CS 498ABD: Algorithms for Big Data

AMS Sampling, Estimating Frequency moments, F_{2} Estimation

Lecture 07
September 13, 2022

Frequency Moments

- Stream consists of $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{\boldsymbol{m}}$ where each $\boldsymbol{e}_{\boldsymbol{i}}$ is an integer in [\boldsymbol{n}]. We know \boldsymbol{n} in advance (or an upper bound)
- Given a stream let $\boldsymbol{f}_{\boldsymbol{i}}$ denote the frequency of \boldsymbol{i} or number of times i is seen in the stream
- Consider vector $\mathrm{f}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$
- For $k \geq 0$ the \boldsymbol{k}^{\prime} th frequency moment $F_{k}=\sum_{i} f_{i}^{k}$. We can also consider the ℓ_{k} norm of f which is $\left(F_{k}\right)^{1 / k}$.
Example: $\boldsymbol{n}=5$ and stream is $4,2,4,1,1,1,4,5$
Problem: Estimate $\boldsymbol{F}_{\boldsymbol{k}}$ from stream using small memory

A more general estimation problem

- Stream consists of $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{\boldsymbol{m}}$ where each $\boldsymbol{e}_{\boldsymbol{i}}$ is an integer in [\boldsymbol{n}]. We know \boldsymbol{n} in advance (or an upper bound)
- Given a stream let $\boldsymbol{f}_{\boldsymbol{i}}$ denote the frequency of \boldsymbol{i} or number of times i is seen in the stream
- Consider vector $\mathrm{f}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$
- Define a function $g(\sigma)$ of stream σ to be $\sum_{i=1}^{m} g_{i}\left(f_{i}\right)$ where $g_{i}: \mathbb{R} \rightarrow \mathbb{R}$ is a real-valued function such that $g_{i}(0)=0$.

A more general estimation problem

- Stream consists of $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{\boldsymbol{m}}$ where each $\boldsymbol{e}_{\boldsymbol{i}}$ is an integer in [\boldsymbol{n}]. We know \boldsymbol{n} in advance (or an upper bound)
- Given a stream let $\boldsymbol{f}_{\boldsymbol{i}}$ denote the frequency of \boldsymbol{i} or number of times i is seen in the stream
- Consider vector $\mathrm{f}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$
- Define a function $g(\sigma)$ of stream σ to be $\sum_{i=1}^{\boldsymbol{m}} g_{i}\left(f_{i}\right)$ where $g_{i}: \mathbb{R} \rightarrow \mathbb{R}$ is a real-valued function such that $g_{i}(0)=0$.

Examples:

- Frequency moments F_{k} where for each $\boldsymbol{i}, \boldsymbol{g}_{i}\left(\boldsymbol{f}_{\boldsymbol{i}}\right)=\boldsymbol{h}\left(\boldsymbol{f}_{\boldsymbol{i}}\right)$ where $h(x)=x^{k}$
- Entropy of stream: $\boldsymbol{g}(\boldsymbol{\sigma})=\sum_{i} f_{\boldsymbol{i}} \log \left(\boldsymbol{f}_{\boldsymbol{i}}\right)$ (assume $0 \log 0=0$)

Part I

AMS Sampling

AMS Sampling

An unbiased statistical estimator for $g(\sigma)$

- Sample e_{J} uniformly at random from stream of length m
- Suppose $e_{J}=\boldsymbol{i}$ where $\boldsymbol{i} \in[n]$
- Let $R=\left|\left\{j \mid J \leq j \leq m, \boldsymbol{e}_{j}=\boldsymbol{e}_{\boldsymbol{J}}=\boldsymbol{i}\right\}\right|$
- Output $\left(g_{i}(R)-g_{i}(R-1)\right) \cdot m$

AMS Sampling

An unbiased statistical estimator for $g(\sigma)$

- Sample e_{J} uniformly at random from stream of length m
- Suppose $\boldsymbol{e}_{\boldsymbol{J}}=\boldsymbol{i}$ where $\boldsymbol{i} \in[n]$
- Let $R=\left|\left\{j \mid J \leq j \leq m, e_{j}=e_{J}=i\right\}\right|$
- Output $\left(g_{i}(R)-g_{i}(R-1)\right) \cdot m$

Can be implemented in streaming setting with reservoir sampling.

