AMS Sampling, Estimating Frequency moments, F_2 Estimation

Lecture 07
September 13, 2022
Frequency Moments

- Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in $[n]$. We know n in advance (or an upper bound).
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream.
- Consider vector $f = (f_1, f_2, \ldots, f_n)$.
- For $k \geq 0$ the k’th frequency moment $F_k = \sum_i f_i^k$. We can also consider the ℓ_k norm of f which is $(F_k)^{1/k}$.

Example: $n = 5$ and stream is 4, 2, 4, 1, 1, 1, 4, 5

Problem: Estimate F_k from stream using small memory.
A more general estimation problem

Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in $[n]$. We know n in advance (or an upper bound).

Given a stream let f_i denote the frequency of i or number of times i is seen in the stream.

Consider vector $f = (f_1, f_2, \ldots, f_n)$.

Define a function $g(\sigma)$ of stream σ to be $\sum_{i=1}^m g_i(f_i)$ where $g_i : \mathbb{R} \rightarrow \mathbb{R}$ is a real-valued function such that $g_i(0) = 0$.
A more general estimation problem

- Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in $[n]$. We know n in advance (or an upper bound).
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream.
- Consider vector $f = (f_1, f_2, \ldots, f_n)$.
- Define a function $g(\sigma)$ of stream σ to be $\sum_{i=1}^{m} g_i(f_i)$ where $g_i : \mathbb{R} \rightarrow \mathbb{R}$ is a real-valued function such that $g_i(0) = 0$.

Examples:
- Frequency moments F_k where for each i, $g_i(f_i) = h(f_i)$ where $h(x) = x^k$.
- Entropy of stream: $g(\sigma) = \sum_i f_i \log(f_i)$ (assume $0 \log 0 = 0$).
Part I

AMS Sampling
AMS Sampling

An unbiased statistical estimator for $g(\sigma)$

- Sample e_J uniformly at random from stream of length m
- Suppose $e_J = i$ where $i \in [n]$
- Let $R = |\{j \mid J \leq j \leq m, e_j = e_J = i\}|$
- Output $\left(g_i(R) - g_i(R - 1) \right) \cdot m$
AMS Sampling

An unbiased statistical estimator for $g(\sigma)$

- Sample e_J uniformly at random from stream of length m
- Suppose $e_J = i$ where $i \in [n]$
- Let $R = |\{j \mid J \leq j \leq m, e_j = e_J = i\}|$
- Output $(g_i(R) - g_i(R - 1)) \cdot m$

Can be implemented in streaming setting with reservoir sampling.
Streaming Implementation

AMS-Estimate:

\[s \leftarrow \text{null} \]
\[m \leftarrow 0 \]
\[R \leftarrow 0 \]

While (stream is not done)

\[m \leftarrow m + 1 \]
\[a_m \text{ is current item} \]
Toss a biased coin that is heads with probability \(\frac{1}{m} \)
If (coin turns up heads)

\[s \leftarrow a_m \]
\[R \leftarrow 1 \]

Else If \(a_m == s \)

\[R \leftarrow R + 1 \]

endWhile

Output \((g_s(R) - g_s(R - 1)) \cdot m \)
Expectation of output

Let Y be the output of the algorithm.

Lemma

$$E[Y] = g(\sigma) = \sum_{i \in [n]} g_i(f_i).$$
Let Y be the output of the algorithm.

Lemma

$$E[Y] = g(\sigma) = \sum_{i \in [n]} g_i(f_i).$$

$$\Pr[e_J = i] = f_i/m$$ since e_J is chosen uniformly from stream.
Let Y be the output of the algorithm.

Lemma

$$E[Y] = g(\sigma) = \sum_{i \in [n]} g_i(f_i).$$

$$Pr[e_J = i] = \frac{f_i}{m}$$ since e_J is chosen uniformly from stream.

$$E[Y] = \sum_{i \in [n]} Pr[a_J = i] E[Y|a_J = i]$$

$$= \sum_{i \in [n]} \frac{f_i}{m} E[Y|a_J = i]$$

$$= \sum_{i \in [n]} \frac{f_i}{m} \sum_{\ell=1}^{f_i} m \frac{1}{f_i} (g_i(\ell) - g_i(\ell - 1))$$

$$= \sum g_i(f_i).$$
Application to estimating frequency moments

Suppose \(g(\sigma) = F_k \) for some \(k > 1 \). That is \(g_i(x) = x^k \) for each \(i \). What is \(\text{Var}(Y) \)?
Application to estimating frequency moments

Suppose $g(\sigma) = F_k$ for some $k > 1$. That is $g_i(x) = x^k$ for each i. What is $\text{Var}(Y)$?

