## CS 498ABD: Algorithms for Big Data

# JL Lemma, Dimensionality Reduction, and Subspace Embeddings 

Lecture 11
September 29, 2022

## $F_{2}$ estimation in turnstile setting

```
AMS- \(\ell_{2}\)-Estimate:
    Let \(\boldsymbol{Y}_{1}, \boldsymbol{Y}_{2}, \ldots, \boldsymbol{Y}_{\boldsymbol{n}}\) be \(\{-1,+1\}\) random variables that are
        4-wise independent
    \(z \leftarrow 0\)
    While (stream is not empty) do
        \(a_{j}=\left(\boldsymbol{i}_{\boldsymbol{j}}, \Delta_{\boldsymbol{j}}\right)\) is current update
        \(z \leftarrow z+\Delta_{j} Y_{i_{j}}\)
    endWhile
    Output \(z^{2}\)
```

Claim: Output estimates $\|x\|_{2}^{2}$ where $x$ is the vector at end of stream of updates.

## Analysis

$Z=\sum_{i=1}^{n} x_{i} Y_{i}$ and output is $Z^{2}$

$$
Z^{2}=\sum_{i} x_{i}^{2} Y_{i}^{2}+2 \sum_{i \neq j} x_{i} x_{j} Y_{i} Y_{j}
$$

and hence

$$
\mathrm{E}\left[\boldsymbol{Z}^{2}\right]=\sum_{\boldsymbol{i}} x_{\boldsymbol{i}}^{2}=\|x\|_{2}^{2}
$$

One can show that $\operatorname{Var}\left(Z^{2}\right) \leq 2\left(E\left[Z^{2}\right]\right)^{2}$.

## Linear Sketching View

Recall that we take average of independent estimators and take median to reduce error. Can we view all this as a sketch?

## AMS- $\ell_{2}$-Sketch :

$$
\begin{aligned}
& \boldsymbol{k}=\boldsymbol{c} \log (1 / \boldsymbol{\delta}) / \boldsymbol{\epsilon}^{2} \\
& \text { Let } \boldsymbol{M} \text { be a } \boldsymbol{k} \times \boldsymbol{n} \text { matrix with entries in }\{-1,1\} \text { s.t } \\
& \quad \text { (i) rows are independent and } \\
& \quad \text { (ii) in each row entries are 4-wise independent } \\
& \boldsymbol{z} \text { is a } \ell \times 1 \text { vector initialized to } 0 \\
& \text { While (stream is not empty) do } \\
& \quad \boldsymbol{a}_{\boldsymbol{j}}=\left(\boldsymbol{i}_{\boldsymbol{j}}, \Delta_{\boldsymbol{j}}\right) \text { is current update } \\
& \quad \boldsymbol{z} \leftarrow \boldsymbol{z}+\Delta_{\boldsymbol{j}} \boldsymbol{M} \boldsymbol{e}_{\boldsymbol{i}_{\boldsymbol{j}}} \\
& \text { endWhile } \\
& \text { Output vector } \boldsymbol{z} \text { as sketch. }
\end{aligned}
$$

(ii) in each row entries are 4-wise independent
$M$ is compactly represented via $k$ hash functions, one per row, independently chosen from 4-wise independent hash family.

## Geometric Interpretation

Given vector $x \in \mathbb{R}^{\boldsymbol{n}}$ let $M$ the random map $z=M x$ has the following features

- $\mathrm{E}\left[z_{i}\right]=0$ and $\mathrm{E}\left[z_{i}^{2}\right]=\|x\|_{2}^{2}$ for each $1 \leq i \leq k$ where $k$ is number of rows of $M$
- Thus each $z_{i}^{2}$ is an estimate of length of $x$ in Euclidean norm
- When $\boldsymbol{k}=\Theta\left(\frac{1}{\epsilon^{2}} \log (1 / \boldsymbol{\delta})\right)$ one can obtain an $(1 \pm \boldsymbol{\epsilon})$ estimate of $\|x\|_{2}$ by averaging and median ideas
Thus we are able to compress $\boldsymbol{x}$ into $\boldsymbol{k}$-dimensional vector $\boldsymbol{z}$ such that $\boldsymbol{z}$ contains information to estimate $\|x\|_{2}$ accurately


