard normal: $\mathcal{N}(0,1)$ is when $\mu=0,\sigma=1$



Normal Distribution

Cumulative density function for standard normal:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{\infty}^{t} e^{-t^2/2} \text{ (no closed form)}$$



Sum of independent Normally distributed variables

Lemma

Let X and Y be independent random variables. Suppose

$$X \sim \mathcal{N}(\mu_X, \sigma_X^2)$$
 and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$. Let $Z = X + Y$. Then

$$Z \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2).$$

Chandra (UIUC) CS498ABD 11 Fall 2022 11 / 28

Sum of independent Normally distributed variables

Lemma

Let X and Y be independent random variables. Suppose $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$. Let Z = X + Y. Then $Z \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$.

Corollary

Let X and Y be independent random variables. Suppose $X \sim \mathcal{N}(0,1)$ and $Y \sim \mathcal{N}(0,1)$. Let Z = aX + bY where a, b are arbitrary real numbers. Then $Z \sim \mathcal{N}(0, a^2 + b^2)$.

Sum of independent Normally distributed variables

Lemma

Let X and Y be independent random variables. Suppose $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$. Let Z = X + Y. Then $Z \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$.

Corollary

Let X and Y be independent random variables. Suppose $X \sim \mathcal{N}(0,1)$ and $Y \sim \mathcal{N}(0,1)$. Let Z = aX + bY where a, b are arbitrary real numbers. Then $Z \sim \mathcal{N}(0, a^2 + b^2)$.

Normal distribution is a *stable* distributions: adding two independent random variables within the same class gives a distribution inside the class. Others exist and useful in F_p estimation for $p \in (0, 2)$.

Chandra (UIUC) CS498ABD 11 Fall 2022 11 / 28

Random Guassian vector

One can consider higher dimensional normal distributions, also called multivariate Guassian (or Normal) distributions. Here we consider one such.

Fix some dimension $k \geq 1$. A real random vector $Z = (Z_1, Z_2, \ldots, Z_k)$ is a *standard* normal random vector if $Z_i \sim \mathcal{N}(0,1)$ for each i and Z_1, \ldots, Z_k are independent.

Some observations about Z:

- Density function is $f(y_1, y_2, \dots, y_k) = (\frac{1}{\sqrt{2\pi}})^k e^{-(y_1^2 + \dots + y_k^2)/2}$. Hence distribution is centrally symmetric. Can be used to generate a random unit vector in \mathbb{R}^k
- Euclidean length: $E[\|Z\|_2^2] = \sum_i E[Z_i^2] = k$. Will see that the length is concentrated.

 $\chi^2(k)$ distribution: distribution of sum of squares of k independent standard normally distributed variables

 $Y = \sum_{i=1}^k Z_i^2$ where each $Z_i \simeq \mathcal{N}(0,1)$.

 $\chi^2(k)$ distribution: distribution of sum of squares of k independent standard normally distributed variables

$$Y = \sum_{i=1}^{k} Z_i^2$$
 where each $Z_i \simeq \mathcal{N}(0, 1)$.

$$E[Z_i^2] = 1$$
 hence $E[Y] = k$.

 $\chi^2(k)$ distribution: distribution of sum of squares of k independent standard normally distributed variables

 $Y = \sum_{i=1}^{k} Z_i^2$ where each $Z_i \simeq \mathcal{N}(0, 1)$. $\mathbb{E}[Z_i^2] = 1$ hence $\mathbb{E}[Y] = k$.

