CS 498ABD: Algorithms for Big Data

CountMin and Count Sketches

Lecture 09
September 20, 2022

Heavy Hitters Problem

Heavy Hitters Problem: Find all items \boldsymbol{i} such that $\boldsymbol{f}_{\boldsymbol{i}}>\boldsymbol{m} / \boldsymbol{k}$ for some fixed k.

Heavy hitters are very frequent items.
We saw Misra-Gries deterministic algorithm that in $\boldsymbol{O}(\boldsymbol{k})$ space finds the heavy hitters assuming they exist.

- Identifies correct heavy hitters if they exist but can make a mistake if they don't and need second pass to verify
- Cannot handle deletions

(Strict) Turnstile Model

- Turnstile model: each update is $\left(\boldsymbol{i}_{\boldsymbol{j}}, \Delta_{j}\right)$ where Δ_{j} can be positive or negative
- Strict turnstile: need $\boldsymbol{x}_{\boldsymbol{i}} \geq 0$ at all time for all \boldsymbol{i}

In terms of frequent items we want additive error to $\boldsymbol{x}_{\boldsymbol{i}}$

Basic Hashing/Sampling Idea

Heavy Hitters Problem: Find all items \boldsymbol{i} such that $\boldsymbol{f}_{\boldsymbol{i}}>\boldsymbol{m} / \boldsymbol{k}$.

- Let $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{\boldsymbol{k}}$ be the \boldsymbol{k} heavy hitters
- Suppose we pick $\boldsymbol{h}:[\boldsymbol{n}] \rightarrow[c k]$ for some $\boldsymbol{c}>1$
- \boldsymbol{h} spreads $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{\boldsymbol{k}}$ among the buckets (\boldsymbol{k} balls into $c k$ bins)
- In ideal situation each bucket can be used to count a separate heavy hitter
- Use multiple independent hash functions to improve estimate

Part I

CountMin Sketch

CountMin Sketch: Offline view

- \boldsymbol{d} independent hash functions $\boldsymbol{h}_{1}, \boldsymbol{h}_{2}, \ldots, \boldsymbol{h}_{\boldsymbol{d}}$. Each hash function is pair-wise independent
- Each $\boldsymbol{h}_{\ell}:[n] \rightarrow[\boldsymbol{w}]$ (hence maps to \boldsymbol{w} buckets)
- Store one number per bucket and hence total of $d w$ numbers which can be viewed as 2 -day array (\boldsymbol{d} rows, \boldsymbol{w} columns). $C[\ell, s]$ is the counter for bucket s for hash function h_{ℓ}.
- Let $x \in \mathbb{R}^{\boldsymbol{n}}$ be the given vector. For $1 \leq \ell \leq \boldsymbol{d}, 1 \leq s \leq w$

$$
C[\ell, s]=\sum_{i: h_{\ell}(i)=s} x_{i}
$$

hence it keeps track of sum of all coordinates that \boldsymbol{h}_{ℓ} maps to bucket s

CountMin Sketch

[Cormode-Muthukrishnan]
CountMin-Sketch(w, d):
$\boldsymbol{h}_{1}, \boldsymbol{h}_{2}, \ldots, \boldsymbol{h}_{\boldsymbol{d}}$ are pair-wise independent hash functions from $[\boldsymbol{n}] \rightarrow[\boldsymbol{w}]$.
While (stream is not empty) do

$$
e_{t}=\left(i_{t}, \Delta_{t}\right) \text { is current item }
$$

$$
\text { for } \ell=1 \text { to } \boldsymbol{d} \text { do }
$$

$$
C\left[\ell, \boldsymbol{h}_{\ell}\left(\boldsymbol{i}_{\boldsymbol{j}}\right)\right] \leftarrow C\left[\ell, \boldsymbol{h}_{\ell}\left(\boldsymbol{i}_{\boldsymbol{j}}\right)\right]+\Delta_{t}
$$

endWhile
For $\boldsymbol{i} \in[\boldsymbol{n}]$ set $\tilde{x}_{i}=\min _{\ell=1}^{d} C\left[\ell, \boldsymbol{h}_{\ell}(i)\right]$.
Counter $C[\ell, s]$ counts the sum of all x_{i} such that $h_{\ell}(i)=s$.

