CS 498ABD: Algorithms for Big Data

Applications of CountMin and Count Sketches

Lecture 10
September 22, 2022

CountMin Sketch

CountMin-Sketch (w, d) :

$$
\begin{aligned}
& \boldsymbol{h}_{1}, \boldsymbol{h}_{2}, \ldots, \boldsymbol{h}_{\boldsymbol{d}} \text { are pair-wise independent hash functions } \\
& \quad \text { from }[\boldsymbol{n}] \rightarrow[\boldsymbol{w}] \text {. } \\
& \text { While (stream is not empty) do } \\
& \quad \boldsymbol{e}_{\boldsymbol{t}}=\left(\boldsymbol{i}_{\boldsymbol{t}}, \Delta_{t}\right) \text { is current item } \\
& \quad \text { for } \ell=1 \text { to } \boldsymbol{d} \text { do } \\
& \quad C\left[\ell, \boldsymbol{h}_{\ell}\left(\boldsymbol{i}_{j}\right)\right] \leftarrow \boldsymbol{C}\left[\ell, \boldsymbol{h}_{\ell}\left(\boldsymbol{i}_{j}\right)\right]+\Delta_{\boldsymbol{t}} \\
& \text { endWhile } \\
& \text { For } \boldsymbol{i} \in[\boldsymbol{n}] \text { set } \tilde{\boldsymbol{x}}_{\boldsymbol{i}}=\min _{\ell=1}^{\boldsymbol{d}} \boldsymbol{C}\left[\ell, \boldsymbol{h}_{\ell}(\boldsymbol{i})\right] .
\end{aligned}
$$

Counter $C[\ell, j]$ simply counts the sum of all x_{i} such that $\boldsymbol{h}_{\ell}(\boldsymbol{i})=\boldsymbol{j}$. That is,

$$
C[\ell, j]=\sum_{i: h_{\ell}(i)=j} x_{i}
$$

Summarizing

Lemma

Let $\boldsymbol{d}=\Omega\left(\log \frac{1}{\delta}\right)$ and $\boldsymbol{w}>\frac{2}{\epsilon}$. Then for any fixed $\boldsymbol{i} \in[\boldsymbol{n}], \boldsymbol{x}_{\boldsymbol{i}} \leq \tilde{\boldsymbol{x}}_{\boldsymbol{i}}$ and

$$
\operatorname{Pr}\left[\tilde{x}_{i} \geq x_{i}+\epsilon\|x\|_{1}\right] \leq \delta
$$

Corollary

With $\boldsymbol{d}=\Omega(\ln \boldsymbol{n})$ and $\boldsymbol{w}=2 / \boldsymbol{\epsilon}$, with probability $\left(1-\frac{1}{\boldsymbol{n}}\right)$ for all $i \in[n]$:

$$
\tilde{x}_{i} \leq x_{i}+\epsilon\|x\|_{1}
$$

Total space: $\boldsymbol{O}\left(\frac{1}{\epsilon} \log n\right)$ counters and hence $\boldsymbol{O}\left(\frac{1}{\epsilon} \log n \log \boldsymbol{m}\right)$ bits.

Count Sketch

Count-Sketch (w, d) :
$\boldsymbol{h}_{1}, \boldsymbol{h}_{2}, \ldots, \boldsymbol{h}_{\boldsymbol{d}}$ are pair-wise independent hash functions from $[\boldsymbol{n}] \rightarrow[\boldsymbol{w}]$.
$\boldsymbol{g}_{1}, \boldsymbol{g}_{2}, \ldots, \boldsymbol{g}_{\boldsymbol{d}}$ are pair-wise independent hash functions from $[\boldsymbol{n}] \rightarrow\{-1,1\}$.
While (stream is not empty) do

$$
\begin{aligned}
& \boldsymbol{e}_{\boldsymbol{t}}=\left(\boldsymbol{i}_{\boldsymbol{t}}, \Delta_{\boldsymbol{t}}\right) \text { is current item } \\
& \text { for } \ell=1 \text { to } \boldsymbol{d} \text { do } \\
& \quad \boldsymbol{C}\left[\ell, \boldsymbol{h}_{\ell}\left(\boldsymbol{i}_{\boldsymbol{j}}\right)\right] \leftarrow \boldsymbol{C}\left[\ell, \boldsymbol{h}_{\ell}\left(\boldsymbol{i}_{\boldsymbol{j}}\right)\right]+\boldsymbol{g}\left(\boldsymbol{i}_{\boldsymbol{t}}\right) \Delta_{t}
\end{aligned}
$$

endWhile
For $\boldsymbol{i} \in[\boldsymbol{n}]$
set $\tilde{\boldsymbol{x}}_{i}=\operatorname{median}\left\{\boldsymbol{g}_{1}(\boldsymbol{i}) C\left[1, \boldsymbol{h}_{1}(\boldsymbol{i})\right], \ldots, \boldsymbol{g}_{\ell}(\boldsymbol{i}) \boldsymbol{C}\left[\ell, \boldsymbol{h}_{\ell}(\boldsymbol{i})\right]\right\}$.

Summarizing

Lemma

Let $\boldsymbol{d} \geq 4 \log \frac{1}{\delta}$ and $\boldsymbol{w}>\frac{3}{\epsilon^{2}}$. Then for any fixed $i \in[n], \mathrm{E}\left[\tilde{x}_{i}\right]=\boldsymbol{x}_{\boldsymbol{i}}$ and $\operatorname{Pr}\left[\left|\tilde{\boldsymbol{x}}_{\boldsymbol{i}}-\boldsymbol{x}_{\boldsymbol{i}}\right| \geq \boldsymbol{\epsilon}\|\boldsymbol{x}\|_{2}\right] \leq \boldsymbol{\delta}$.

Corollary

With $\boldsymbol{d}=\Omega(\ln \boldsymbol{n})$ and $w=3 / \epsilon^{2}$, with probability $\left(1-\frac{1}{\boldsymbol{n}}\right)$ for all $i \in[n]:$

$$
\left|\tilde{x}_{i}-x_{i}\right| \leq \epsilon\|x\|_{2}
$$

Total space $\boldsymbol{O}\left(\frac{1}{\epsilon^{2}} \log \boldsymbol{n}\right)$ counters and hence $\boldsymbol{O}\left(\frac{1}{\epsilon^{2}} \log \boldsymbol{n} \log \boldsymbol{m}\right)$ bits.