Lemma

When $g(x) = x^k$ and $k \geq 1$, $\text{Var}[Y] \leq kF_1F_{2k-1} \leq kn^{1-\frac{1}{k}}F_k^2$.

E[Y] = F_k and $\text{Var}(Y) \leq kn^{1-\frac{1}{k}}F_k^2$. Hence, if we want to use averaging and Chebyshev we need to average $h = \Omega(1/\epsilon^2)\text{parallel runs and space}$ to get a $(1 \pm \epsilon)$ estimate to F_k with constant probability.
Application to estimating frequency moments

Suppose \(g(\sigma) = F_k \) for some \(k > 1 \). That is \(g_i(x) = x^k \) for each \(i \).
What is \(\text{Var}(Y) \)?

Lemma

When \(g(x) = x^k \) and \(k \geq 1 \), \(\text{Var}[Y] \leq kF_1F_{2k-1} \leq kn^{1-\frac{1}{k}}F_k^2 \).

\(\mathbb{E}[Y] = F_k \) and \(\text{Var}(Y) \leq kn^{1-\frac{1}{k}}F_k^2 \). Hence, if we want to use averaging and Chebyshhev we need to average \(h = \Omega\left(\frac{1}{\epsilon^2} kn^{1-\frac{1}{k}}\right) \) parallel runs and space to get a \((1 \pm \epsilon)\) estimate to \(F_k \) with constant probability.
Variance calculation

\[\text{Var}[Y] \leq \mathbb{E}[Y^2] \]

\[\leq \sum_{i \in [n]} \Pr[a_J = i] \sum_{\ell=1}^{f_i} \frac{m^2}{f_i} (\ell^k - (\ell - 1)^k)^2 \]

\[\leq \sum_{i \in [n]} \frac{f_i}{m} \sum_{\ell=1}^{f_i} \frac{m^2}{f_i} (\ell^k - (\ell - 1)^k)(\ell^k - (\ell - 1)^k) \]

\[\leq m \sum_{i \in [n]} \sum_{\ell=1}^{f_i} k\ell^{k-1}(\ell^k - (\ell - 1)^k) \quad \text{using } x^k - (x - 1)^k \leq kx^{k-1} \]

\[\leq km \sum_{i \in [n]} f_i^{k-1} f_i^k \]

\[\leq kmF_{2k-1} = kF_1F_{2k-1}. \]
Claim: For \(k \geq 1 \), \(F_1 F_{2k-1} \leq n^{1-1/k} (F_k)^2 \).
Variance calculation

Claim: For $k \geq 1$, $F_1 F_{2k-1} \leq n^{1-1/k} (F_k)^2$.

The function $g(x) = x^k$ is convex for $k \geq 1$. Implies $\sum_i x_i / n \leq ((\sum_i x_i^k) / n)^{1/k}$.

$$
F_1 F_{2k-1} = (\sum_i f_i)(\sum_i f_i^{2k-1}) \leq (\sum_i f_i)(F_\infty)^{k-1}(\sum_i f_i^k)
$$

$$
\leq (\sum_i f_i)(\sum_i f_i^k)^{k-1/k} (\sum_i f_i^k)
$$

$$
\leq n^{1-1/k}(\sum_i f_i^k)^{1/k}(\sum_i f_i^k)^{k-1/k} (\sum_i f_i^k)
$$

$$
= n^{1-1/k} (F_k)^2
$$

Worst case is when $f_i = m/n$ for each $i \in [n]$.
AMS-Estimator shows that F_k can be estimated in $O(n^{1-1/k})$ space.

Question: Can one do better?
Frequency moment estimation

AMS-Estimator shows that F_k can be estimated in $O(n^{1-1/k})$ space.

Question: Can one do better?

- For F_2 and $1 \leq k \leq 2$ one can do $O(polylog(n))$ space!
- For $k > 2$ space complexity is $\tilde{O}(n^{1-2/k})$ which is known to be essentially tight.