$$
C[\ell, s]=\sum_{i: h_{\ell}(i)=s} x_{i}
$$

Intuition

- Suppose there are k heavy hitters $b_{1}, b_{2}, \ldots, b_{k}$
- Consider $\boldsymbol{b}_{\boldsymbol{i}}$: Hash function \boldsymbol{h}_{ℓ} sends $\boldsymbol{b}_{\boldsymbol{i}}$ to $\boldsymbol{h}_{\ell}\left(\boldsymbol{b}_{\boldsymbol{i}}\right) . C\left[\boldsymbol{\ell}, \boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right)\right]$ counts $x_{b_{i}}$ and also other items that hash to same bucket $\boldsymbol{h}_{\ell}\left(\boldsymbol{b}_{\boldsymbol{i}}\right)$ so we always overcount (since strict turnstile model)
- Repeating with many hash functions and taking minimum is right thing to do: for $\boldsymbol{b}_{\boldsymbol{i}}$ the goal is to avoid other heavy hitters colliding with it

Property of CountMin Sketch

Lemma

Consider strict turnstile mode $(x \geq 0)$. Let $\boldsymbol{d}=\Omega\left(\log \frac{1}{\delta}\right)$ and $\boldsymbol{w}>\frac{2}{\epsilon}$. Then for any fixed $\boldsymbol{i} \in[\boldsymbol{n}], \boldsymbol{x}_{\boldsymbol{i}} \leq \tilde{\boldsymbol{x}}_{\boldsymbol{i}}$ and

$$
\operatorname{Pr}\left[\tilde{x}_{\boldsymbol{i}} \geq \boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{\epsilon}\|\boldsymbol{x}\|_{1}\right] \leq \boldsymbol{\delta}
$$

Property of CountMin Sketch

Lemma

Consider strict turnstile mode $(x \geq 0)$. Let $\boldsymbol{d}=\Omega\left(\log \frac{1}{\delta}\right)$ and $\boldsymbol{w}>\frac{2}{\epsilon}$. Then for any fixed $\boldsymbol{i} \in[\boldsymbol{n}], \boldsymbol{x}_{\boldsymbol{i}} \leq \tilde{x}_{\boldsymbol{i}}$ and

$$
\operatorname{Pr}\left[\tilde{x}_{\boldsymbol{i}} \geq \boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{\epsilon}\|\boldsymbol{x}\|_{1}\right] \leq \boldsymbol{\delta}
$$

- Unlike Misra-Greis we have over estimates
- Actual items are not stored (requires work to recover heavy hitters)
- Works in strict turnstile model and hence can handle deletions
- Space usage is $\boldsymbol{O}\left(\frac{\log (1 / \delta)}{\epsilon}\right)$ counters and hence $\boldsymbol{O}\left(\frac{\log (1 / \delta)}{\epsilon} \log \boldsymbol{m}\right)$ bits

Analysis

Fix $\boldsymbol{\ell}$ and $\boldsymbol{i} \in[\boldsymbol{n}]: \boldsymbol{h}_{\ell}(\boldsymbol{i})$ is the bucket that \boldsymbol{h}_{ℓ} hashes \boldsymbol{i} to.

Analysis

Fix $\boldsymbol{\ell}$ and $\boldsymbol{i} \in[\boldsymbol{n}]: \boldsymbol{h}_{\ell}(\boldsymbol{i})$ is the bucket that \boldsymbol{h}_{ℓ} hashes \boldsymbol{i} to.
$Z_{\ell}=C\left[\ell, h_{\ell}(i)\right]$ is the counter value that i is hashed to.