Part I

Applications

Heavy Hitters: Point queries

Heavy Hitters Problem: Find all items \boldsymbol{i} such that $\boldsymbol{x}_{\boldsymbol{i}}>\boldsymbol{\alpha}\|\boldsymbol{x}\|_{1}$ for some fixed $\boldsymbol{\alpha} \in(0,1]$.

Approximate version: output any \boldsymbol{i} such that $\boldsymbol{x}_{\boldsymbol{i}} \geq(\boldsymbol{\alpha}-\boldsymbol{\epsilon})\|\boldsymbol{x}\|_{1}$
The sketches give us a data structure such that for any $\boldsymbol{i} \in[n]$ we get an estimate $\tilde{\boldsymbol{x}}_{\boldsymbol{i}}$ of $\boldsymbol{x}_{\boldsymbol{i}}$ with additive error.

Heavy Hitters: Point queries

Heavy Hitters Problem: Find all items \boldsymbol{i} such that $\boldsymbol{x}_{\boldsymbol{i}}>\boldsymbol{\alpha}\|\boldsymbol{x}\|_{1}$ for some fixed $\boldsymbol{\alpha} \in(0,1]$.

Approximate version: output any \boldsymbol{i} such that $\boldsymbol{x}_{\boldsymbol{i}} \geq(\boldsymbol{\alpha}-\boldsymbol{\epsilon})\|x\|_{1}$
The sketches give us a data structure such that for any $i \in[n]$ we get an estimate $\tilde{\boldsymbol{x}}_{\boldsymbol{i}}$ of $\boldsymbol{x}_{\boldsymbol{i}}$ with additive error.

Go over each \boldsymbol{i} and check if $\tilde{\boldsymbol{x}}_{\boldsymbol{i}}>(\boldsymbol{\alpha}-\boldsymbol{\epsilon})\|\boldsymbol{x}\|_{1}$.

Heavy Hitters: Point queries

Heavy Hitters Problem: Find all items \boldsymbol{i} such that $\boldsymbol{x}_{\boldsymbol{i}}>\boldsymbol{\alpha}\|\boldsymbol{x}\|_{1}$ for some fixed $\boldsymbol{\alpha} \in(0,1]$.

Approximate version: output any \boldsymbol{i} such that $\boldsymbol{x}_{\boldsymbol{i}} \geq(\boldsymbol{\alpha}-\boldsymbol{\epsilon})\|x\|_{1}$
The sketches give us a data structure such that for any $\boldsymbol{i} \in[n]$ we get an estimate $\tilde{\boldsymbol{x}}_{\boldsymbol{i}}$ of $\boldsymbol{x}_{\boldsymbol{i}}$ with additive error.

Go over each \boldsymbol{i} and check if $\tilde{\boldsymbol{x}}_{\boldsymbol{i}}>(\boldsymbol{\alpha}-\boldsymbol{\epsilon})\|\boldsymbol{x}\|_{1}$. Expensive

Heavy Hitters: Point queries

Heavy Hitters Problem: Find all items i such that $x_{i}>\alpha\|x\|_{1}$ for some fixed $\alpha \in(0,1]$.

Approximate version: output any i such that $x_{i} \geq(\alpha-\epsilon)\|x\|_{1}$
The sketches give us a data structure such that for any $i \in[n]$ we get an estimate \tilde{x}_{i} of x_{i} with additive error.

Go over each \boldsymbol{i} and check if $\tilde{x}_{i}>(\boldsymbol{\alpha}-\boldsymbol{\epsilon})\|x\|_{1}$. Expensive
Additional data structures to speed up above computation and reduce time/space to be proportional to $O\left(\frac{1}{\alpha}\right.$ polylog $\left.(n)\right)$. More tricky for Count Sketch. See notes and references

Range Queries

Range query: given $i, j \in[n]$ want to know $\sum_{i \leq \ell \leq j} x[i, j]$
Examples:

- [\boldsymbol{n}] corresponds to IP address space in network routing and $[\boldsymbol{i}, \boldsymbol{j}]$ corresponds to addresses in a range
- [n] corresponds to some numerical attribute in a database and we want to know number of records within a range
- [n] corresponds to the discretization of a signal value

Range Queries

Range query: given $i, j \in[n]$ want to know $\sum_{i \leq \ell \leq j} x[i, j]$
Examples:

- [\boldsymbol{n}] corresponds to IP address space in network routing and $[i, j]$ corresponds to addresses in a range
- $[\boldsymbol{n}]$ corresponds to some numerical attribute in a database and we want to know number of records within a range
- [\boldsymbol{n}] corresponds to the discretization of a signal value

Want to create a sketch data structure that can answer range queries for any given range that is chosen after the sketch is done. $\Omega\left(\boldsymbol{n}^{2}\right)$ potential queries

Range Queries

Simple idea: imagine a binary tree over $[\boldsymbol{n}]$ and any interval $[i, j]$ can be broken up into $O(\log n)$ disjoint "dyadic" intervals

Range Queries

Simple idea: imagine a binary tree over $[\boldsymbol{n}]$ and any interval $[i, j]$ can be broken up into $O(\log n)$ disjoint "dyadic" intervals

Create one sketch data structure per level of binary tree

Range Queries

Simple idea: imagine a binary tree over $[\boldsymbol{n}]$ and any interval $[i, j]$ can be broken up into $O(\log n)$ disjoint "dyadic" intervals

Create one sketch data structure per level of binary tree
Output estimate $\tilde{x}[i, j]$ by adding estimates for $\boldsymbol{O}(\log \boldsymbol{n})$ dyadic intervals that $[i, j]$ decomposes into

Range Queries

Simple idea: imagine a binary tree over $[\boldsymbol{n}]$ and any interval $[i, j]$ can be broken up into $O(\log n)$ disjoint "dyadic" intervals

Create one sketch data structure per level of binary tree
Output estimate $\tilde{x}[i, j]$ by adding estimates for $\boldsymbol{O}(\log \boldsymbol{n})$ dyadic intervals that $[i, j]$ decomposes into

To manage error choose $\epsilon^{\prime}=\epsilon / \log n$: total space is $O(\alpha \log n / \epsilon)$ where $\boldsymbol{\alpha}$ is the space for single level sketch

Part II

Sparse Recovery

Sparse Recovery

Sparsity is an important theme in optimization/algorithms/modeling

- Data is often explicitly sparse. Examples: graphs, matrices, vectors, documents (as word vectors)
- Data is often implicitly sparse - in a different representation the data is explicitly sparse. Examples: signals/images, topics, etc

Sparse Recovery

Sparsity is an important theme in optimization/algorithms/modeling

- Data is often explicitly sparse. Examples: graphs, matrices, vectors, documents (as word vectors)
- Data is often implicitly sparse - in a different representation the data is explicitly sparse. Examples: signals/images, topics, etc

Algorithmic goals

- Take advantage of sparsity to improve performance (speed, quality, memory etc)
- Find implicit sparse representation to reveal information about data. Example: topics in documents, frequencies in Fourier analysis

Sparse Recovery

Problem: Given vector/signal $x \in \mathbb{R}^{n}$ find a sparse vector z such that z approximates x

More concretely: given x and integer $k \geq 1$, find z such that z has at most k non-zeroes $\left(\|z\|_{0} \leq k\right)$ such that $\|x-z\|_{p}$ is minimized for some $p \geq 1$.