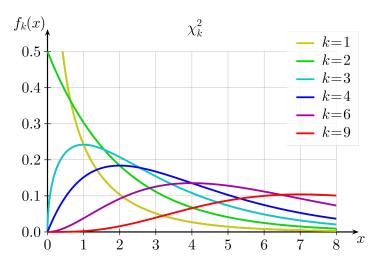
Lemma

Let Z_1, Z_2, \ldots, Z_k be independent $\mathcal{N}(0,1)$ random variables and let $Y = \sum_i Z_i^2$. Then, for $\epsilon \in (0,1/2)$, there is a constant c such that,

$$\Pr[(1-\epsilon)^2 k \le Y \le (1+\epsilon)^2 k] \ge 1 - 2e^{\epsilon\epsilon^2 k}.$$

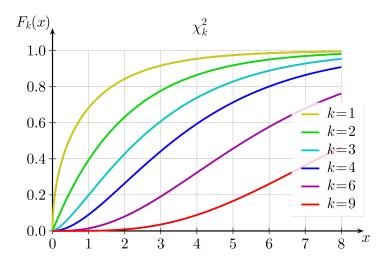
χ^2 distribution

Density function



χ^2 distribution

Cumulative density function



 $\chi^2(k)$ distribution: distribution of sum of k independent standard normally distributed variables

Lemma

Let $\mathbf{Z}_1, \mathbf{Z}_2, \ldots, \mathbf{Z}_k$ be independent $\mathcal{N}(0,1)$ random variables and let $\mathbf{Y} = \sum_{i} \mathbf{Z}_i^2$. Then, for $\epsilon \in (0,1/2)$, there is a constant \mathbf{c} such that, $\Pr[(1-\epsilon)^2 \mathbf{k} \leq \mathbf{Y} \leq (1+\epsilon)^2 \mathbf{k}] \geq 1 - 2\mathbf{e}^{-\mathbf{c}\epsilon^2 \mathbf{k}}$.

Recall Chernoff-Hoeffding bound for *bounded* independent non-negative random variables. Z_i^2 is not bounded, however Chernoff-Hoeffding bounds extend to sums of random variables with exponentially decaying tails.

Random Guassian vector again

A real random vector $Z = (Z_1, Z_2, ..., Z_k)$ is a *standard* normal random vector if $Z_i \sim \mathcal{N}(0, 1)$ for each i and $Z_1, ..., Z_k$ are independent.

Euclidean length: $E[\|Z\|_2^2] = \sum_i E[Z_i^2] = k$.

Thus, the Euclidean length of Z is concentrated around \sqrt{k} .

Chandra (UIUC) CS498ABD 17 Fall 2022 17 / 28

Without loss of generality assume $||x||_2 = 1$ (unit vector)

$$Z_i = \sum_{j=1}^n \Pi_{ij} x_i$$

• $Z_i \sim \mathcal{N}(0,1)$ for each i

Chandra (UIUC) CS498ABD 18 Fall 2022 18 / 28

Without loss of generality assume $||x||_2 = 1$ (unit vector)

$$Z_i = \sum_{j=1}^n \Pi_{ij} x_i$$

- $Z_i \sim \mathcal{N}(0,1)$ for each i
- Thus Z is a random Guassian vector in k dimensions!

Chandra (UIUC) CS498ABD 18 Fall 2022 18 / 28

Without loss of generality assume $||x||_2 = 1$ (unit vector)

$$Z_i = \sum_{j=1}^n \Pi_{ij} x_i$$

- $Z_i \sim \mathcal{N}(0,1)$ for each i
- Thus Z is a random Guassian vector in k dimensions!
- Let $Y = \sum_{i=1}^k Z_i^2$. Y's distribution is $\chi^2(k)$ since Z_1, \ldots, Z_k are iid.