Analysis

Fix ℓ and $\boldsymbol{i} \in[\boldsymbol{n}]: \boldsymbol{h}_{\ell}(\boldsymbol{i})$ is the bucket that \boldsymbol{h}_{ℓ} hashes \boldsymbol{i} to.
$Z_{\ell}=C\left[\ell, h_{\ell}(i)\right]$ is the counter value that i is hashed to.

$$
\mathrm{E}\left[Z_{\ell}\right]=x_{i}+\sum_{i^{\prime} \neq i} \operatorname{Pr}\left[h_{\ell}\left(i^{\prime}\right)=h_{\ell}(i)\right] x_{i^{\prime}}
$$

Analysis

Fix ℓ and $\boldsymbol{i} \in[\boldsymbol{n}]: \boldsymbol{h}_{\ell}(\boldsymbol{i})$ is the bucket that \boldsymbol{h}_{ℓ} hashes \boldsymbol{i} to.
$Z_{\ell}=C\left[\ell, h_{\ell}(i)\right]$ is the counter value that i is hashed to.

$$
\mathrm{E}\left[Z_{\ell}\right]=x_{i}+\sum_{i^{\prime} \neq i} \operatorname{Pr}\left[h_{\ell}\left(i^{\prime}\right)=h_{\ell}(i)\right] x_{i^{\prime}}
$$

By pairwise-independence

$$
\mathrm{E}\left[Z_{\ell}\right]=x_{i}+\sum_{i^{\prime} \neq i^{\prime}} x_{i^{\prime}} / w \leq x_{i}+\epsilon\|x\|_{1} / 2
$$

Analysis

Fix ℓ and $\boldsymbol{i} \in[\boldsymbol{n}]: \boldsymbol{h}_{\ell}(\boldsymbol{i})$ is the bucket that \boldsymbol{h}_{ℓ} hashes \boldsymbol{i} to.
$Z_{\ell}=C\left[\ell, h_{\ell}(i)\right]$ is the counter value that i is hashed to.
$\mathrm{E}\left[Z_{\ell}\right]=x_{i}+\sum_{i^{\prime} \neq i} \operatorname{Pr}\left[h_{\ell}\left(i^{\prime}\right)=\boldsymbol{h}_{\ell}(i)\right] x_{i^{\prime}}$
By pairwise-independence
$\mathrm{E}\left[Z_{\ell}\right]=x_{i}+\sum_{i^{\prime} \neq i} x_{i^{\prime}} / w \leq x_{i}+\epsilon\|x\|_{1} / 2$
Via Markov applied to $Z_{\ell}-x_{i}$ (we use strict turnstile here) $\operatorname{Pr}\left[Z_{\ell}-x_{i}\right] \geq \epsilon\|x\|_{1} \leq 1 / 2$

Analysis

Fix ℓ and $\boldsymbol{i} \in[\boldsymbol{n}]: \boldsymbol{h}_{\ell}(\boldsymbol{i})$ is the bucket that \boldsymbol{h}_{ℓ} hashes \boldsymbol{i} to.
$Z_{\ell}=C\left[\ell, h_{\ell}(i)\right]$ is the counter value that i is hashed to.
$\mathrm{E}\left[Z_{\ell}\right]=x_{i}+\sum_{i^{\prime} \neq i} \operatorname{Pr}\left[h_{\ell}\left(i^{\prime}\right)=\boldsymbol{h}_{\ell}(i)\right] x_{i^{\prime}}$
By pairwise-independence
$\mathrm{E}\left[Z_{\ell}\right]=x_{i}+\sum_{i^{\prime} \neq i} x_{i^{\prime}} / w \leq x_{i}+\epsilon\|x\|_{1} / 2$
Via Markov applied to $Z_{\ell}-x_{i}$ (we use strict turnstile here) $\operatorname{Pr}\left[Z_{\ell}-x_{i}\right] \geq \epsilon\|x\|_{1} \leq 1 / 2$

Since the \boldsymbol{d} hash functions are independent $\operatorname{Pr}\left[\min _{\ell} Z_{\ell} \geq x_{i}+\epsilon\|x\|_{1}\right] \leq 1 / 2^{d} \leq \delta$

Summarizing

Lemma

Let $\boldsymbol{d}>\log \frac{1}{\delta}$ and $w>\frac{2}{\epsilon}$. Then for any fixed $i \in[\boldsymbol{n}], \boldsymbol{x}_{\boldsymbol{i}} \leq \tilde{\boldsymbol{x}}_{\boldsymbol{i}}$ and

$$
\operatorname{Pr}\left[\tilde{x}_{i} \geq x_{i}+\epsilon\|x\|_{1}\right] \leq \delta
$$