Optimum offline solution: z picks the largest k coordinates of x (in absolute value)

Want to do it in streaming setting: turnstile streams and $\boldsymbol{p}=2$ and want to use $\tilde{O}(\boldsymbol{k})$ space proportional to output

Sparse Recovery under ℓ_{2} norm

Formal objective function:

$$
\operatorname{err}_{2}^{k}(x)=\min _{z:\|z\|_{0} \leq k}\|x-z\|_{2}
$$

Sparse Recovery under ℓ_{2} norm

Formal objective function:

$$
\operatorname{err}_{2}^{k}(x)=\min _{z:\|z\|_{0} \leq k}\|x-z\|_{2}
$$

$\operatorname{err}_{2}^{k}(x)$ is interesting only when it is small compared to $\|x\|_{2}$
For instance when \boldsymbol{x} is uniform, say $\boldsymbol{x}_{\boldsymbol{i}}=1$ for all \boldsymbol{i} then $\|\boldsymbol{x}\|_{2}=\sqrt{\boldsymbol{n}}$ but $\operatorname{err}_{2}^{k}(x)=\sqrt{n-k}$
$\operatorname{err}_{2}^{k}(x)=0$ iff $\|x\|_{0} \leq k$ and hence related to distinct element detection

Sparse Recovery under ℓ_{2} norm

Theorem

There is a linear sketch with size $O\left(\frac{k}{\epsilon^{2}} p o l y \log (n)\right)$ that returns z such that $\|z\|_{0} \leq k$ and with high probability $\|x-z\|_{2} \leq(1+\boldsymbol{\epsilon}) \operatorname{err}{ }_{2}^{k}(\boldsymbol{x})$.

Hence space is proportional to desired output. Assumption \boldsymbol{k} is typically quite small compared to n, the dimension of \boldsymbol{x}.

Note that if \boldsymbol{x} is \boldsymbol{k}-sparse vector is exactly reconstructed

Based on CountSketch

Algorithm

- Use Count Sketch with $\boldsymbol{w}=3 \boldsymbol{k} / \boldsymbol{\epsilon}^{2}$ and $\boldsymbol{d}=\Omega(\log \boldsymbol{n})$.
- Count Sketch gives estimages \tilde{x}_{i} for each $\boldsymbol{i} \in \boldsymbol{n}$
- Output the \boldsymbol{k} coordinates with the largest estimates

Algorithm

- Use Count Sketch with $\boldsymbol{w}=3 k / \epsilon^{2}$ and $\boldsymbol{d}=\Omega(\log n)$.
- Count Sketch gives estimages \tilde{x}_{i} for each $\boldsymbol{i} \in \boldsymbol{n}$
- Output the \boldsymbol{k} coordinates with the largest estimates

Intuition for analysis

- With $\boldsymbol{w}=c k / \epsilon^{2}$ the k biggest coordinates will be spread out in their own buckets
- rest of small coordinates will be spread out evenly
- refine the analysis of Count-Sketch to carefully analyze the two scenarios

Analysis Outline

Lemma

Count-Sketch with $\boldsymbol{w}=3 \boldsymbol{k} / \boldsymbol{\epsilon}^{2}$ and $\boldsymbol{d}=\boldsymbol{O}(\log n)$ ensures that

$$
\forall i \in[n], \quad\left|\tilde{x}_{i}-x_{i}\right| \leq \frac{\epsilon}{\sqrt{k}} e r r_{2}^{k}(x)
$$

with high probability (at least $(1-1 / n)$).

Lemma

Let $x, y \in \mathbb{R}^{n}$ such that $\|x-y\|_{\infty} \leq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)$. Then, $\|\boldsymbol{x}-\boldsymbol{z}\|_{2} \leq(1+5 \boldsymbol{\epsilon}) \operatorname{err} r_{2}^{k}(\boldsymbol{x})$, where \boldsymbol{z} is the vector obtained as follows: $z_{i}=y_{i}$ for $\boldsymbol{i} \in \boldsymbol{T}$ where \boldsymbol{T} is the set of \boldsymbol{k} largest (in absolute value) indices of y and $z_{i}=0$ for $\boldsymbol{i} \notin T$.

Lemmas combined prove the correctness of algorithm.

Count Sketch

Count-Sketch (w, d) :
$\boldsymbol{h}_{1}, \boldsymbol{h}_{2}, \ldots, \boldsymbol{h}_{\boldsymbol{d}}$ are pair-wise independent hash functions from $[\boldsymbol{n}] \rightarrow[\boldsymbol{w}]$.
$\boldsymbol{g}_{1}, \boldsymbol{g}_{2}, \ldots, \boldsymbol{g}_{\boldsymbol{d}}$ are pair-wise independent hash functions from $[\boldsymbol{n}] \rightarrow\{-1,1\}$.
While (stream is not empty) do

$$
\begin{aligned}
& \boldsymbol{e}_{\boldsymbol{t}}=\left(\boldsymbol{i}_{\boldsymbol{t}}, \Delta_{\boldsymbol{t}}\right) \text { is current item } \\
& \text { for } \boldsymbol{\ell}=1 \text { to } \boldsymbol{d} \text { do } \\
& \quad \boldsymbol{C}\left[\ell, \boldsymbol{h}_{\ell}\left(\boldsymbol{i}_{\boldsymbol{j}}\right)\right] \leftarrow \boldsymbol{C}\left[\ell, \boldsymbol{h}_{\ell}\left(\boldsymbol{i}_{\boldsymbol{j}}\right)\right]+\boldsymbol{g}\left(\boldsymbol{i}_{\boldsymbol{t}}\right) \Delta_{t}
\end{aligned}
$$

endWhile
For $\boldsymbol{i} \in[\boldsymbol{n}]$
set $\tilde{\boldsymbol{x}}_{\boldsymbol{i}}=\operatorname{median}\left\{\boldsymbol{g}_{1}(\boldsymbol{i}) \boldsymbol{C}\left[1, \boldsymbol{h}_{1}(\boldsymbol{i})\right], \ldots, \boldsymbol{g}_{\boldsymbol{d}}(\boldsymbol{i}) \boldsymbol{C}\left[\boldsymbol{d}, \boldsymbol{h}_{\boldsymbol{d}}(\boldsymbol{i})\right]\right\}$.