Streaming Implementation

AMS-Estimate:

$$
\begin{aligned}
& \boldsymbol{s} \leftarrow \text { null } \\
& \boldsymbol{m} \leftarrow 0 \\
& \boldsymbol{R} \leftarrow 0 \\
& \text { While (stream is not done) } \\
& \quad \boldsymbol{m} \leftarrow \boldsymbol{m}+1 \\
& \quad \boldsymbol{a}_{\boldsymbol{m}} \text { is current item } \\
& \quad \text { Toss a biased coin that is heads with probability } 1 / \boldsymbol{m} \\
& \text { If (coin turns up heads) } \\
& \quad \boldsymbol{s} \leftarrow \boldsymbol{a}_{\boldsymbol{m}} \\
& \quad \boldsymbol{R} \leftarrow 1 \\
& \quad \text { Else } \operatorname{If}\left(\boldsymbol{a}_{\boldsymbol{m}}==\boldsymbol{s}\right) \\
& \quad \boldsymbol{R} \leftarrow \boldsymbol{R}+1 \\
& \text { endWhile } \\
& \text { Output }\left(\boldsymbol{g}_{\boldsymbol{s}}(\boldsymbol{R})-\boldsymbol{g}_{\boldsymbol{s}}(\boldsymbol{R}-1)\right) \cdot \boldsymbol{m}
\end{aligned}
$$

Expectation of output

Let Y be the output of the algorithm.

Lemma

$E[Y]=g(\sigma)=\sum_{i \in[n]} g_{i}\left(f_{i}\right)$.

Expectation of output

Let Y be the output of the algorithm.

Lemma

$E[Y]=g(\sigma)=\sum_{i \in[n]} g_{i}\left(f_{i}\right)$.
$\operatorname{Pr}\left[\boldsymbol{e}_{\boldsymbol{J}}=\boldsymbol{i}\right]=\boldsymbol{f}_{\boldsymbol{i}} / \boldsymbol{m}$ since $\boldsymbol{e}_{\boldsymbol{J}}$ is chosen uniformly from stream.

Expectation of output

Let Y be the output of the algorithm.

Lemma

$E[Y]=g(\sigma)=\sum_{i \in[n]} g_{i}\left(f_{i}\right)$.
$\operatorname{Pr}\left[\boldsymbol{e}_{\boldsymbol{J}}=\boldsymbol{i}\right]=\boldsymbol{f}_{\boldsymbol{i}} / \boldsymbol{m}$ since $\boldsymbol{e}_{\boldsymbol{J}}$ is chosen uniformly from stream.

$$
\begin{aligned}
E[Y] & =\sum_{i \in[n]} \operatorname{Pr}\left[a_{\jmath}=i\right] E\left[Y \mid a_{\jmath}=i\right] \\
& =\sum_{i \in[n]} \frac{f_{i}}{m} E\left[Y \mid a_{J}=i\right] \\
& =\sum_{i \in[n]} \frac{f_{i}}{m} \sum_{\ell=1}^{f_{i}} m \frac{1}{f_{i}}\left(g_{i}(\ell)-g_{i}(\ell-1)\right) \\
& =\sum g_{i}\left(f_{i}\right)
\end{aligned}
$$

Application to estimating frequency moments

Suppose $g(\sigma)=F_{\boldsymbol{k}}$ for some $\boldsymbol{k}>1$. That is $g_{\boldsymbol{i}}(\boldsymbol{x})=\boldsymbol{x}^{\boldsymbol{k}}$ for each \boldsymbol{i}. What is $\operatorname{Var}(Y)$?

Application to estimating frequency moments

Suppose $\boldsymbol{g}(\boldsymbol{\sigma})=\boldsymbol{F}_{\boldsymbol{k}}$ for some $\boldsymbol{k}>1$. That is $g_{\boldsymbol{i}}(\boldsymbol{x})=\boldsymbol{x}^{\boldsymbol{k}}$ for each \boldsymbol{i}. What is $\operatorname{Var}(Y)$?

Lemma

When $g(x)=x^{\boldsymbol{k}}$ and $k \geq 1, \operatorname{Var}[Y] \leq k F_{1} F_{2 k-1} \leq k n^{1-\frac{1}{k}} F_{k}^{2}$.

Application to estimating frequency moments

Suppose $g(\sigma)=F_{k}$ for some $k>1$. That is $g_{i}(x)=x^{\boldsymbol{k}}$ for each \boldsymbol{i}. What is $\operatorname{Var}(Y)$?