## Geometric Interpretation

Given vector $x \in \mathbb{R}^{\boldsymbol{n}}$ let $M$ the random map $z=M x$ has the following features

- $\mathrm{E}\left[z_{i}\right]=0$ and $\mathrm{E}\left[z_{i}^{2}\right]=\|x\|_{2}^{2}$ for each $1 \leq i \leq k$ where $k$ is number of rows of $M$
- Thus each $z_{i}^{2}$ is an estimate of length of $x$ in Euclidean norm
- When $\boldsymbol{k}=\Theta\left(\frac{1}{\epsilon^{2}} \log (1 / \boldsymbol{\delta})\right)$ one can obtain an $(1 \pm \boldsymbol{\epsilon})$ estimate of $\|x\|_{2}$ by averaging and median ideas
Thus we are able to compress $\boldsymbol{x}$ into $\boldsymbol{k}$-dimensional vector $\boldsymbol{z}$ such that $z$ contains information to estimate $\|x\|_{2}$ accurately

Question: Do we need median trick? Will averaging do?

## Distributional JL Lemma

## Lemma (Distributional JL Lemma)

Fix vector $x \in \mathbb{R}^{\boldsymbol{d}}$ and let $\Pi \in \mathbb{R}^{k \times d}$ matrix where each entry $\Pi_{i j}$ is chosen independently according to standard normal distribution $\mathcal{N}(0,1)$ distribution. If $\boldsymbol{k}=\Omega\left(\frac{1}{\epsilon^{2}} \log (1 / \boldsymbol{\delta})\right)$, then with probability $(1-\boldsymbol{\delta})$

$$
\left\|\frac{1}{\sqrt{k}} \Pi x\right\|_{2}=(1 \pm \epsilon)\|x\|_{2} .
$$

Can choose entries from $\{-1,1\}$ as well.
Note: unlike $\ell_{2}$ estimation, entries of $\Pi$ are independent.
Letting $z=\frac{1}{\sqrt{k}} \Pi x$ we have projected $x$ from $\boldsymbol{d}$ dimensions to $\boldsymbol{k}=\boldsymbol{O}\left(\frac{1}{\epsilon^{2}} \log (1 / \delta)\right)$ dimensions while preserving length to within $(1 \pm \epsilon)$-factor.

## Dimensionality reduction

## Theorem (Metric JL Lemma)

Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}$ be any $\boldsymbol{n}$ points/vectors in $\mathbb{R}^{\boldsymbol{d}}$. For any $\boldsymbol{\epsilon} \in(0,1 / 2)$, there is linear map $\boldsymbol{f}: \mathbb{R}^{\boldsymbol{d}} \rightarrow \mathbb{R}^{\boldsymbol{k}}$ where $\boldsymbol{k} \leq 8 \ln \boldsymbol{n} / \boldsymbol{\epsilon}^{2}$ such that for all $1 \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{n}$,

$$
(1-\epsilon)\left\|v_{i}-v_{j}\right\|_{2} \leq\left\|f\left(v_{i}\right)-f\left(v_{j}\right)\right\|_{2} \leq\left\|v_{i}-v_{j}\right\|_{2}
$$

Moreover $f$ can be obtained in randomized polynomial-time.
Linear map $f$ is simply given by random matrix $\Pi$ : $f(v)=\Pi v$.

## Dimensionality reduction

## Theorem (Metric JL Lemma)

Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}$ be any $\boldsymbol{n}$ points/vectors in $\mathbb{R}^{\boldsymbol{d}}$. For any $\boldsymbol{\epsilon} \in(0,1 / 2)$, there is linear map $\boldsymbol{f}: \mathbb{R}^{\boldsymbol{d}} \rightarrow \mathbb{R}^{\boldsymbol{k}}$ where $\boldsymbol{k} \leq 8 \ln \boldsymbol{n} / \boldsymbol{\epsilon}^{2}$ such that for all $1 \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{n}$,

$$
(1-\epsilon)\left\|v_{i}-v_{j}\right\|_{2} \leq\left\|f\left(v_{i}\right)-f\left(v_{j}\right)\right\|_{2} \leq\left\|v_{i}-v_{j}\right\|_{2}
$$

Moreover $f$ can be obtained in randomized polynomial-time.
Linear map $f$ is simply given by random matrix $\Pi$ : $f(v)=\Pi v$.