Choose $\boldsymbol{d}=2 \ln \boldsymbol{n}$ and $\boldsymbol{w}=2 / \boldsymbol{\epsilon}$. Then

$$
\operatorname{Pr}\left[\tilde{x}_{i} \geq x_{i}+\epsilon\|x\|_{1}\right] \leq 1 / n^{2}
$$

Via union bound, with probability $(1-1 / n)$, for all $\boldsymbol{i} \in[\boldsymbol{n}]$:

$$
\tilde{x}_{i} \leq x_{i}+\epsilon\|x\|_{1}
$$

Summarizing

Lemma

Let $\boldsymbol{d}=\Omega\left(\log \frac{1}{\delta}\right)$ and $\boldsymbol{w}>\frac{2}{\epsilon}$. Then for any fixed $\boldsymbol{i} \in[\boldsymbol{n}], \boldsymbol{x}_{\boldsymbol{i}} \leq \tilde{\boldsymbol{x}}_{\boldsymbol{i}}$ and

$$
\operatorname{Pr}\left[\tilde{x}_{i} \geq x_{i}+\epsilon\|x\|_{1}\right] \leq \delta
$$

Corollary

With $\boldsymbol{d}=\Omega(\ln \boldsymbol{n})$ and $\boldsymbol{w}=2 / \boldsymbol{\epsilon}$, with probability $\left(1-\frac{1}{\boldsymbol{n}}\right)$ for all $i \in[n]:$

$$
\tilde{x}_{i} \leq x_{i}+\epsilon\|x\|_{1}
$$

Total space: $\boldsymbol{O}\left(\frac{1}{\epsilon} \log n\right)$ counters and hence $\boldsymbol{O}\left(\frac{1}{\epsilon} \log n \log \boldsymbol{m}\right)$ bits.

CountMin as a Linear Sketch

Question: Why is CountMin a linear sketch?

CountMin as a Linear Sketch

Question: Why is CountMin a linear sketch?
Recall that for $1 \leq \boldsymbol{\ell} \leq \boldsymbol{d}$ and $1 \leq \boldsymbol{s} \leq \boldsymbol{w}$:

$$
C[\ell, s]=\sum_{i: h_{\ell}(i)=s} x_{i}
$$

Thus, once hash function \boldsymbol{h}_{ℓ} is fixed:

$$
C[\ell, s]=\langle u, x\rangle
$$

where \boldsymbol{u} is a row vector in $\{0,1\}^{n}$ such that $\boldsymbol{u}_{\boldsymbol{i}}=1$ if $\boldsymbol{h}_{\ell}(\boldsymbol{i})=\boldsymbol{s}$ and $\boldsymbol{u}_{\boldsymbol{i}}=0$ otherwise
Thus, once hash functions are fixed, the counter values can be written as $M x$ where $M \in\{0,1\}^{w d \times n}$ is the sketch matrix

Part II

Count Sketch

Count Sketch

- Similar to CountMin use \boldsymbol{d} hash functions each with \boldsymbol{w} buckets etch and hence array of $d w$ counters
- Inspired by F_{2} estimation use additional $\{-1,1\}$ hash functions which creates negative values
- Use median estimate

Count Sketch

[Charikar-Chen-FarachColton]
Count-Sketch (w, d):
$\boldsymbol{h}_{1}, \boldsymbol{h}_{2}, \ldots, \boldsymbol{h}_{\boldsymbol{d}}$ are pair-wise independent hash functions from $[\boldsymbol{n}] \rightarrow[\boldsymbol{w}]$.
$\boldsymbol{g}_{1}, \boldsymbol{g}_{2}, \ldots, \boldsymbol{g}_{\boldsymbol{d}}$ are pair-wise independent hash functions from $[\boldsymbol{n}] \rightarrow\{-1,1\}$.
While (stream is not empty) do $\boldsymbol{e}_{\boldsymbol{t}}=\left(\boldsymbol{i}_{\boldsymbol{t}}, \Delta_{\boldsymbol{t}}\right)$ is current item for $\ell=1$ to \boldsymbol{d} do