Thus a phase transition at $k = 2$.
Part II

F_2 Estimation
Estimating F_2

- Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in $[n]$. We know n in advance (or an upper bound).
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream.
- Consider vector $f = (f_1, f_2, \ldots, f_n)$.

Question: Estimate $F_2 = \sum_{i=1}^{m} f_i^2$ in small space.

Using generic AMS sampling scheme we can do this in $O(\sqrt{n} \log n)$ space. Can we do it better?
AMS Scheme for F_2

AMS-F_2-Estimate:

Let $h : [n] \rightarrow \{-1, 1\}$ be chosen from a 4-wise independent hash family \mathcal{H}.

$z \leftarrow 0$

While (stream is not empty) do

- a_j is current item
- $z \leftarrow z + h(a_j)$

endWhile

Output z^2
AMS Scheme for F_2

AMS-F_2-Estimate:

Let $h : [n] \rightarrow \{-1,1\}$ be chosen from a 4-wise independent hash family \mathcal{H}.

$z \leftarrow 0$

While (stream is not empty) do

 a_j is current item
 $z \leftarrow z + h(a_j)$

endWhile

Output z^2

AMS-F_2-Estimate:

Let Y_1, Y_2, \ldots, Y_n be $\{-1,+1\}$ random variable that are 4-wise independent

$z \leftarrow 0$

While (stream is not empty) do

 a_j is current item
 $z \leftarrow z + Y_{a_j}$

endWhile

Output z^2
Analysis

\[Z = \sum_{i=1}^{n} f_i Y_i \] and output is \(Z^2 \)
$Z = \sum_{i=1}^{n} f_i Y_i$ and output is Z^2

- $E[Y_i] = 0$ and $\text{Var}(Y_i) = E[Y_i^2] = 1$
- For $i \neq j$, since Y_i and Y_j are pairwise-independent $E[Y_i Y_j] = 0$.
Analysis

\[Z = \sum_{i=1}^{n} f_i Y_i \] and output is \(Z^2 \)

- \(E[Y_i] = 0 \) and \(\text{Var}(Y_i) = E[Y_i^2] = 1 \)
- For \(i \neq j \), since \(Y_i \) and \(Y_j \) are pairwise-independent \(E[Y_i Y_j] = 0 \).

\[
Z^2 = \sum_i f_i^2 Y_i^2 + 2 \sum_{i \neq j} f_i f_j Y_i Y_j
\]

and hence

\[
E[Z^2] = \sum_i f_i^2 = F_2.
\]
Variance

What is $\text{Var}(Z^2)$?
Variance

What is $\text{Var}(Z^2)$?

$$E[Z^4] = \sum_{i \in [n]} \sum_{j \in [n]} \sum_{k \in [n]} \sum_{\ell \in [n]} f_i f_j f_k f_\ell E[Y_i Y_j Y_k Y_\ell].$$
Variance

What is $\text{Var}(Z^2)$?

$$E[Z^4] = \sum_{i \in [n]} \sum_{j \in [n]} \sum_{k \in [n]} \sum_{\ell \in [n]} f_i f_j f_k f_\ell E[Y_i Y_j Y_k Y_\ell].$$

4-wise independence implies $E[Y_i Y_j Y_k Y_\ell] = 0$ if there is a number among i, j, k, ℓ that occurs only once. Otherwise 1.
Variance

What is $\text{Var}(Z^2)$?

$$E[Z^4] = \sum_{i \in [n]} \sum_{j \in [n]} \sum_{k \in [n]} \sum_{\ell \in [n]} f_if_jf_kf_\ell E[Y_i Y_j Y_k Y_\ell].$$

4-wise independence implies $E[Y_i Y_j Y_k Y_\ell] = 0$ if there is a number among i, j, k, ℓ that occurs only once. Otherwise 1.