## Proof.

Apply DJL with $\delta=1 / \boldsymbol{n}^{2}$ and apply union bound to $\binom{\boldsymbol{n}}{2}$ vectors $\left(v_{i}-v_{j}\right), \boldsymbol{i} \neq \boldsymbol{j}$.

## DJL and Metric JL

Key advantage: mapping is oblivious to data!

## Normal Distribution

Density function: $f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$
Standard normal: $\boldsymbol{\mathcal { N }}(0,1)$ is when $\boldsymbol{\mu}=0, \boldsymbol{\sigma}=1$


## Normal Distribution

Cumulative density function for standard normal: $\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{\infty}^{t} e^{-t^{2} / 2}$ (no closed form)


## Sum of independent Normally distributed variables

## Lemma

Let $\boldsymbol{X}$ and $Y$ be independent random variables. Suppose $\boldsymbol{X} \sim \mathcal{N}\left(\mu_{\boldsymbol{X}}, \sigma_{\boldsymbol{X}}^{2}\right)$ and $\boldsymbol{Y} \sim \mathcal{N}\left(\mu_{\boldsymbol{Y}}, \sigma_{\boldsymbol{Y}}^{2}\right)$. Let $\boldsymbol{Z}=\boldsymbol{X}+\boldsymbol{Y}$. Then $Z \sim \mathcal{N}\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)$.

## Sum of independent Normally distributed variables

## Lemma

Let $X$ and $Y$ be independent random variables. Suppose $\boldsymbol{X} \sim \mathcal{N}\left(\mu_{\boldsymbol{X}}, \sigma_{\boldsymbol{X}}^{2}\right)$ and $\boldsymbol{Y} \sim \mathcal{N}\left(\boldsymbol{\mu}_{\boldsymbol{Y}}, \boldsymbol{\sigma}_{\boldsymbol{Y}}^{2}\right)$. Let $\boldsymbol{Z}=\boldsymbol{X}+\boldsymbol{Y}$. Then $Z \sim \mathcal{N}\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)$.

## Corollary

Let $X$ and $Y$ be independent random variables. Suppose $\boldsymbol{X} \sim \mathcal{N}(0,1)$ and $\boldsymbol{Y} \sim \mathcal{N}(0,1)$. Let $\boldsymbol{Z}=\boldsymbol{a} \boldsymbol{X}+\boldsymbol{b} \boldsymbol{Y}$ where $\boldsymbol{a}, \boldsymbol{b}$ are arbitrary real numbers. Then $\boldsymbol{Z} \sim \mathcal{N}\left(0, a^{2}+\boldsymbol{b}^{2}\right)$.

## Sum of independent Normally distributed variables

## Lemma

Let $X$ and $Y$ be independent random variables. Suppose $\boldsymbol{X} \sim \mathcal{N}\left(\mu_{X}, \sigma_{\boldsymbol{X}}^{2}\right)$ and $\boldsymbol{Y} \sim \mathcal{N}\left(\boldsymbol{\mu}_{\boldsymbol{Y}}, \boldsymbol{\sigma}_{\boldsymbol{Y}}^{2}\right)$. Let $\boldsymbol{Z}=\boldsymbol{X}+\boldsymbol{Y}$. Then $Z \sim \mathcal{N}\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)$.

## Corollary

Let $X$ and $Y$ be independent random variables. Suppose $\boldsymbol{X} \sim \mathcal{N}(0,1)$ and $\boldsymbol{Y} \sim \mathcal{N}(0,1)$. Let $\boldsymbol{Z}=\boldsymbol{a} \boldsymbol{X}+\boldsymbol{b} \boldsymbol{Y}$ where $\boldsymbol{a}, \boldsymbol{b}$ are arbitrary real numbers. Then $\boldsymbol{Z} \sim \mathcal{N}\left(0, a^{2}+\boldsymbol{b}^{2}\right)$.

Normal distribution is a stable distributions: adding two independent random variables within the same class gives a distribution inside the class. Others exist and useful in $\boldsymbol{F}_{\boldsymbol{p}}$ estimation for $\boldsymbol{p} \in(0,2)$.

## Random Guassian vector

One can consider higher dimensional normal distributions, also called multivariate Guassian (or Normal) distributions. Here we consider one such.