Recap of Analysis

Fix an $\boldsymbol{i} \in[\boldsymbol{n}]$. Let $Z_{\ell}=\boldsymbol{g}_{\ell}(\boldsymbol{i}) C\left[\ell, \boldsymbol{h}_{\ell}(\boldsymbol{i})\right]$.
For $i^{\prime} \in[n]$ let $Y_{i^{\prime}}$ be the indicator random variable that is 1 if $\boldsymbol{h}_{\ell}(\boldsymbol{i})=\boldsymbol{h}_{\ell}\left(\boldsymbol{i}^{\prime}\right)$; that is \boldsymbol{i} and \boldsymbol{i}^{\prime} collide in \boldsymbol{h}_{ℓ}.
$E\left[Y_{i^{\prime}}\right]=E\left[Y_{i^{\prime}}^{2}\right]=1 / w$ from pairwise independence of \boldsymbol{h}_{ℓ}.

$$
z_{\ell}=g_{\ell}(i) C\left[\ell, h_{\ell}(i)\right]=g_{\ell}(i) \sum_{i^{\prime}} g_{\ell}\left(i^{\prime}\right) x_{i^{\prime}} Y_{i^{\prime}}
$$

Therefore,

$$
E\left[Z_{\ell}\right]=x_{i}+\sum_{i^{\prime} \neq i} E\left[g_{\ell}(i) g_{\ell}\left(i^{\prime}\right) Y_{i^{\prime}}\right] x_{i^{\prime}}=x_{i}
$$

because $E\left[g_{\ell}(i) g_{\ell}\left(i^{\prime}\right)\right]=0$ for $\boldsymbol{i} \neq \boldsymbol{i}^{\prime}$ from pairwise independence of g_{ℓ} and $Y_{i^{\prime}}$ is independent of $g_{\ell}(i)$ and $g_{\ell}\left(i^{\prime}\right)$.

Recap of Analysis

$$
Z_{\ell}=g_{\ell}(i) C\left[\ell, h_{\ell}(i)\right] . \text { And } \mathrm{E}\left[Z_{\ell}\right]=x_{i} .
$$

$$
\operatorname{Var}\left(Z_{\ell}\right)=\mathrm{E}\left[\left(Z_{\ell}-x_{i}\right)^{2}\right]
$$

$$
=\mathrm{E}\left[\left(\sum_{i^{\prime} \neq i} g_{\ell}(i) g_{\ell}\left(i^{\prime}\right) Y_{i^{\prime} X^{\prime}}\right)^{2}\right]
$$

$$
=\mathrm{E}\left[\sum_{i^{\prime} \neq i} x_{i^{\prime}}^{2} Y_{i^{\prime}}^{2}+\sum_{i^{\prime} \neq i^{\prime \prime}} x_{i^{\prime}} x_{i^{\prime \prime}} g_{\ell}\left(i^{\prime}\right) g_{\ell}\left(i^{\prime \prime}\right) Y_{i^{\prime}} Y_{i^{\prime \prime}} x_{i^{\prime}} x_{i^{\prime \prime}}\right]
$$

$$
=\sum_{i^{\prime} \neq i} x_{i^{\prime}}^{2} \mathrm{E}\left[Y_{i^{\prime}}^{2}\right]
$$

$$
\leq\|x\|_{2}^{2} / w
$$

Refining Analysis

$\boldsymbol{T}_{\text {big }}=\left\{i^{\prime} \mid i^{\prime}\right.$ is one of the k biggest coordinates in $\left.x\right\}$
$T_{\text {small }}=[n] \backslash T$
$\sum_{i^{\prime} \in \boldsymbol{T}_{\text {smal }}} x_{i^{\prime}}^{2}=\left(\operatorname{err}_{2}^{k}(x)\right)^{2}$

Refining Analysis

$\boldsymbol{T}_{\text {big }}=\left\{i^{\prime} \mid i^{\prime}\right.$ is one of the k biggest coordinates in $\left.x\right\}$
$T_{\text {small }}=[n] \backslash T$
$\sum_{i^{\prime} \in \boldsymbol{T}_{\text {smal }}} x_{i^{\prime}}^{2}=\left(\operatorname{err}_{2}^{k}(x)\right)^{2}$
What is $\operatorname{Pr}\left[\left|Z_{\ell}-x_{i}\right| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)\right]$?

Refining Analysis

$\boldsymbol{T}_{\text {big }}=\left\{i^{\prime} \mid i^{\prime}\right.$ is one of the k biggest coordinates in $\left.x\right\}$
$T_{\text {small }}=[n] \backslash T$
$\sum_{i^{\prime} \in \boldsymbol{T}_{\text {small }}} x_{i^{\prime}}^{2}=\left(\operatorname{err}_{2}^{k}(x)\right)^{2}$
What is $\operatorname{Pr}\left[\left|Z_{\ell}-x_{i}\right| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)\right]$?

Lemma

$\operatorname{Pr}\left[\left|Z_{\ell}-x_{i}\right| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}{ }_{2}^{k}(x)\right] \leq 2 / 5$.

Analysis

$Z_{\ell}=g_{\ell}(i) C\left[\ell, h_{\ell}(i)\right]$.
Let \boldsymbol{A}_{ℓ} be event that $\boldsymbol{h}_{\ell}\left(\boldsymbol{i}^{\prime}\right)=\boldsymbol{h}_{\ell}(\boldsymbol{i})$ for some $\boldsymbol{i}^{\prime} \in \boldsymbol{T}_{\text {big }}, \boldsymbol{i}^{\prime} \neq \boldsymbol{i}$

Lemma

$\operatorname{Pr}\left[A_{\ell}\right] \leq \epsilon^{2} / 3$. In other words with $1-\epsilon^{2} / 3$ probability no big coordinates collide with \boldsymbol{i} under \boldsymbol{h}_{ℓ}.