$$E[Z^4] = \sum_{i \in [n]} \sum_{j \in [n]} \sum_{k \in [n]} \sum_{\ell \in [n]} f_if_jf_kf_\ell E[Y_i Y_j Y_k Y_\ell]$$

$$= \sum_{i \in [n]} f_i^4 + 6 \sum_{i=1}^{n} \sum_{j=i+1}^{n} f_i^2 f_j^2.$$
\[\text{Var}(Z^2) = E[Z^4] - (E[Z^2])^2 \]
\[= F_4 - F_2^2 + 6 \sum_{i=1}^{n} \sum_{j=i+1}^{n} f_i^2 f_j^2 \]
\[= F_4 - (F_4 + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} f_i^2 f_j^2) + 6 \sum_{i=1}^{n} \sum_{j=i+1}^{n} f_i^2 f_j^2 \]
\[= 4 \sum_{i=1}^{n} \sum_{j=i+1}^{n} f_i^2 f_j^2 \]
\[\leq 2F_2^2. \]
Averaging and median trick again

Output is Z^2: and $\mathbb{E}[Z^2] = F_2$ and $\text{Var}(Z^4) \leq 2F_2^2$

- Reduce variance by averaging $8/\epsilon^2$ independent estimates. Let Y be the averaged estimator.
- Apply Chebyshev to average estimator.
 $\Pr[|Y - F_2| \geq \epsilon F_2] \leq 1/4$.
- Reduce error probability to δ by independently doing $O(\log(1/\delta))$ estimators above.
- Total space $O(\log(1/\delta) \frac{1}{\epsilon^2} \log n)$
Geometric Interpretation

Observation: The estimation algorithm works even when \(f_i \)'s can be negative. What does this mean?
Geometric Interpretation

Observation: The estimation algorithm works even when f_i’s can be negative. What does this mean?

Richer model:

- Want to estimate a function of a vector $x \in \mathbb{R}^n$ which is initially assume to be the all 0’s vector. (previously we were thinking of the frequency vector f)

- Each element e_j of a stream is a tuple (i_j, Δ_j) where $i_j \in [n]$ and $\Delta_i \in \mathbb{R}$ is a real-value: this updates x_{i_j} to $x_{i_j} + \Delta_j$. (Δ_j can be positive or negative)
Algorithm revisited

AMS-ℓ_2-Estimate:

Let Y_1, Y_2, \ldots, Y_n be $\{-1, +1\}$ random variables that are 4-wise independent

$z \leftarrow 0$

While (stream is not empty) do

$\mathbf{a}_j = (i_j, \Delta_j)$ is current update

$z \leftarrow z + \Delta_j Y_{i_j}$

endWhile

Output z^2
Algorithm revisited

AMS-ℓ_2-Estimate:
Let Y_1, Y_2, \ldots, Y_n be $\{-1, +1\}$ random variable that are 4-wise independent
$z \leftarrow 0$
While (stream is not empty) do
 $a_j = (i_j, \Delta_j)$ is current update
 $z \leftarrow z + \Delta_j Y_{i_j}$
endWhile
Output z^2

Claim: Output estimates $||x||_2^2$ where x is the vector at end of stream of updates.
$Z = \sum_{i=1}^{n} x_i Y_i$ and output is Z^2
Analysis

\[Z = \sum_{i=1}^{n} x_i Y_i \] and output is \(Z^2 \)

- \(E[Y_i] = 0 \) and \(\text{Var}(Y_i) = E[Y_i^2] = 1 \)
- For \(i \neq j \), since \(Y_i \) and \(Y_j \) are pairwise-independent \(E[Y_i Y_j] = 0 \).

\[Z^2 = \sum_i x_i^2 Y_i^2 + 2 \sum_{i \neq j} x_i x_j Y_i Y_j \]

and hence

\[E[Z^2] = \sum_i x_i^2 = ||x||_2^2. \]
Analysis

\[Z = \sum_{i=1}^{n} x_i Y_i \] and output is \(Z^2 \)

- \(\mathbb{E}[Y_i] = 0 \) and \(\text{Var}(Y_i) = \mathbb{E}[Y_i^2] = 1 \)
- For \(i \neq j \), since \(Y_i \) and \(Y_j \) are pairwise-independent \(\mathbb{E}[Y_i Y_j] = 0 \).

\[Z^2 = \sum_i x_i^2 Y_i^2 + 2 \sum_{i \neq j} x_i x_j Y_i Y_j \]

and hence

\[\mathbb{E}[Z^2] = \sum_i x_i^2 = \|x\|_2^2. \]