Fix some dimension $k \geq 1$. A real random vector
$Z=\left(Z_{1}, Z_{2}, \ldots, Z_{k}\right)$ is a standard normal random vector if $Z_{i} \sim \mathcal{N}(0,1)$ for each $\boldsymbol{i}$ and $Z_{1}, \ldots, Z_{k}$ are independent.

Some observations about $Z$ :

- Density function is $f\left(y_{1}, y_{2}, \ldots, y_{k}\right)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{k} e^{-\left(y_{1}^{2}+\ldots+y_{k}^{2}\right) / 2}$. Hence distribution is centrally symmetric. Can be used to generate a random unit vector in $\mathbb{R}^{k}$
- Euclidean length: $\mathrm{E}\left[\|Z\|_{2}^{2}\right]=\sum_{i} \mathrm{E}\left[Z_{i}^{2}\right]=\boldsymbol{k}$. Will see that the length is concentrated.


## Concentration of sum of squares of normally distributed variables

$\chi^{2}(\boldsymbol{k})$ distribution: distribution of sum of squares of $\boldsymbol{k}$ independent standard normally distributed variables
$Y=\sum_{i=1}^{k} Z_{i}^{2}$ where each $Z_{i} \simeq \mathcal{N}(0,1)$.

## Concentration of sum of squares of normally distributed variables

$\chi^{2}(\boldsymbol{k})$ distribution: distribution of sum of squares of $\boldsymbol{k}$ independent standard normally distributed variables
$\boldsymbol{Y}=\sum_{i=1}^{k} Z_{i}^{2}$ where each $Z_{i} \simeq \mathcal{N}(0,1)$.
$\mathrm{E}\left[\boldsymbol{Z}_{\boldsymbol{i}}^{2}\right]=1$ hence $\mathrm{E}[\boldsymbol{Y}]=\boldsymbol{k}$.

## Concentration of sum of squares of normally distributed variables

$\chi^{2}(k)$ distribution: distribution of sum of squares of $k$ independent standard normally distributed variables
$\boldsymbol{Y}=\sum_{i=1}^{k} Z_{i}^{2}$ where each $Z_{i} \simeq \mathcal{N}(0,1)$.
$\mathrm{E}\left[\boldsymbol{Z}_{\boldsymbol{i}}^{2}\right]=1$ hence $\mathrm{E}[\boldsymbol{Y}]=\boldsymbol{k}$.

## Lemma

Let $Z_{1}, Z_{2}, \ldots, Z_{k}$ be independent $\mathcal{N}(0,1)$ random variables and let $\boldsymbol{Y}=\sum_{i} Z_{i}^{2}$. Then, for $\epsilon \in(0,1 / 2)$, there is a constant $\boldsymbol{c}$ such that,

$$
\operatorname{Pr}\left[(1-\epsilon)^{2} k \leq Y \leq(1+\epsilon)^{2} k\right] \geq 1-2 e^{c \epsilon^{2} k} .
$$

## $\chi^{2}$ distribution

Density function


## $\chi^{2}$ distribution

Cumulative density function


## Concentration of sum of squares of normally distributed variables

$\chi^{2}(\boldsymbol{k})$ distribution: distribution of sum of $\boldsymbol{k}$ independent standard normally distributed variables

## Lemma

Let $Z_{1}, Z_{2}, \ldots, Z_{k}$ be independent $\mathcal{N}(0,1)$ random variables and let $Y=\sum_{i} Z_{i}^{2}$. Then, for $\epsilon \in(0,1 / 2)$, there is a constant $\boldsymbol{c}$ such that, $\operatorname{Pr}\left[(1-\epsilon)^{2} \boldsymbol{k} \leq \boldsymbol{Y} \leq(1+\epsilon)^{2} \boldsymbol{k}\right] \geq 1-2 \boldsymbol{e}^{-c \epsilon^{2} \boldsymbol{k}}$.

Recall Chernoff-Hoeffding bound for bounded independent non-negative random variables. $Z_{i}^{2}$ is not bounded, however Chernoff-Hoeffding bounds extend to sums of random variables with exponentially decaying tails.

## Random Guassian vector again

A real random vector $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{k}\right)$ is a standard normal random vector if $Z_{i} \sim \mathcal{N}(0,1)$ for each $i$ and $Z_{1}, \ldots, Z_{k}$ are independent.