18 / 28

Without loss of generality assume $||x||_2 = 1$ (unit vector)

$$Z_i = \sum_{j=1}^n \Pi_{ij} x_i$$

- $Z_i \sim \mathcal{N}(0,1)$ for each i
- Thus Z is a random Guassian vector in k dimensions!
- Let $Y = \sum_{i=1}^k Z_i^2$. Y's distribution is $\chi^2(k)$ since Z_1, \ldots, Z_k are iid.
- Hence $\Pr[(1-\epsilon)^2 k \leq Y \leq (1+\epsilon)^2 k] \geq 1-2e^{c\epsilon^2 k}$

Without loss of generality assume $||x||_2 = 1$ (unit vector)

$$Z_i = \sum_{j=1}^n \Pi_{ij} x_i$$

- $Z_i \sim \mathcal{N}(0,1)$ for each i
- Thus Z is a random Guassian vector in k dimensions!
- Let $Y = \sum_{i=1}^k Z_i^2$. Y's distribution is $\chi^2(k)$ since Z_1, \ldots, Z_k are iid.
- Hence $\Pr[(1-\epsilon)^2 \mathbf{k} \leq \mathbf{Y} \leq (1+\epsilon)^2 \mathbf{k}] \geq 1-2\mathbf{e}^{\mathbf{c}\epsilon^2 \mathbf{k}}$
- Since $\mathbf{k} = \Omega(\frac{1}{\epsilon^2} \log(1/\delta))$ we have $\Pr[(1 \epsilon)^2 \mathbf{k} \le \mathbf{Y} \le (1 + \epsilon)^2 \mathbf{k}] \ge 1 \delta$

Without loss of generality assume $\|\mathbf{x}\|_2 = 1$ (unit vector)

$$Z_i = \sum_{j=1}^n \Pi_{ij} x_i$$

- $Z_i \sim \mathcal{N}(0,1)$ for each i
- Thus Z is a random Guassian vector in k dimensions!
- Let $Y = \sum_{i=1}^k Z_i^2$. Y's distribution is $\chi^2(k)$ since Z_1, \ldots, Z_k are iid.
- Hence $\Pr[(1-\epsilon)^2 k \le Y \le (1+\epsilon)^2 k] \ge 1-2e^{c\epsilon^2 k}$
- Since $\mathbf{k} = \Omega(\frac{1}{\epsilon^2} \log(1/\delta))$ we have $\Pr[(1-\epsilon)^2 \mathbf{k} \leq \mathbf{Y} \leq (1+\epsilon)^2 \mathbf{k}] \geq 1-\delta$
- Therefore $||z||_2 = \sqrt{Y/k}$ has the property that with probability (1δ) , $||z||_2 = (1 \pm \epsilon)||x||_2$.

JL lower bounds

Question: Are the bounds achieved by the lemmas tight or can we do better? How about non-linear maps?

Essentially optimal modulo constant factors for worst-case point sets.

Chandra (UIUC) CS498ABD 19 Fall 2022 19 / 28

Fast JL and Sparse JL

Projection matrix Π is dense and hence Πx takes $\Theta(kd)$ time.

Question: Can we find Π to improve time bound?

Two scenarios: x is dense and x is sparse

Fast JL and Sparse JL

Projection matrix Π is dense and hence Πx takes $\Theta(kd)$ time.

Question: Can we find Π to improve time bound?

Two scenarios: x is dense and x is sparse

Known results:

- Choose Π_{ij} to be $\{-1,0,1\}$ with probability 1/6,1/3,1/6. Also works. Roughly 1/3 entries are 0
- Fast JL: Choose Π in a dependent way to ensure Πx can be computed in $O(d \log d + k^2)$ time. For dense x.
- Sparse JL: Choose Π such that each column is s-sparse. The best known is $s = O(\frac{1}{\epsilon} \log(1/\delta))$. Helps in sparse x.

Chandra (UIUC) CS498ABD 20 Fall 2022 20 / 28

Part I

(Oblivious) Subspace Embeddings

Subspace Embedding

Question: Suppose we have linear subspace E of \mathbb{R}^n of dimension d. Can we find a projection $\Pi: \mathbb{R}^n \to \mathbb{R}^k$ such that for *every* $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2$?

Subspace Embedding

Question: Suppose we have linear subspace E of \mathbb{R}^n of dimension d. Can we find a projection $\Pi: \mathbb{R}^n \to \mathbb{R}^k$ such that for *every* $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2$?