Lemma

When $g(x)=x^{\boldsymbol{k}}$ and $k \geq 1, \operatorname{Var}[Y] \leq k F_{1} F_{2 k-1} \leq k n^{1-\frac{1}{k}} F_{k}^{2}$.
$\mathrm{E}[\boldsymbol{Y}]=\boldsymbol{F}_{\boldsymbol{k}}$ and $\operatorname{Var}(\boldsymbol{Y}) \leq \boldsymbol{k} \boldsymbol{n}^{1-\frac{1}{k}} \boldsymbol{F}_{\boldsymbol{k}}^{2}$. Hence, if we want to use averaging and Cheybyshev we need to average $\boldsymbol{h}=\Omega\left(\frac{1}{\epsilon^{2}} \boldsymbol{k} \boldsymbol{n}^{1-\frac{1}{k}}\right)$ parallel runs and space to get a $(1 \pm \epsilon)$ estimate to F_{k} with constant probability.

Variance calculation

$\operatorname{Var}[Y] \leq E\left[Y^{2}\right]$
$\leq \sum_{i \in[n]} \operatorname{Pr}\left[a_{J}=i\right] \sum_{\ell=1}^{\boldsymbol{f}_{i}} \frac{\boldsymbol{m}^{2}}{\boldsymbol{f}_{\boldsymbol{i}}}\left(\ell^{k}-(\ell-1)^{k}\right)^{2}$
$\leq \sum_{i \in[n]} \frac{f_{i}}{m} \sum_{\ell=1}^{f_{i}} \frac{m^{2}}{f_{i}}\left(\ell^{k}-(\ell-1)^{k}\right)\left(\ell^{k}-(\ell-1)^{k}\right)$
$\leq m \sum_{i \in[\boldsymbol{n}]} \sum_{\ell=1}^{\boldsymbol{f}_{i}} k \ell^{k-1}\left(\ell^{k}-(\ell-1)^{k}\right) \quad$ using $x^{k}-(x-1)^{k} \leq k x^{k-1}$
$\leq k m \sum_{i \in[n]} f_{i}^{k-1} f_{i}^{k}$
$\leq k m F_{2 k-1}=k F_{1} F_{2 k-1}$.

Variance calculation

Claim: For $k \geq 1, F_{1} F_{2 k-1} \leq n^{1-1 / k}\left(F_{k}\right)^{2}$.

Variance calculation

Claim: For $k \geq 1, F_{1} F_{2 k-1} \leq \boldsymbol{n}^{1-1 / k}\left(F_{k}\right)^{2}$.
The function $g(x)=x^{k}$ is convex for $k \geq 1$. Implies $\sum_{i} x_{i} / \boldsymbol{n} \leq\left(\left(\sum_{i} x_{i}^{k}\right) / \boldsymbol{n}\right)^{1 / k}$.

$$
\begin{aligned}
F_{1} F_{2 k-1} & =\left(\sum_{i} f_{i}\right)\left(\sum_{i} f_{i}^{2 k-1}\right) \leq\left(\sum_{i} f_{i}\right)\left(F_{\infty}\right)^{k-1}\left(\sum_{i} f_{i}^{k}\right) \\
& \leq\left(\sum_{i} f_{i}\right)\left(\sum_{i} f_{i}^{k}\right)^{\frac{k-1}{k}}\left(\sum_{i} f_{i}^{k}\right) \\
& \leq n^{1-1 / k}\left(\sum_{i} f_{i}^{k}\right)^{1 / k}\left(\sum_{i} f_{i}^{k}\right)^{\frac{k-1}{k}}\left(\sum_{i} f_{i}^{k}\right) \\
& =n^{1-1 / k}\left(F_{k}\right)^{2}
\end{aligned}
$$

Worst case is when $\boldsymbol{f}_{\boldsymbol{i}}=\boldsymbol{m} / \boldsymbol{n}$ for each $\boldsymbol{i} \in[\boldsymbol{n}]$.

Frequency moment estimation

AMS-Estimator shows that $F_{\boldsymbol{k}}$ can be estimated in $\boldsymbol{O}\left(\boldsymbol{n}^{1-1 / k}\right)$ space.
Question: Can one do better?

Frequency moment estimation

AMS-Estimator shows that F_{k} can be estimated in $\boldsymbol{O}\left(\boldsymbol{n}^{1-1 / k}\right)$ space.
Question: Can one do better?