Euclidean length: $\mathrm{E}\left[\|Z\|_{2}^{2}\right]=\sum_{i} \mathrm{E}\left[Z_{i}^{2}\right]=\boldsymbol{k}$.
Thus, the Euclidean length of $Z$ is concentrated around $\sqrt{k}$.

## Proof of DJL Lemma

Without loss of generality assume $\|x\|_{2}=1$ (unit vector)
$Z_{i}=\sum_{j=1}^{n} \Pi_{i j} x_{i}$

- $\boldsymbol{Z}_{\boldsymbol{i}} \sim \mathcal{N}(0,1)$ for each $\boldsymbol{i}$


## Proof of DJL Lemma

Without loss of generality assume $\|x\|_{2}=1$ (unit vector)
$Z_{i}=\sum_{j=1}^{n} \Pi_{i j} x_{i}$

- $\boldsymbol{Z}_{\boldsymbol{i}} \sim \mathcal{N}(0,1)$ for each $\boldsymbol{i}$
- Thus $\boldsymbol{Z}$ is a random Guassian vector in $k$ dimensions!


## Proof of DJL Lemma

Without loss of generality assume $\|x\|_{2}=1$ (unit vector)
$Z_{i}=\sum_{j=1}^{n} \Pi_{i j} x_{i}$

- $\boldsymbol{Z}_{\boldsymbol{i}} \sim \mathcal{N}(0,1)$ for each $\boldsymbol{i}$
- Thus $Z$ is a random Guassian vector in $k$ dimensions!
- Let $Y=\sum_{i=1}^{k} Z_{i}^{2}$. $Y^{\prime}$ 's distribution is $\chi^{2}(k)$ since $Z_{1}, \ldots, Z_{k}$ are iid.


## Proof of DJL Lemma

Without loss of generality assume $\|x\|_{2}=1$ (unit vector)
$Z_{i}=\sum_{j=1}^{n} \Pi_{i j} x_{i}$

- $\boldsymbol{Z}_{\boldsymbol{i}} \sim \mathcal{N}(0,1)$ for each $\boldsymbol{i}$
- Thus $Z$ is a random Guassian vector in $k$ dimensions!
- Let $Y=\sum_{i=1}^{k} Z_{i}^{2}$. $Y^{\prime}$ 's distribution is $\chi^{2}(k)$ since $Z_{1}, \ldots, Z_{k}$ are iid.
- Hence $\operatorname{Pr}\left[(1-\boldsymbol{\epsilon})^{2} \boldsymbol{k} \leq \boldsymbol{Y} \leq(1+\boldsymbol{\epsilon})^{2} \boldsymbol{k}\right] \geq 1-2 \boldsymbol{e}^{\boldsymbol{c} \epsilon^{2} \boldsymbol{k}}$


## Proof of DJL Lemma

Without loss of generality assume $\|x\|_{2}=1$ (unit vector)
$Z_{i}=\sum_{j=1}^{n} \Pi_{i j} x_{i}$

- $Z_{i} \sim \mathcal{N}(0,1)$ for each $\boldsymbol{i}$
- Thus $Z$ is a random Guassian vector in $k$ dimensions!
- Let $Y=\sum_{i=1}^{k} Z_{i}^{2}$. $Y$ 's distribution is $\chi^{2}(k)$ since $Z_{1}, \ldots, Z_{k}$ are iid.
- Hence $\operatorname{Pr}\left[(1-\epsilon)^{2} k \leq Y \leq(1+\epsilon)^{2} k\right] \geq 1-2 e^{c \epsilon^{2} k}$
- Since $\boldsymbol{k}=\Omega\left(\frac{1}{\epsilon^{2}} \log (1 / \boldsymbol{\delta})\right)$ we have $\operatorname{Pr}\left[(1-\epsilon)^{2} k \leq Y \leq(1+\epsilon)^{2} k\right] \geq 1-\delta$


## Proof of DJL Lemma

Without loss of generality assume $\|x\|_{2}=1$ (unit vector)
$Z_{i}=\sum_{j=1}^{n} \Pi_{i j} x_{i}$