$$
C\left[\ell, \boldsymbol{h}_{\ell}\left(\boldsymbol{i}_{j}\right)\right] \leftarrow C\left[\ell, \boldsymbol{h}_{\ell}\left(\boldsymbol{i}_{j}\right)\right]+\boldsymbol{g}\left(\boldsymbol{i}_{\boldsymbol{t}}\right) \Delta_{t}
$$

endWhile
For $\boldsymbol{i} \in[\boldsymbol{n}]$
set $\tilde{\boldsymbol{x}}_{\boldsymbol{i}}=\operatorname{median}\left\{\boldsymbol{g}_{1}(\boldsymbol{i}) \boldsymbol{C}\left[1, \boldsymbol{h}_{1}(\boldsymbol{i})\right], \ldots, \boldsymbol{g}_{\boldsymbol{d}}(\boldsymbol{i}) \boldsymbol{C}\left[\boldsymbol{d}, \boldsymbol{h}_{\boldsymbol{d}}(\boldsymbol{i})\right]\right\}$.
Like CountMin, Count sketch has wd counters. Now counter values can become negative even if \boldsymbol{x} is positive.

Intuition

- Each hash function \boldsymbol{h}_{ℓ} spreads the elements across \boldsymbol{w} buckets
- The has function $g_{\boldsymbol{\ell}}$ induces cancellations (inspired by \boldsymbol{F}_{2} estimation algorithm)
- Since answer may be negative even if $x \geq 0$, we take the median Exercise: Show that Count sketch is also a linear sketch.

Property of Count Sketch

Lemma

Let $\boldsymbol{d} \geq 4 \log \frac{1}{\delta}$ and $\boldsymbol{w}>\frac{3}{\epsilon^{2}}$. Then for any fixed $\boldsymbol{i} \in[\boldsymbol{n}], \mathrm{E}\left[\tilde{x}_{\boldsymbol{i}}\right]=\boldsymbol{x}_{\boldsymbol{i}}$ and

$$
\operatorname{Pr}\left[\left|\tilde{x}_{\boldsymbol{i}}-x_{i}\right| \geq \epsilon\|x\|_{2}\right] \leq \delta
$$

Property of Count Sketch

Lemma

Let $\boldsymbol{d} \geq 4 \log \frac{1}{\delta}$ and $w>\frac{3}{\epsilon^{2}}$. Then for any fixed $i \in[n], \mathrm{E}\left[\tilde{x}_{i}\right]=\boldsymbol{x}_{\boldsymbol{i}}$ and

$$
\operatorname{Pr}\left[\left|\tilde{x}_{i}-x_{i}\right| \geq \epsilon\|x\|_{2}\right] \leq \delta
$$

Comparison to CountMin

- Error guarantee is with respect to $\|x\|_{2}$ instead of $\|x\|_{1}$. For $x \geq 0,\|x\|_{2} \leq\|x\|_{1}$ and in some cases $\|x\|_{2} \ll\|x\|_{1}$.
- Space increases to $\boldsymbol{O}\left(\frac{1}{\epsilon^{2}} \log n\right)$ counters from $\boldsymbol{O}\left(\frac{1}{\epsilon} \log n\right)$ counters

Analysis

Fix an $i \in[n]$ and $\ell \in[d]$. Let $Z_{\ell}=g_{\ell}(i) C\left[\ell, h_{\ell}(i)\right]$.

Analysis

Fix an $i \in[n]$ and $\ell \in[d]$. Let $Z_{\ell}=g_{\ell}(i) C\left[\ell, h_{\ell}(i)\right]$.
For $i^{\prime} \in[n]$ let $Y_{i^{\prime}}$ be the indicator random variable that is 1 if $\boldsymbol{h}_{\ell}(\boldsymbol{i})=\boldsymbol{h}_{\ell}\left(\boldsymbol{i}^{\prime}\right)$; that is \boldsymbol{i} and \boldsymbol{i}^{\prime} collide in \boldsymbol{h}_{ℓ}.
$E\left[Y_{i^{\prime}}\right]=E\left[\boldsymbol{Y}_{i^{\prime}}^{2}\right]=1 / w$ from pairwise independence of \boldsymbol{h}_{ℓ}.