- For \boldsymbol{F}_{2} and $1 \leq k \leq 2$ one can do $O(\boldsymbol{p o l y l o g}(\boldsymbol{n}))$ space!
- For $\boldsymbol{k}>2$ space complexity is $\tilde{O}\left(\boldsymbol{n}^{1-2 / k}\right)$ which is known to be essentially tight.
Thus a phase transition at $k=2$.

Part II

F_{2} Estimation

Estimating F_{2}

- Stream consists of $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{\boldsymbol{m}}$ where each $\boldsymbol{e}_{\boldsymbol{i}}$ is an integer in [\boldsymbol{n}]. We know \boldsymbol{n} in advance (or an upper bound)
- Given a stream let $\boldsymbol{f}_{\boldsymbol{i}}$ denote the frequency of \boldsymbol{i} or number of times i is seen in the stream
- Consider vector $\mathrm{f}=\left(\boldsymbol{f}_{1}, f_{2}, \ldots, f_{n}\right)$

Question: Estimate $F_{2}=\sum_{i=1}^{\boldsymbol{m}} f_{i}^{2}$ in small space.
Using generic AMS sampling scheme we can do this in $O(\sqrt{n} \log n)$ space. Can we do it better?

AMS Scheme for F_{2}

```
AMS-F F-Estimate:
    Let h:[n] }->{-1,1}\mathrm{ be chosen from
            a 4-wise independent hash family }\mathcal{H}\mathrm{ .
    z}\leftarrow
    While (stream is not empty) do
        aj is current item
        z}\leftarrowz+\boldsymbol{h}(\mp@subsup{a}{j}{}
    endWhile
    Output z}\mp@subsup{}{}{2
```


AMS Scheme for F_{2}

AMS- F_{2}-Estimate:

Let $\boldsymbol{h}:[\boldsymbol{n}] \rightarrow\{-1,1\}$ be chosen from
a 4-wise independent hash family \mathcal{H}.
$z \leftarrow 0$
While (stream is not empty) do

$$
\boldsymbol{a}_{\boldsymbol{j}} \text { is current item }
$$

$$
z \leftarrow z+h\left(a_{j}\right)
$$

endWhile
Output z^{2}

AMS- F_{2}-Estimate:
Let $\boldsymbol{Y}_{1}, \boldsymbol{Y}_{2}, \ldots, \boldsymbol{Y}_{\boldsymbol{n}}$ be $\{-1,+1\}$ random variable that are 4-wise independent
$z \leftarrow 0$
While (stream is not empty) do a_{j} is current item $z \leftarrow z+Y_{a_{j}}$
endWhile
Output z^{2}

Analysis

$Z=\sum_{i=1}^{n} f_{i} Y_{i}$ and output is Z^{2}

Analysis

$Z=\sum_{i=1}^{n} f_{i} Y_{i}$ and output is Z^{2}

- $\mathrm{E}\left[Y_{i}\right]=0$ and $\operatorname{Var}\left(Y_{i}\right)=\mathrm{E}\left[\boldsymbol{Y}_{i}^{2}\right]=1$
- For $\boldsymbol{i} \neq \boldsymbol{j}$, since $\boldsymbol{Y}_{\boldsymbol{i}}$ and $\boldsymbol{Y}_{\boldsymbol{j}}$ are pairwise-independent $\mathrm{E}\left[Y_{i} Y_{j}\right]=0$.

Analysis

$Z=\sum_{i=1}^{n} f_{i} Y_{i}$ and output is Z^{2}

- $\mathrm{E}\left[Y_{i}\right]=0$ and $\operatorname{Var}\left(Y_{i}\right)=\mathrm{E}\left[Y_{i}^{2}\right]=1$
- For $\boldsymbol{i} \neq \boldsymbol{j}$, since $\boldsymbol{Y}_{\boldsymbol{i}}$ and $\boldsymbol{Y}_{\boldsymbol{j}}$ are pairwise-independent $\mathrm{E}\left[Y_{i} Y_{j}\right]=0$.

$$
Z^{2}=\sum_{i} f_{i}^{2} Y_{i}^{2}+2 \sum_{i \neq j} f_{i} f_{j} Y_{i} Y_{j}
$$

and hence

$$
\mathrm{E}\left[Z^{2}\right]=\sum_{i} f_{i}^{2}=F_{2} .
$$

Variance

What is $\operatorname{Var}\left(Z^{2}\right)$?