- $Z_{i} \sim \mathcal{N}(0,1)$ for each $\boldsymbol{i}$
- Thus $Z$ is a random Guassian vector in $k$ dimensions!
- Let $Y=\sum_{i=1}^{k} Z_{i}^{2}$. $Y$ 's distribution is $\chi^{2}(k)$ since $Z_{1}, \ldots, Z_{k}$ are iid.
- Hence $\operatorname{Pr}\left[(1-\epsilon)^{2} k \leq Y \leq(1+\epsilon)^{2} k\right] \geq 1-2 e^{c \epsilon^{2}} \boldsymbol{k}$
- Since $\boldsymbol{k}=\Omega\left(\frac{1}{\epsilon^{2}} \log (1 / \boldsymbol{\delta})\right)$ we have $\operatorname{Pr}\left[(1-\epsilon)^{2} k \leq Y \leq(1+\epsilon)^{2} k\right] \geq 1-\delta$
- Therefore $\|z\|_{2}=\sqrt{Y / k}$ has the property that with probability $(1-\delta),\|z\|_{2}=(1 \pm \epsilon)\|x\|_{2}$.


## JL lower bounds

Question: Are the bounds achieved by the lemmas tight or can we do better? How about non-linear maps?

Essentially optimal modulo constant factors for worst-case point sets.

## Fast JL and Sparse JL

Projection matrix $\Pi$ is dense and hence $\Pi x$ takes $\Theta(\boldsymbol{k d})$ time.
Question: Can we find $\Pi$ to improve time bound?
Two scenarios: $x$ is dense and $x$ is sparse

## Fast JL and Sparse JL

Projection matrix $\Pi$ is dense and hence $\Pi x$ takes $\Theta(\boldsymbol{k d})$ time.
Question: Can we find $\Pi$ to improve time bound?
Two scenarios: $x$ is dense and $x$ is sparse
Known results:

- Choose $\Pi_{i j}$ to be $\{-1,0,1\}$ with probability $1 / 6,1 / 3,1 / 6$. Also works. Roughly $1 / 3$ entries are 0
- Fast JL: Choose $\Pi$ in a dependent way to ensure $\Pi x$ can be computed in $O\left(d \log d+k^{2}\right)$ time. For dense $x$.
- Sparse JL: Choose $\Pi$ such that each column is $s$-sparse. The best known is $\boldsymbol{s}=\boldsymbol{O}\left(\frac{1}{\epsilon} \log (1 / \delta)\right)$. Helps in sparse $\boldsymbol{x}$.


## Part I

## (Oblivious) Subspace Embeddings

## Subspace Embedding

Question: Suppose we have linear subspace $E$ of $\mathbb{R}^{\boldsymbol{n}}$ of dimension d. Can we find a projection $\Pi: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}^{\boldsymbol{k}}$ such that for every $x \in E,\|\Pi x\|_{2}=(1 \pm \epsilon)\|x\|_{2}$ ?

## Subspace Embedding

Question: Suppose we have linear subspace $E$ of $\mathbb{R}^{\boldsymbol{n}}$ of dimension d. Can we find a projection $\Pi: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}^{\boldsymbol{k}}$ such that for every $x \in E,\|\Pi x\|_{2}=(1 \pm \epsilon)\|x\|_{2}$ ?

- Not possible if $k<\boldsymbol{d}$. Why?


## Subspace Embedding

Question: Suppose we have linear subspace $E$ of $\mathbb{R}^{\boldsymbol{n}}$ of dimension d. Can we find a projection $\Pi: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}^{\boldsymbol{k}}$ such that for every $x \in E,\|\Pi x\|_{2}=(1 \pm \epsilon)\|x\|_{2}$ ?

- Not possible if $k<\boldsymbol{d}$. Why? $\Pi$ maps $E$ to a lower dimension. Implies some non-zero vector $x \in E$ mapped to 0


## Subspace Embedding

Question: Suppose we have linear subspace $E$ of $\mathbb{R}^{\boldsymbol{n}}$ of dimension d. Can we find a projection $\Pi: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}^{\boldsymbol{k}}$ such that for every $x \in E,\|\Pi x\|_{2}=(1 \pm \epsilon)\|x\|_{2}$ ?

- Not possible if $k<\boldsymbol{d}$. Why? $\Pi$ maps $E$ to a lower dimension. Implies some non-zero vector $x \in E$ mapped to 0
- Possible if $\boldsymbol{k}=\boldsymbol{d}$. Why?