Analysis

Fix an $\boldsymbol{i} \in[\boldsymbol{n}]$ and $\ell \in[d]$. Let $Z_{\ell}=g_{\ell}(i) C\left[\ell, \boldsymbol{h}_{\ell}(i)\right]$.
For $i^{\prime} \in[n]$ let $Y_{i^{\prime}}$ be the indicator random variable that is 1 if $\boldsymbol{h}_{\ell}(\boldsymbol{i})=\boldsymbol{h}_{\ell}\left(\boldsymbol{i}^{\prime}\right)$; that is \boldsymbol{i} and \boldsymbol{i}^{\prime} collide in \boldsymbol{h}_{ℓ}.
$E\left[Y_{i^{\prime}}\right]=E\left[Y_{i^{\prime}}^{2}\right]=1 / w$ from pairwise independence of \boldsymbol{h}_{ℓ}.

$$
z_{\ell}=g_{\ell}(i) C\left[\ell, h_{\ell}(i)\right]=g_{\ell}(i) \sum_{i^{\prime}} g_{\ell}\left(i^{\prime}\right) x_{i^{\prime}} Y_{i^{\prime}}
$$

Analysis

Fix an $i \in[n]$ and $\ell \in[d]$. Let $Z_{\ell}=g_{\ell}(i) C\left[\ell, h_{\ell}(i)\right]$.
For $i^{\prime} \in[n]$ let $Y_{i^{\prime}}$ be the indicator random variable that is 1 if $\boldsymbol{h}_{\ell}(\boldsymbol{i})=\boldsymbol{h}_{\ell}\left(\boldsymbol{i}^{\prime}\right)$; that is \boldsymbol{i} and \boldsymbol{i}^{\prime} collide in \boldsymbol{h}_{ℓ}.
$E\left[Y_{i^{\prime}}\right]=E\left[Y_{i^{\prime}}^{2}\right]=1 / w$ from pairwise independence of \boldsymbol{h}_{ℓ}.

$$
z_{\ell}=g_{\ell}(i) C\left[\ell, h_{\ell}(i)\right]=g_{\ell}(i) \sum_{i^{\prime}} g_{\ell}\left(i^{\prime}\right) x_{i^{\prime}} Y_{i^{\prime}}
$$

Therefore,

$$
E\left[Z_{\ell}\right]=x_{i}+\sum_{i^{\prime} \neq i} E\left[g_{\ell}(i) g_{\ell}\left(i^{\prime}\right) Y_{i^{\prime}}\right] x_{i^{\prime}}=x_{i}
$$

because $E\left[g_{\ell}(i) g_{\ell}\left(i^{\prime}\right)\right]=0$ for $\boldsymbol{i} \neq \boldsymbol{i}^{\prime}$ from pairwise independence of g_{ℓ} and $Y_{i^{\prime}}$ is independent of $g_{\ell}(i)$ and $g_{\ell}\left(i^{\prime}\right)$.

Analysis

$$
Z_{\ell}=g_{\ell}(i) C\left[\ell, h_{\ell}(i)\right] . \text { And } \mathrm{E}\left[Z_{\ell}\right]=x_{i} .
$$

Analysis

$Z_{\ell}=g_{\ell}(i) C\left[\ell, h_{\ell}(i)\right]$. And $E\left[Z_{\ell}\right]=x_{i}$.

$$
\begin{aligned}
\operatorname{Var}\left(Z_{\ell}\right) & =\mathrm{E}\left[\left(Z_{\ell}-x_{i}\right)^{2}\right] \\
& =\mathrm{E}\left[\left(\sum_{i^{\prime} \neq i} g_{\ell}(i) g_{\ell}\left(i^{\prime}\right) Y_{i^{\prime}\left(x_{i}\right)^{2}}\right]\right. \\
& =\mathrm{E}\left[\sum_{i^{\prime} \neq i} x_{i}^{2} Y_{i^{\prime}}^{2}+\sum_{i^{\prime} \neq i^{\prime \prime}} x_{i^{\prime}} x_{i^{\prime \prime}} g_{\ell}\left(i^{\prime}\right) g_{\ell}\left(i^{\prime \prime}\right) Y_{i^{\prime}} Y_{i^{\prime \prime}}\right] \\
& =\sum_{i^{\prime} \neq \neq i} x_{i^{\prime}}^{2} \mathrm{E}\left[Y_{i^{\prime}}^{2}\right] \\
& \leq\|x\|_{2}^{2} / w .
\end{aligned}
$$