Analysis

$Z_{\ell}=g_{\ell}(i) C\left[\ell, h_{\ell}(i)\right]$.
Let \boldsymbol{A}_{ℓ} be event that $\boldsymbol{h}_{\ell}\left(\boldsymbol{i}^{\prime}\right)=\boldsymbol{h}_{\ell}(\boldsymbol{i})$ for some $\boldsymbol{i}^{\prime} \in \boldsymbol{T}_{\text {big }}, \boldsymbol{i}^{\prime} \neq \boldsymbol{i}$

Lemma

$\operatorname{Pr}\left[A_{\ell}\right] \leq \epsilon^{2} / 3$. In other words with $1-\epsilon^{2} / 3$ probability no big coordinates collide with \boldsymbol{i} under \boldsymbol{h}_{ℓ}.

- $Y_{i^{\prime}}$ indicator for $i^{\prime} \neq i$ colliding with i.

$$
\operatorname{Pr}\left[Y_{i^{\prime}}\right] \leq 1 / w \leq \epsilon^{2} /(3 k)
$$

- Let $\boldsymbol{Y}=\sum_{i^{\prime} \in \boldsymbol{T}_{\mathrm{big}}} \boldsymbol{Y}_{i^{\prime}} . \mathrm{E}[\boldsymbol{Y}] \leq \epsilon^{2} / 3$ by linearity of expectation.
- Hence $\operatorname{Pr}\left[\boldsymbol{A}_{\ell}\right]=\operatorname{Pr}[\boldsymbol{Y} \geq 1] \leq \epsilon^{2} / 3$ by Markov

Analysis

$$
\begin{aligned}
& Z_{\ell}=g_{\ell}(i) C\left[\ell, h_{\ell}(i)\right] \\
& =x_{i}+\sum_{i^{\prime} \in \tau_{\tau_{\text {ig }}}(i) g_{\ell}\left(i^{\prime}\right) Y_{i^{\prime}} X_{i^{\prime}}+\sum_{i^{\prime} \in T_{\text {smal }}} g_{\ell}(i) g_{\ell}\left(i^{\prime}\right) Y_{i^{\prime} x_{i}}} \\
& \text { Let } Z_{\ell}^{\prime}=\sum_{i^{\prime} \in T_{\text {smal }}} g_{\ell}(i) g_{\ell}\left(i^{\prime}\right) Y_{i^{\prime}}
\end{aligned}
$$

Lemma

$\operatorname{Pr}\left[\left|Z_{\ell}^{\prime}\right| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{er} r_{2}^{k}(x)\right] \leq 1 / 3$.

Analysis

$$
\begin{aligned}
& Z_{\ell}=g_{\ell}(i) C\left[\ell, h_{\ell}(i)\right] \\
& =x_{i}+\sum_{i^{\prime} \in T_{\mathrm{big}}} g_{\ell}(i) g_{\ell}\left(i^{\prime}\right) Y_{i^{\prime}} x_{i^{\prime}}+\sum_{i^{\prime} \in T_{\text {small }}} g_{\ell}(i) g_{\ell}\left(i^{\prime}\right) Y_{i^{\prime} x_{i^{\prime}}}
\end{aligned}
$$

$$
\text { Let } Z_{\ell}^{\prime}=\sum_{i^{\prime} \in \boldsymbol{T}_{\text {small }}} g_{\ell}(i) g_{\ell}\left(i^{\prime}\right) Y_{i^{\prime}}
$$

Lemma

$\operatorname{Pr}\left[\left|Z_{\ell}^{\prime}\right| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)\right] \leq 1 / 3$.

- $\mathrm{E}\left[Z_{\ell}^{\prime}\right]=0$
- $\operatorname{Var}\left(Z_{\ell}^{\prime}\right) \leq \mathrm{E}\left[\left(Z_{\ell}^{\prime}\right)^{2}\right]=\sum_{i^{\prime} \in \boldsymbol{T}_{\text {small }}} x_{i^{\prime}}^{2} / w \leq \frac{\epsilon^{2}}{3 k}\left(\operatorname{err}_{2}^{k}(x)\right)^{2}$
- By Cheybyshev $\operatorname{Pr}\left[\left|Z_{\ell}^{\prime}\right| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)\right] \leq 1 / 3$.

Analysis: Proof of lemma

Want to show:
Lemma
$\operatorname{Pr}\left[\left|Z_{\ell}-x_{i}\right| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)\right] \leq 2 / 5$.

Analysis: Proof of lemma

Want to show:

Lemma

$\operatorname{Pr}\left[\left|Z_{\ell}-x_{i}\right| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)\right] \leq 2 / 5$.
We have $Z_{\ell}=g_{\ell}(i) C\left[\ell, h_{\ell}(i)\right]$
$=x_{i}+\sum_{i^{\prime} \in T_{\mathrm{big}}} g_{\ell}(i) g_{\ell}\left(i^{\prime}\right) Y_{i^{\prime} x_{i^{\prime}}}+\sum_{i^{\prime} \in T_{\text {smal| }}} g_{\ell}(i) g_{\ell}\left(i^{\prime}\right) Y_{i^{\prime}} x_{i^{\prime}}$

Analysis: Proof of lemma

Want to show:

Lemma

$\operatorname{Pr}\left[\left|Z_{\ell}-x_{i}\right| \geq \frac{\epsilon}{\sqrt{k}} e_{2}^{k}(x)\right] \leq 2 / 5$.
We have $Z_{\ell}=g_{\ell}(i) C\left[\ell, h_{\ell}(i)\right]$
$=x_{i}+\sum_{i^{\prime} \in T_{\mathrm{big}}} g_{\ell}(i) g_{\ell}\left(i^{\prime}\right) Y_{i^{\prime}} x_{i^{\prime}}+\sum_{i^{\prime} \in T_{\text {sman }}} g_{\ell}(i) g_{\ell}\left(i^{\prime}\right) Y_{i^{\prime}} x_{i^{\prime}}$ We saw:

Lemma

$\operatorname{Pr}\left[\left|Z_{\ell}^{\prime}\right| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)\right] \leq 1 / 3$.

Lemma

$\operatorname{Pr}\left[\boldsymbol{A}_{\ell}\right] \leq \epsilon^{2} / 3$. In other words with $1-\epsilon^{2} / 3$ probability no big coordinates collide with \boldsymbol{i} under \boldsymbol{h}_{ℓ}.