## Subspace Embedding

Question: Suppose we have linear subspace $E$ of $\mathbb{R}^{\boldsymbol{n}}$ of dimension d. Can we find a projection $\Pi: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}^{\boldsymbol{k}}$ such that for every $x \in E,\|\Pi x\|_{2}=(1 \pm \epsilon)\|x\|_{2}$ ?

- Not possible if $k<\boldsymbol{d}$. Why? $\Pi$ maps $E$ to a lower dimension. Implies some non-zero vector $x \in E$ mapped to 0
- Possible if $\boldsymbol{k}=\boldsymbol{d}$. Why? Pick $\Pi$ to be an orthonormal basis for E.


## Subspace Embedding

Question: Suppose we have linear subspace $E$ of $\mathbb{R}^{\boldsymbol{n}}$ of dimension d. Can we find a projection $\Pi: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}^{\boldsymbol{k}}$ such that for every $x \in E,\|\Pi x\|_{2}=(1 \pm \epsilon)\|x\|_{2}$ ?

- Not possible if $k<\boldsymbol{d}$. Why? $\Pi$ maps $E$ to a lower dimension. Implies some non-zero vector $x \in E$ mapped to 0
- Possible if $\boldsymbol{k}=\boldsymbol{d}$. Why? Pick $\Pi$ to be an orthonormal basis for $E$. Disadvantage: This requires knowing $E$ and computing orthonormal basis which is slow.


## Subspace Embedding

Question: Suppose we have linear subspace $E$ of $\mathbb{R}^{\boldsymbol{n}}$ of dimension d. Can we find a projection $\Pi: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}^{\boldsymbol{k}}$ such that for every $x \in E,\|\Pi x\|_{2}=(1 \pm \epsilon)\|x\|_{2}$ ?

- Not possible if $k<\boldsymbol{d}$. Why? $\Pi$ maps $E$ to a lower dimension. Implies some non-zero vector $x \in E$ mapped to 0
- Possible if $\boldsymbol{k}=\boldsymbol{d}$. Why? Pick $\Pi$ to be an orthonormal basis for $E$. Disadvantage: This requires knowing $E$ and computing orthonormal basis which is slow.
What we really want: Oblivious subspace embedding ala JL based on random projections


## Oblivious Supspace Embedding

## Theorem

Suppose $E$ is a linear subspace of $\mathbb{R}^{\boldsymbol{n}}$ of dimension $\boldsymbol{d}$. Let $\Pi$ be a $D J L$ matrix $\Pi \in \mathbb{R}^{\boldsymbol{k} \times \boldsymbol{n}}$ with $\boldsymbol{k}=\boldsymbol{O}\left(\frac{d}{\epsilon^{2}} \log (1 / \boldsymbol{\delta})\right)$ rows. Then with probability $(1-\delta)$ for every $x \in E$,

$$
\left\|\frac{1}{\sqrt{k}} \Pi x\right\|_{2}=(1 \pm \epsilon)\|x\|_{2}
$$

In other words JL Lemma extends from one dimension to arbitrary number of dimensions in a graceful way.

## Proof Idea

How do we prove that $\Pi$ works for all $x \in E$ which is an infinite set?

Several proofs but one useful argument that is often a starting hammer is the "net argument"

- Choose a large but finite set of vectors $T$ carefully (the net)
- Prove that $\Pi$ preserves lengths of vectors in $T$ (via naive union bound)
- Argue that any vector $x \in E$ is sufficiently close to a vector in $T$ and hence $\Pi$ also preserves length of $x$


## Net argument

Sufficient to focus on unit vectors in $E$. Why?

## Net argument

Sufficient to focus on unit vectors in $E$. Why?
Also assume wlog and ease of notation that $E$ is the subspace formed by the first $\boldsymbol{d}$ coordinates in standard basis.

## Net argument

Sufficient to focus on unit vectors in $E$. Why?
Also assume wlog and ease of notation that $E$ is the subspace formed by the first $\boldsymbol{d}$ coordinates in standard basis.

Claim: There is a net $T$ of size $e^{O(d)}$ such that preserving lengths of vectors in $\boldsymbol{T}$ suffices.

## Net argument

Sufficient to focus on unit vectors in $E$. Why?
Also assume wlog and ease of notation that $E$ is the subspace formed by the first $\boldsymbol{d}$ coordinates in standard basis.

Claim: There is a net $T$ of size $e^{O(d)}$ such that preserving lengths of vectors in $\boldsymbol{T}$ suffices.