Variance

What is $\operatorname{Var}\left(Z^{2}\right)$?

$$
E\left[Z^{4}\right]=\sum_{i \in[n]} \sum_{j \in[n]} \sum_{k \in[n]} \sum_{\ell \in[n]} f_{i} f_{j} f_{k} f_{\ell} E\left[Y_{i} Y_{j} Y_{k} Y_{\ell}\right] .
$$

Variance

What is $\operatorname{Var}\left(Z^{2}\right)$?

$$
E\left[Z^{4}\right]=\sum_{i \in[n]} \sum_{j \in[n]} \sum_{k \in[n]} \sum_{\ell \in[n]} f_{i} f_{j} f_{k} f_{\ell} E\left[Y_{i} Y_{j} Y_{k} Y_{\ell}\right] .
$$

4-wise independence implies $\mathrm{E}\left[Y_{i} Y_{j} Y_{k} Y_{\ell}\right]=0$ if there is a number among $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}, \boldsymbol{\ell}$ that occurs only once. Otherwise 1.

Variance

What is $\operatorname{Var}\left(Z^{2}\right)$?

$$
E\left[Z^{4}\right]=\sum_{i \in[n]} \sum_{j \in[n]} \sum_{k \in[n]} \sum_{\ell \in[n]} f_{i} f_{j} f_{k} f_{\ell} E\left[Y_{i} Y_{j} Y_{k} Y_{\ell}\right] .
$$

4-wise independence implies $\mathrm{E}\left[Y_{i} Y_{j} Y_{k} Y_{\ell}\right]=0$ if there is a number among $i, j, \boldsymbol{k}, \ell$ that occurs only once. Otherwise 1.

$$
\begin{aligned}
E\left[Z^{4}\right] & =\sum_{i \in[n]} \sum_{j \in[n]} \sum_{k \in[n]} \sum_{\ell \in[n]} f_{i} f_{j} f_{k} f_{\ell} E\left[Y_{i} Y_{j} Y_{k} Y_{\ell}\right] \\
& =\sum_{i \in[n]} f_{i}^{4}+6 \sum_{i=1}^{n} \sum_{j=i+1}^{n} f_{i}^{2} f_{j}^{2} .
\end{aligned}
$$

Variance

$$
\begin{aligned}
\operatorname{Var}\left(Z^{2}\right) & =\mathrm{E}\left[Z^{4}\right]-\left(\mathrm{E}\left[Z^{2}\right]\right)^{2} \\
& =F_{4}-F_{2}^{2}+6 \sum_{i=1}^{n} \sum_{j=i+1}^{n} f_{i}^{2} f_{j}^{2} \\
& =F_{4}-\left(F_{4}+2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} f_{i}^{2} f_{j}^{2}\right)+6 \sum_{i=1}^{n} \sum_{j=i+1}^{n} f_{i}^{2} f_{j}^{2} \\
& =4 \sum_{i=1}^{n} \sum_{j=i+1}^{n} f_{i}^{2} f_{j}^{2} \\
& \leq 2 F_{2}^{2} .
\end{aligned}
$$

Averaging and median trick again

Output is Z^{2} : and $\mathrm{E}\left[Z^{2}\right]=F_{2}$ and $\operatorname{Var}\left(Z^{4}\right) \leq 2 F_{2}^{2}$

- Reduce variance by averaging $8 / \epsilon^{2}$ independent estimates. Let Y be the averaged estimator.
- Apply Chebyshev to average estimator.

$$
\operatorname{Pr}\left[\left|Y-F_{2}\right| \geq \epsilon F_{2}\right] \leq 1 / 4 .
$$

- Reduce error probability to δ by independently doing $\boldsymbol{O}(\log (1 / \delta))$ estimators above.
- Total space $\boldsymbol{O}\left(\log (1 / \delta) \frac{1}{\epsilon^{2}} \log \boldsymbol{n}\right)$

Geometric Interpretation

Observation: The estimation algorithm works even when f_{i} 's can be negative. What does this mean?

Geometric Interpretation

Observation: The estimation algorithm works even when \boldsymbol{f}_{i} 's can be negative. What does this mean?