And as before one can show that \(\text{Var}(Z^2) \leq 2(\mathbb{E}[Z^2])^2. \)
A sketch of a stream \(\sigma \) is a summary data structure \(C(\sigma) \) (ideally of small space) such that the sketch of the composition \(\sigma_1 \cdot \sigma_2 \) of two streams \(\sigma_1 \) and \(\sigma_1 \) can be computed from \(C(\sigma_1) \) and \(C(\sigma_2) \). The output of the algorithm is some function of the sketch.
Introduction to (Linear) Sketching

A *sketch* of a stream σ is a summary data structure $C(\sigma)$ (ideally of small space) such that the sketch of the composition $\sigma_1 \cdot \sigma_2$ of two streams σ_1 and σ_1 can be computed from $C(\sigma_1)$ and $C(\sigma_2)$. The output of the algorithm is some function of the sketch.

What is the summary of algorithm for F_2 estimation? Is it a sketch?
A *sketch* of a stream σ is a summary data structure $C(\sigma)$ (ideally of small space) such that the sketch of the composition $\sigma_1 \cdot \sigma_2$ of two streams σ_1 and σ_1 can be computed from $C(\sigma_1)$ and $C(\sigma_2)$. The output of the algorithm is some function of the sketch.

What is the summary of algorithm for F_2 estimation? Is it a sketch?

A sketch is a *linear* sketch if $C(\sigma_1 \cdot \sigma_2) = C(\sigma_1) + C(\sigma_2)$.
Introduction to (Linear) Sketching

A *sketch* of a stream σ is a summary data structure $C(\sigma)$ (ideally of small space) such that the sketch of the composition $\sigma_1 \cdot \sigma_2$ of two streams σ_1 and σ_1 can be computed from $C(\sigma_1)$ and $C(\sigma_2)$. The output of the algorithm is some function of the sketch.

What is the summary of algorithm for F_2 estimation? Is it a sketch?

A sketch is a *linear* sketch if $C(\sigma_1 \cdot \sigma_2) = C(\sigma_1) + C(\sigma_2)$.

Is the sketch for F_2 estimation a linear sketch?
Recall that we take average of independent estimators and take median to reduce error. Can we view all this as a sketch?

AMS-\(\ell_2\)-Sketch:

\[
\ell = c \log(1/\delta)/\epsilon^2
\]

Let \(M\) be a \(\ell \times n\) matrix with entries in \([-1,1]\) s.t

(i) rows are independent and

(ii) in each row entries are 4-wise independent

\(z\) is a \(\ell \times 1\) vector initialized to 0

While (stream is not empty) do

\(a_j = (i_j, \Delta_j)\) is current update

\(z \leftarrow z + \Delta_j M e_{i_j}\)

endWhile

Output vector \(z\) as sketch.

\(M\) is compactly represented via \(\ell\) hash functions, one per row, independently chosen from 4-wise independent hash family.
An Application to Join Size Estimation

In Databases an important operation is the “join” operation

- A relation/table r of arity k consists of tuples of size k where each tuple element is from some given type. Example: (netid, uin, last name, first name, dob, address) in a student data base

- Given two relations r and s and a common attribute a one often needs to compute their join $r \bowtie s$ over some common attribute that they share

- $r \bowtie s$ can have size quadratic in size of r and s

Question: Estimate size of $r \bowtie s$ without computing it explicitly. Very useful in database query optimization.
An Application to Join Size Estimation

In Databases an important operation is the “join” operation

- A relation/table \(r \) of arity \(k \) consists of tuples of size \(k \) where each tuple element is from some given type. Example: (netid, uin, last name, first name, dob, address) in a student database

- Given two relations \(r \) and \(s \) and a common attribute \(a \) one often needs to compute their join \(r \bowtie s \) over some common attribute that they share

- \(r \bowtie s \) can have size quadratic in size of \(r \) and \(s \)

Question: Estimate size of \(r \bowtie s \) without computing it explicitly. Very useful in database query optimization.

Estimating \(r \bowtie r \) over an attribute \(a \) is same as \(F_2 \) estimation. Why?
Sketching: a shift in perspective

- Sketching ideas have many powerful applications in theory and practice
- In particular linear sketches are powerful. Allows one to handle negative entries and deletions. Surprisingly linear sketches are feasible in several settings.
- Connected to dimension reduction (JL Lemma), subspace embeddings and other important topics