Assuming claim: use DJL with $\boldsymbol{k}=\boldsymbol{O}\left(\frac{d}{\epsilon^{2}} \log (1 / \delta)\right)$ and union bound to show that all vectors in $\boldsymbol{T}$ are preserved in length up to ( $1 \pm \epsilon$ ) factor.

## Net argument

Sufficient to focus on unit vectors in $E$.
Also assume wlog and ease of notation that $E$ is the subspace formed by the first $\boldsymbol{d}$ coordinates in standard basis.

A weaker net:

- Consider the box $[-1,1]^{d}$ and make a grid with side length $\epsilon / \boldsymbol{d}$
- Number of grid vertices is $(2 d / \epsilon)^{d}$
- Sufficient to take $T$ to be the grid vertices
- Gives a weaker bound of $O\left(\frac{1}{\epsilon^{2}} \boldsymbol{d} \log (\boldsymbol{d} / \epsilon)\right)$ dimensions
- A more careful net argument gives tight bound


## Net argument: analysis

Fix any $x \in E$ such that $\|x\|_{2}=1$ (unit vector)
There is grid point $y$ such that $\|y\|_{2} \leq 1$ and $x$ is close to $y$
Let $\boldsymbol{z}=\boldsymbol{x}-\boldsymbol{y}$. We have $\left|z_{\boldsymbol{i}}\right| \leq \boldsymbol{\epsilon} / \boldsymbol{d}$ for $1 \leq \boldsymbol{i} \leq \boldsymbol{i} \leq \boldsymbol{d}$ and $\boldsymbol{z}_{\boldsymbol{i}}=0$ for $i>d$

## Net argument: analysis

Fix any $x \in E$ such that $\|x\|_{2}=1$ (unit vector)
There is grid point $y$ such that $\|y\|_{2} \leq 1$ and $x$ is close to $y$
Let $z=\boldsymbol{x}-\boldsymbol{y}$. We have $\left|z_{\boldsymbol{i}}\right| \leq \epsilon / \boldsymbol{d}$ for $1 \leq \boldsymbol{i} \leq \boldsymbol{i} \leq \boldsymbol{d}$ and $z_{\boldsymbol{i}}=0$ for $i>d$

$$
\begin{aligned}
\|\Pi x\|=\|\Pi y+\Pi z\| & \leq\|\Pi y\|+\|\Pi z\| \\
& \leq(1+\epsilon)+(1+\epsilon) \sum_{i=1}^{d}\left|z_{i}\right| \\
& \leq(1+\epsilon)+\epsilon(1+\epsilon) \leq 1+3 \epsilon
\end{aligned}
$$

## Net argument: analysis

Fix any $x \in E$ such that $\|x\|_{2}=1$ (unit vector)
There is grid point $y$ such that $\|y\|_{2} \leq 1$ and $x$ is close to $y$ Let $z=\boldsymbol{x}-\boldsymbol{y}$. We have $\left|z_{i}\right| \leq \epsilon / \boldsymbol{d}$ for $1 \leq \boldsymbol{i} \leq \boldsymbol{i} \leq \boldsymbol{d}$ and $z_{\boldsymbol{i}}=0$ for $\boldsymbol{i}>\boldsymbol{d}$

$$
\begin{aligned}
\|\Pi x\|=\|\Pi y+\Pi z\| & \leq\|\Pi y\|+\|\Pi z\| \\
& \leq(1+\epsilon)+(1+\epsilon) \sum_{i=1}^{d}\left|z_{i}\right| \\
& \leq(1+\epsilon)+\epsilon(1+\epsilon) \leq 1+3 \epsilon
\end{aligned}
$$

Similarly $\|\Pi x\| \geq 1-O(\epsilon)$.

## Application of Subspace Embeddings

Faster algorithms for approximate

- matrix multiplication
- regression
- SVD

Basic idea: Want to perform operations on matrix $\boldsymbol{A}$ with $\boldsymbol{n}$ data columns (say in large dimension $\mathbb{R}^{h}$ ) with small effective rank $\boldsymbol{d}$. Want to reduce to a matrix of size roughly $\mathbb{R}^{\boldsymbol{d} \times \boldsymbol{d}}$ by spending time proportional to $n n z(\boldsymbol{A})$.

Later in course.