• Not possible if k < d. Why?

Chandra (UIUC) CS498ABD 22 Fall 2022 22 / 28

Subspace Embedding

Question: Suppose we have linear subspace E of \mathbb{R}^n of dimension d. Can we find a projection $\Pi: \mathbb{R}^n \to \mathbb{R}^k$ such that for *every* $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2$?

• Not possible if k < d. Why? Π maps E to a lower dimension. Implies some non-zero vector $x \in E$ mapped to 0

Chandra (UIUC) CS498ABD 22 Fall 2022 22 / 28

Question: Suppose we have linear subspace E of \mathbb{R}^n of dimension d. Can we find a projection $\Pi: \mathbb{R}^n \to \mathbb{R}^k$ such that for *every* $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2$?

- Not possible if k < d. Why? Π maps E to a lower dimension. Implies some non-zero vector $x \in E$ mapped to 0
- Possible if k = d. Why?

Chandra (UIUC) CS498ABD 22 Fall 2022 22 / 28

Question: Suppose we have linear subspace E of \mathbb{R}^n of dimension d. Can we find a projection $\Pi: \mathbb{R}^n \to \mathbb{R}^k$ such that for *every* $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2$?

- Not possible if k < d. Why? Π maps E to a lower dimension. Implies some non-zero vector $x \in E$ mapped to 0
- Possible if k = d. Why? Pick Π to be an orthonormal basis for E.

Chandra (UIUC) CS498ABD 22 Fall 2022 22 / 28

Question: Suppose we have linear subspace E of \mathbb{R}^n of dimension d. Can we find a projection $\Pi: \mathbb{R}^n \to \mathbb{R}^k$ such that for every $x \in E$, $\| \Pi x \|_2 = (1 \pm \epsilon) \| x \|_2$?

- Not possible if k < d. Why? Π maps E to a lower dimension. Implies some non-zero vector $x \in E$ mapped to 0
- Possible if k = d. Why? Pick Π to be an orthonormal basis for E. Disadvantage: This requires knowing E and computing orthonormal basis which is slow.

Chandra (UIUC) CS498ABD 22 Fall 2022 22 / 28

Question: Suppose we have linear subspace E of \mathbb{R}^n of dimension d. Can we find a projection $\Pi: \mathbb{R}^n \to \mathbb{R}^k$ such that for *every* $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2$?

- Not possible if k < d. Why? Π maps E to a lower dimension. Implies some non-zero vector $x \in E$ mapped to 0
- Possible if k = d. Why? Pick Π to be an orthonormal basis for E. Disadvantage: This requires knowing E and computing orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based on random projections

Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of \mathbb{R}^n of dimension d. Let Π be a DJL matrix $\Pi \in \mathbb{R}^{k \times n}$ with $k = O(\frac{d}{\epsilon^2} \log(1/\delta))$ rows. Then with probability $(1 - \delta)$ for every $x \in E$,

$$\|\frac{1}{\sqrt{k}} \|x\|_2 = (1 \pm \epsilon) \|x\|_2.$$

In other words JL Lemma extends from one dimension to arbitrary number of dimensions in a graceful way.

Proof Idea

How do we prove that Π works for all $x \in E$ which is an infinite set?

Several proofs but one useful argument that is often a starting hammer is the "net argument"

- Choose a large but finite set of vectors *T* carefully (the net)
- Prove that Π preserves lengths of vectors in T (via naive union bound)
- Argue that any vector $x \in E$ is sufficiently close to a vector in T and hence Π also preserves length of x

Chandra (UIUC) CS498ABD 24 Fall 2022 24 / 28

Sufficient to focus on unit vectors in *E*. Why?

Chandra (UIUC) CS498ABD 25 Fall 2022 25 / 28

Sufficient to focus on unit vectors in *E*. Why?

Also assume wlog and ease of notation that \boldsymbol{E} is the subspace formed by the first \boldsymbol{d} coordinates in standard basis.