Analysis: Proof of lemma

$$
\begin{aligned}
& Z_{\ell}=g_{\ell}(i) C\left[\ell, h_{\ell}(i)\right] \\
& =x_{i}+\sum_{i^{\prime} \in T_{\mathrm{big}}} g_{\ell}(i) g_{\ell}\left(i^{\prime}\right) Y_{i^{\prime}} x_{i^{\prime}}+\sum_{i^{\prime} \in T_{\mathrm{small}}} g_{\ell}(i) g_{\ell}\left(i^{\prime}\right) Y_{i^{\prime} x_{i^{\prime}}}
\end{aligned}
$$

$$
\left|Z_{\ell}-x_{i}\right| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x) \text { implies }
$$

- \boldsymbol{A}_{ℓ} happens (that is some big coordinate collides with \boldsymbol{i} in \boldsymbol{h}_{ℓ} or
- $\left|Z_{\ell}^{\prime}\right| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)$

Analysis: Proof of lemma

$$
\begin{aligned}
& Z_{\ell}=g_{\ell}(i) C\left[\ell, h_{\ell}(i)\right] \\
& =x_{i}+\sum_{i^{\prime} \in T_{\mathrm{big}}} g_{\ell}(i) g_{\ell}\left(i^{\prime}\right) Y_{i^{\prime}} x_{i^{\prime}}+\sum_{i^{\prime} \in T_{\text {small }}} g_{\ell}(i) g_{\ell}\left(i^{\prime}\right) Y_{i^{\prime} x_{i^{\prime}}}
\end{aligned}
$$

$\left|Z_{\ell}-x_{i}\right| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)$ implies

- \boldsymbol{A}_{ℓ} happens (that is some big coordinate collides with \boldsymbol{i} in \boldsymbol{h}_{ℓ} or
- $\left|Z_{\ell}^{\prime}\right| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)$

Therefore, by union bound,
$\operatorname{Pr}\left[\left|Z_{\ell}-x_{i}\right| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)\right] \leq \epsilon^{2} / 3+1 / 3 \leq 2 / 5$
if ϵ is sufficiently small.

High probability estimate

Lemma

$\operatorname{Pr}\left[\left|Z_{\ell}-x_{i}\right| \geq \frac{\epsilon}{\sqrt{k}} e r r_{2}^{k}(x)\right] \leq 2 / 5$.
Recall $\tilde{x}_{i}=\operatorname{median}\left\{g_{1}(i) C\left[1, h_{1}(i)\right], \ldots, g_{d}(i) C\left[d, h_{d}(i)\right]\right\}$.

- Hence by Chernoff bounds with $\boldsymbol{d}=\Omega(\log n)$,

$$
\operatorname{Pr}\left[\left|\tilde{x}_{i}-x_{i}\right| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)\right] \leq 1 / n^{2}
$$

- By union bound, with probability at least $(1-1 / n)$,

$$
\left|\tilde{x}_{i}-x_{i}\right| \leq \frac{\epsilon}{\sqrt{k}} \operatorname{err} 2_{2}^{k}(x) \text { for all } i \in[n] .
$$

High probability estimate

Lemma

$\operatorname{Pr}\left[\left|Z_{\ell}-x_{i}\right| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)\right] \leq 2 / 5$.
Recall $\tilde{x}_{i}=\operatorname{median}\left\{g_{1}(i) C\left[1, h_{1}(i)\right], \ldots, g_{d}(i) C\left[d, h_{d}(i)\right]\right\}$.

- Hence by Chernoff bounds with $\boldsymbol{d}=\Omega(\log n)$,

$$
\operatorname{Pr}\left[\left|\tilde{x}_{i}-x_{i}\right| \geq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)\right] \leq 1 / n^{2}
$$

- By union bound, with probability at least $(1-1 / n)$,

$$
\left|\tilde{x}_{i}-x_{i}\right| \leq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x) \text { for all } i \in[n]
$$

Lemma

Count-Sketch with $\boldsymbol{w}=3 \boldsymbol{k} / \epsilon^{2}$ and $\boldsymbol{d}=\boldsymbol{O}(\log n)$ ensures that $\forall i \in[n], \quad\left|\tilde{x}_{i}-x_{i}\right| \leq \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)$ with high probability (at least $(1-1 / n))$.

Second lemma of outline

Lemma

Let $x, y \in \mathbb{R}^{\boldsymbol{n}}$ such that $\|x-y\|_{\infty} \leq \frac{\epsilon}{\sqrt{k}} e r r_{2}^{k}(x)$. Then, $\|\boldsymbol{x}-\boldsymbol{z}\|_{2} \leq(1+5 \boldsymbol{\epsilon}) \operatorname{err} r_{2}^{k}(\boldsymbol{x})$, where \boldsymbol{z} is the vector obtained as follows: $\boldsymbol{z}_{\boldsymbol{i}}=\boldsymbol{y}_{\boldsymbol{i}}$ for $\boldsymbol{i} \in \boldsymbol{T}$ where \boldsymbol{T} is the set of \boldsymbol{k} largest (in absolute value) indices of \boldsymbol{y} and $z_{\boldsymbol{i}}=0$ for $\boldsymbol{i} \notin T$.

What the lemma is saying:

- $\tilde{\boldsymbol{x}}$ the estimated vector of Count-Sketch approximates \boldsymbol{x} very closely in each coordinate
- Algorithm picks the top k coordinates of \tilde{x} to create \boldsymbol{z}
- Then \boldsymbol{z} approximates \boldsymbol{x} well

Second lemma of outline

Lemma

Let $x, y \in \mathbb{R}^{\boldsymbol{n}}$ such that $\|x-y\|_{\infty} \leq \frac{\epsilon}{\sqrt{k}} e r r_{2}^{k}(x)$. Then, $\|\boldsymbol{x}-\boldsymbol{z}\|_{2} \leq(1+5 \boldsymbol{\epsilon}) \operatorname{err}_{2}^{k}(\boldsymbol{x})$, where \boldsymbol{z} is the vector obtained as follows: $\boldsymbol{z}_{\boldsymbol{i}}=y_{i}$ for $\boldsymbol{i} \in \boldsymbol{T}$ where \boldsymbol{T} is the set of \boldsymbol{k} largest (in absolute value) indices of \boldsymbol{y} and $z_{\boldsymbol{i}}=0$ for $\boldsymbol{i} \notin T$.