Analysis

$Z_{\ell}=g_{\ell}(i) C\left[\ell, h_{\ell}(i)\right]$.
We have seen: $\mathrm{E}\left[Z_{\ell}\right]=x_{i}$ and $\operatorname{Var}\left(Z_{\ell}\right) \leq\|x\|_{2}^{2} / w$.

Analysis

$Z_{\ell}=g_{\ell}(i) C\left[\ell, h_{\ell}(i)\right]$.
We have seen: $\mathrm{E}\left[Z_{\ell}\right]=x_{i}$ and $\operatorname{Var}\left(Z_{\ell}\right) \leq\|x\|_{2}^{2} / w$.
Using Chebyshev:

$$
\operatorname{Pr}\left[\left|Z_{\ell}-x_{i}\right| \geq \epsilon\|x\|_{2}\right] \leq \frac{\operatorname{Var}\left(Z_{\ell}\right)}{\epsilon^{2}\|x\|_{2}^{2}} \leq \frac{1}{\epsilon^{2} w} \leq 1 / 3
$$

Analysis

$Z_{\ell}=g_{\ell}(i) C\left[\ell, h_{\ell}(i)\right]$.
We have seen: $\mathrm{E}\left[Z_{\ell}\right]=x_{i}$ and $\operatorname{Var}\left(Z_{\ell}\right) \leq\|x\|_{2}^{2} / w$.
Using Chebyshev:

$$
\operatorname{Pr}\left[\left|Z_{\ell}-x_{i}\right| \geq \epsilon\|x\|_{2}\right] \leq \frac{\operatorname{Var}\left(Z_{\ell}\right)}{\epsilon^{2}\|x\|_{2}^{2}} \leq \frac{1}{\epsilon^{2} w} \leq 1 / 3
$$

Via the Chernoff bound,

$$
\operatorname{Pr}\left[\left|\operatorname{median}\left\{Z_{1}, \ldots, Z_{\boldsymbol{d}}\right\}-x_{\boldsymbol{i}}\right| \geq \boldsymbol{\epsilon}\|\boldsymbol{x}\|_{2}\right] \leq \boldsymbol{e}^{-\boldsymbol{c d}} \leq \boldsymbol{\delta}
$$

Summarizing

Lemma

Let $\boldsymbol{d} \geq 4 \log \frac{1}{\delta}$ and $\boldsymbol{w}>\frac{3}{\epsilon^{2}}$. Then for any fixed $i \in[n], \mathrm{E}\left[\tilde{x}_{i}\right]=\boldsymbol{x}_{\boldsymbol{i}}$ and $\operatorname{Pr}\left[\left|\tilde{\boldsymbol{x}}_{\boldsymbol{i}}-\boldsymbol{x}_{\boldsymbol{i}}\right| \geq \boldsymbol{\epsilon}\|\boldsymbol{x}\|_{2}\right] \leq \boldsymbol{\delta}$.

Corollary

With $\boldsymbol{d}=\Theta(\ln \boldsymbol{n})$ and $\boldsymbol{w}=3 / \boldsymbol{\epsilon}^{2}$, with probability $\left(1-\frac{1}{\boldsymbol{n}}\right)$ for all $i \in[n]$:

$$
\left|\tilde{x}_{i}-x_{i}\right| \leq \epsilon\|x\|_{2}
$$

Total space: $\boldsymbol{O}\left(\frac{1}{\epsilon^{2}} \log \boldsymbol{n}\right)$ counters and hence $\boldsymbol{O}\left(\frac{1}{\epsilon^{2}} \log \boldsymbol{n} \log \boldsymbol{m}\right)$ bits.