Chandra (UIUC) CS498ABD 25 Fall 2022 25 / 28

Sufficient to focus on unit vectors in *E*. Why?

Also assume wlog and ease of notation that \boldsymbol{E} is the subspace formed by the first \boldsymbol{d} coordinates in standard basis.

Claim: There is a net T of size $e^{O(d)}$ such that preserving lengths of vectors in T suffices.

Chandra (UIUC) CS498ABD 25 Fall 2022 25 / 28

Sufficient to focus on unit vectors in *E*. Why?

Also assume wlog and ease of notation that \boldsymbol{E} is the subspace formed by the first \boldsymbol{d} coordinates in standard basis.

Claim: There is a net T of size $e^{O(d)}$ such that preserving lengths of vectors in T suffices.

Assuming claim: use DJL with $\pmb{k} = O(\frac{d}{\epsilon^2}\log(1/\delta))$ and union bound to show that all vectors in \pmb{T} are preserved in length up to $(1\pm\epsilon)$ factor.

Sufficient to focus on unit vectors in *E*.

Also assume wlog and ease of notation that \boldsymbol{E} is the subspace formed by the first \boldsymbol{d} coordinates in standard basis.

A weaker net:

- ullet Consider the box $[-1,1]^d$ and make a grid with side length ϵ/d
- Number of grid vertices is $(2d/\epsilon)^d$
- Sufficient to take T to be the grid vertices
- ullet Gives a weaker bound of $O(rac{1}{\epsilon^2}d\log(d/\epsilon))$ dimensions
- A more careful net argument gives tight bound

Net argument: analysis

```
Fix any x \in E such that ||x||_2 = 1 (unit vector)
There is grid point y such that ||y||_2 \le 1 and x is close to y
Let z = x - y. We have |z_i| \le \epsilon/d for 1 \le i \le d and z_i = 0 for i > d
```

Chandra (UIUC) CS498ABD 27 Fall 2022 27 / 28

Net argument: analysis

Fix any $x \in E$ such that $||x||_2 = 1$ (unit vector) There is grid point y such that $||y||_2 \le 1$ and x is close to yLet z = x - y. We have $|z_i| \le \epsilon/d$ for $1 \le i \le d$ and $z_i = 0$ for i > d

$$\|\Pi x\| = \|\Pi y + \Pi z\| \leq \|\Pi y\| + \|\Pi z\|$$

$$\leq (1+\epsilon) + (1+\epsilon) \sum_{i=1}^{d} |z_i|$$

$$\leq (1+\epsilon) + \epsilon(1+\epsilon) \leq 1 + 3\epsilon$$

Chandra (UIUC) CS498ABD 27 Fall 2022 27 / 28

Net argument: analysis

Fix any $x \in E$ such that $||x||_2 = 1$ (unit vector) There is grid point y such that $||y||_2 \le 1$ and x is close to yLet z = x - y. We have $|z_i| \le \epsilon/d$ for $1 \le i \le d$ and $z_i = 0$ for i > d

$$\|\Pi x\| = \|\Pi y + \Pi z\| \le \|\Pi y\| + \|\Pi z\|$$

$$\le (1+\epsilon) + (1+\epsilon) \sum_{i=1}^{d} |z_i|$$

$$< (1+\epsilon) + \epsilon(1+\epsilon) < 1+3\epsilon$$

Similarly $\|\Pi x\| \ge 1 - O(\epsilon)$.

Chandra (UIUC) CS498ABD 27 Fall 2022 27 / 28

Application of Subspace Embeddings

Faster algorithms for approximate

- matrix multiplication
- regression
- SVD

Basic idea: Want to perform operations on matrix A with n data columns (say in large dimension \mathbb{R}^h) with small effective rank d. Want to reduce to a matrix of size roughly $\mathbb{R}^{d \times d}$ by spending time proportional to nnz(A).

Later in course.