What the lemma is saying:

- \tilde{x} the estimated vector of Count-Sketch approximates x very closely in each coordinate
- Algorithm picks the top k coordinates of \tilde{x} to create \boldsymbol{z}
- Then z approximates x well

Proof is basically follows the intuition of triangle inequality

Proof of lemma

S (previously $\boldsymbol{T}_{\text {big }}$) is set of k biggest coordinates in x
\boldsymbol{T} is the set of \boldsymbol{k} biggest coordinates in $\boldsymbol{y}=\tilde{x}$
Let $\boldsymbol{E}=\frac{1}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)$ for ease of notation.

$$
\left(\operatorname{err}_{2}^{k}(x)\right)^{2}=k E^{2}=\sum_{i \in[n] \backslash \boldsymbol{S}} x_{i}^{2}=\sum_{i \in \boldsymbol{T} \backslash \boldsymbol{S}} x_{i}^{2}+\sum_{i \in[n] \backslash(\boldsymbol{S} \cup \boldsymbol{T})} x_{i}^{2} .
$$

Want to bound

$$
\begin{aligned}
\|x-z\|_{2}^{2} & =\sum_{i \in \boldsymbol{T}}\left|x_{i}-z_{i}\right|^{2}+\sum_{i \in \boldsymbol{S} \backslash \boldsymbol{T}}\left|x_{i}-z_{i}\right|^{2}+\sum_{i \in[n] \backslash(S \cup T)} x_{i}^{2} \\
& =\sum_{i \in \boldsymbol{T}}\left|x_{i}-y_{i}\right|^{2}+\sum_{i \in \boldsymbol{S} \backslash \boldsymbol{T}} x_{i}^{2}+\sum_{i \in[\boldsymbol{n}] \backslash(\boldsymbol{S} \cup \boldsymbol{T})} x_{i}^{2} .
\end{aligned}
$$

Analysis continued

Want to bound

$$
\begin{aligned}
\|x-z\|_{2}^{2} & =\sum_{i \in \boldsymbol{T}}\left|x_{i}-z_{i}\right|^{2}+\sum_{i \in S \backslash T}\left|x_{i}-z_{i}\right|^{2}+\sum_{i \in[n] \backslash(S \cup T)} x_{i}^{2} \\
& =\sum_{i \in \boldsymbol{T}}\left|x_{i}-y_{i}\right|^{2}+\sum_{i \in \boldsymbol{S} \backslash \boldsymbol{T}} x_{i}^{2}+\sum_{i \in[n] \backslash(\boldsymbol{S} \cup \boldsymbol{T})} x_{i}^{2} .
\end{aligned}
$$

First term: $\sum_{i \in \boldsymbol{T}}\left|x_{\boldsymbol{i}}-\tilde{\boldsymbol{x}}_{\boldsymbol{i}}\right|^{2} \leq \boldsymbol{k} \epsilon^{2} \boldsymbol{E}^{2} \leq \boldsymbol{\epsilon}^{2}\left(\operatorname{err}_{2}^{k}(\boldsymbol{x})\right)^{2}$

Analysis continued

Want to bound

$$
\begin{aligned}
\|x-z\|_{2}^{2} & =\sum_{i \in T}\left|x_{i}-z_{i}\right|^{2}+\sum_{i \in S \backslash T}\left|x_{i}-z_{i}\right|^{2}+\sum_{i \in[n] \backslash(S \cup T)} x_{i}^{2} \\
& =\sum_{i \in \boldsymbol{T}}\left|x_{i}-y_{i}\right|^{2}+\sum_{i \in \boldsymbol{S} \backslash \boldsymbol{T}} x_{i}^{2}+\sum_{i \in[n] \backslash(\boldsymbol{S} \cup \boldsymbol{T})} x_{i}^{2} .
\end{aligned}
$$

First term: $\sum_{i \in \boldsymbol{T}}\left|x_{\boldsymbol{i}}-\tilde{\boldsymbol{x}}_{\boldsymbol{i}}\right|^{2} \leq \boldsymbol{k} \epsilon^{2} \boldsymbol{E}^{2} \leq \boldsymbol{\epsilon}^{2}\left(\operatorname{err}_{2}^{k}(\boldsymbol{x})\right)^{2}$
Third term: common to expression for $\left(\operatorname{err}_{2}^{k}(x)\right)^{2}$

Analysis continued

Want to bound

$$
\begin{aligned}
\|x-z\|_{2}^{2} & =\sum_{i \in T}\left|x_{i}-z_{i}\right|^{2}+\sum_{i \in S \backslash T}\left|x_{i}-z_{i}\right|^{2}+\sum_{i \in[n] \backslash(S \cup T)} x_{i}^{2} \\
& =\sum_{i \in T}\left|x_{i}-y_{i}\right|^{2}+\sum_{i \in \boldsymbol{S} \backslash \boldsymbol{T}} x_{i}^{2}+\sum_{i \in[n] \backslash(S \cup T)} x_{i}^{2} .
\end{aligned}
$$

First term: $\sum_{i \in \boldsymbol{T}}\left|x_{\boldsymbol{i}}-\tilde{\boldsymbol{x}}_{\boldsymbol{i}}\right|^{2} \leq \boldsymbol{k} \epsilon^{2} \boldsymbol{E}^{2} \leq \boldsymbol{\epsilon}^{2}\left(\operatorname{err}_{2}^{k}(\boldsymbol{x})\right)^{2}$
Third term: common to expression for $\left(\operatorname{err}_{2}^{k}(x)\right)^{2}$
Second term: needs more care

Analysis contd

Want to bound $\sum_{\boldsymbol{i} \in \boldsymbol{S} \backslash \boldsymbol{T}} \boldsymbol{x}_{\boldsymbol{i}}^{2}$
Let $\ell=|S \backslash T| \leq k$. Since $|S|=|T|=k,|T \backslash S|=\ell$
Coordinates in $S \backslash T$ and $T \backslash S$ must be close: within $\frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)$

Analysis contd

Want to bound $\sum_{i \in \boldsymbol{S} \backslash \boldsymbol{T}} \boldsymbol{x}_{\boldsymbol{i}}^{2}$
Let $\ell=|S \backslash T| \leq k$. Since $|S|=|T|=k,|T \backslash S|=\ell$
Coordinates in $S \backslash T$ and $T \backslash S$ must be close: within $\frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)$
Claim: Let $\boldsymbol{a}=\max _{i \in S \backslash \boldsymbol{T}}\left|x_{i}\right|$ and $\boldsymbol{b}=\min _{i \in \boldsymbol{T} \backslash \boldsymbol{S}}\left|x_{i}\right|$. Then $\boldsymbol{a} \leq \boldsymbol{b}+2 \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(\boldsymbol{x})$.

Analysis contd

Want to bound $\sum_{i \in \boldsymbol{S} \backslash \boldsymbol{T}} \boldsymbol{x}_{\boldsymbol{i}}^{2}$
Let $\ell=|S \backslash T| \leq k$. Since $|S|=|T|=k,|T \backslash S|=\ell$
Coordinates in $S \backslash T$ and $T \backslash S$ must be close: within $\frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)$
Claim: Let $\boldsymbol{a}=\max _{\boldsymbol{i} \in \boldsymbol{S} \backslash \boldsymbol{T}}\left|x_{\boldsymbol{i}}\right|$ and $\boldsymbol{b}=\min _{\boldsymbol{i} \in \boldsymbol{T} \backslash \boldsymbol{S}}\left|x_{\boldsymbol{i}}\right|$. Then $a \leq b+2 \frac{\epsilon}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)$.

Therefore

$$
\begin{aligned}
\sum_{\boldsymbol{i} \in \boldsymbol{S} \backslash \boldsymbol{T}} x_{i}^{2} & \leq \ell a^{2} \leq \ell\left(\boldsymbol{b}+2 \frac{\boldsymbol{\epsilon}}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)\right)^{2} \\
& \leq \ell \boldsymbol{b}^{2}+4 \boldsymbol{k} \frac{\epsilon^{2}}{\boldsymbol{k}}\left(\operatorname{err}_{2}^{k}(\boldsymbol{x})\right)^{2}+4 \boldsymbol{k} \boldsymbol{b} \frac{\boldsymbol{\epsilon}}{\sqrt{k}} \operatorname{err}_{2}^{k}(\boldsymbol{x})
\end{aligned}
$$

Analysis contd

$$
\begin{aligned}
\sum_{\boldsymbol{i} \in \boldsymbol{S} \backslash \boldsymbol{T}} x_{i}^{2} & \leq \ell \boldsymbol{a}^{2} \leq \ell\left(\boldsymbol{b}+2 \frac{\boldsymbol{\epsilon}}{\sqrt{k}} \operatorname{err}_{2}^{k}(x)\right)^{2} \\
& \leq \ell \boldsymbol{b}^{2}+4 \boldsymbol{k} \frac{\epsilon^{2}}{k}\left(\operatorname{err}_{2}^{k}(x)\right)^{2}+4 \boldsymbol{k} \boldsymbol{b} \frac{\boldsymbol{\epsilon}}{\sqrt{k}} \operatorname{err}_{2}^{k}(x) \\
& \leq \boldsymbol{\ell b ^ { 2 }}+4 \epsilon^{2}\left(\operatorname{err}_{2}^{k}(x)\right)^{2}+4 \boldsymbol{\epsilon}(\sqrt{k} b) \operatorname{err}_{2}^{k}(x) \\
& \leq \boldsymbol{\ell b ^ { 2 } + 8 \epsilon (\operatorname { e r r } _ { 2 } ^ { k } (x)) ^ { 2 }} \\
& \leq \sum_{\boldsymbol{i} \in \boldsymbol{T} \backslash \boldsymbol{S}} x_{\boldsymbol{i}}^{2}+8 \boldsymbol{\epsilon}\left(\operatorname{err}_{2}^{k}(x)\right)^{2}
\end{aligned}
$$

Exercise: Why is $\sqrt{k} b \leq \operatorname{err}{ }_{2}^{k}(x)$? (We used it above.)

Analysis contd

$$
\begin{aligned}
\|x-z\|_{2}^{2} & =\sum_{i \in \boldsymbol{T}}\left|x_{i}-z_{i}\right|^{2}+\sum_{i \in S \backslash \boldsymbol{T}}\left|x_{i}-z_{i}\right|^{2}+\sum_{i \in[n] \backslash(S \cup T)} x_{i}^{2} \\
& =\sum_{i \in \boldsymbol{T}}\left|x_{i}-y_{i}\right|^{2}+\sum_{i \in \boldsymbol{S} \backslash \boldsymbol{T}} x_{i}^{2}+\sum_{i \in[n] \backslash(\boldsymbol{S} \cup \boldsymbol{T})} x_{i}^{2} .
\end{aligned}
$$

First term: $\sum_{i \in T}\left|x_{i}-\tilde{x}_{\boldsymbol{i}}\right|^{2} \leq \boldsymbol{k} \epsilon^{2} E^{2} \leq \epsilon^{2}\left(\operatorname{err}_{2}^{k}(x)\right)^{2}$
Third term: common to expression for $\left(\operatorname{err}_{2}^{k}(x)\right)^{2}$ Second term: at most $\sum_{i \in \boldsymbol{T} \backslash \boldsymbol{s}} \boldsymbol{x}_{\boldsymbol{i}}^{2}+8 \boldsymbol{\epsilon}\left(\operatorname{err}_{2}^{k}(\boldsymbol{x})\right)^{2}$
Hence

$$
\|x-z\|_{2}^{2} \leq(1+9 \epsilon)\left(\operatorname{err}_{2}^{k}(x)\right)^{2}
$$

Implies

$$
\|x-z\|_{2} \leq(\sqrt{1+9 \epsilon}) \operatorname{err}_{2}^{k}(x) \leq(1+5 \epsilon) \operatorname{err}_{2}^{k}(x)
$$

Application to signal processing

Given signal x approximate it via small number of basis signals

- Fourier analysis and Wavelets
- Useful in compression of various kinds

Application to signal processing

Given signal x approximate it via small number of basis signals

- Fourier analysis and Wavelets
- Useful in compression of various kinds

Transform x into $y=B x$ where B is a transform and then approximate \boldsymbol{y} by \boldsymbol{k}-sparse vector \boldsymbol{z}

To (approximately) reconstruct \boldsymbol{x}, output $\boldsymbol{x}^{\prime}=B^{-1} \boldsymbol{z}$

If $B \boldsymbol{x}$ can be computed in streaming fashion from stream for \boldsymbol{x}, we can apply preceding algorithm to obtain z

Compressed Sensing

We saw that given \boldsymbol{x} in streaming fashion we can construct sketch that allows us to find k-sparse z that approximates x with high probability

Compressed sensing: we want to create projection matrix Π such that for any \boldsymbol{x} we can create from Πx a good k-sparse approximation to x

Doable! With Π that has $O(\boldsymbol{k} \log (\boldsymbol{n} / \boldsymbol{k}))$ rows. Creating Π requires randomization but once found it can be used. Called RIP matrices. First due to Candes, Romberg, Tao and Donoho. Lot of work in signal processing and algorithms.