Richer model:

- Want to estimate a function of a vector $x \in \mathbb{R}^{n}$ which is initially assume to be the all 0's vector. (previously we were thinking of the frequency vector f)
- Each element $\boldsymbol{e}_{\boldsymbol{j}}$ of a stream is a tuple $\left(\boldsymbol{i}_{j}, \Delta_{j}\right)$ where $\boldsymbol{i}_{j} \in[\boldsymbol{n}]$ and $\Delta_{i} \in \mathbb{R}$ is a real-value: this updates $x_{i j}$ to $x_{i j}+\Delta_{j}$. (Δ_{j} can be positive or negative)

Algorithm revisited

```
AMS- \(\ell_{2}\)-Estimate:
    Let \(\boldsymbol{Y}_{1}, \boldsymbol{Y}_{2}, \ldots, \boldsymbol{Y}_{\boldsymbol{n}}\) be \(\{-1,+1\}\) random variable that are
        4-wise independent
    \(z \leftarrow 0\)
    While (stream is not empty) do
        \(a_{j}=\left(\boldsymbol{i}_{\boldsymbol{j}}, \Delta_{\boldsymbol{j}}\right)\) is current update
        \(z \leftarrow z+\Delta_{j} Y_{i j}\)
    endWhile
    Output \(z^{2}\)
```


Algorithm revisited

```
AMS- \(\ell_{2}\)-Estimate:
    Let \(\boldsymbol{Y}_{1}, \boldsymbol{Y}_{2}, \ldots, \boldsymbol{Y}_{\boldsymbol{n}}\) be \(\{-1,+1\}\) random variable that are
        4-wise independent
    \(z \leftarrow 0\)
    While (stream is not empty) do
        \(a_{j}=\left(\boldsymbol{i}_{\boldsymbol{j}}, \Delta_{\boldsymbol{j}}\right)\) is current update
        \(z \leftarrow z+\Delta_{j} Y_{i_{j}}\)
    endWhile
    Output \(z^{2}\)
```

Claim: Output estimates $\|x\|_{2}^{2}$ where x is the vector at end of stream of updates.

Analysis

$Z=\sum_{i=1}^{n} x_{i} Y_{i}$ and output is Z^{2}

Analysis

$Z=\sum_{i=1}^{n} x_{i} Y_{i}$ and output is Z^{2}

- $\mathrm{E}\left[Y_{i}\right]=0$ and $\operatorname{Var}\left(Y_{i}\right)=\mathrm{E}\left[\boldsymbol{Y}_{i}^{2}\right]=1$
- For $\boldsymbol{i} \neq \boldsymbol{j}$, since $\boldsymbol{Y}_{\boldsymbol{i}}$ and $\boldsymbol{Y}_{\boldsymbol{j}}$ are pairwise-independent $\mathrm{E}\left[Y_{i} Y_{j}\right]=0$.

$$
Z^{2}=\sum_{i} x_{i}^{2} Y_{i}^{2}+2 \sum_{i \neq j} x_{i} x_{j} Y_{i} Y_{j}
$$

and hence

$$
\mathrm{E}\left[Z^{2}\right]=\sum_{i} x_{i}^{2}=\|x\|_{2}^{2}
$$

Analysis

$Z=\sum_{i=1}^{n} x_{i} Y_{i}$ and output is Z^{2}

- $\mathrm{E}\left[Y_{i}\right]=0$ and $\operatorname{Var}\left(Y_{i}\right)=\mathrm{E}\left[Y_{i}^{2}\right]=1$
- For $\boldsymbol{i} \neq \boldsymbol{j}$, since $\boldsymbol{Y}_{\boldsymbol{i}}$ and $\boldsymbol{Y}_{\boldsymbol{j}}$ are pairwise-independent $\mathrm{E}\left[Y_{i} Y_{j}\right]=0$.

$$
Z^{2}=\sum_{i} x_{i}^{2} Y_{i}^{2}+2 \sum_{i \neq j} x_{i} x_{j} Y_{i} Y_{j}
$$

and hence

$$
\mathrm{E}\left[Z^{2}\right]=\sum_{i} x_{i}^{2}=\|x\|_{2}^{2}
$$

And as before one can show that $\operatorname{Var}\left(Z^{2}\right) \leq 2\left(\mathrm{E}\left[Z^{2}\right]\right)^{2}$.

Introduction to (Linear) Sketching

A sketch of a stream σ is a summary data structure $C(\sigma)$ (ideally of small space) such that the sketch of the composition $\sigma_{1} \cdot \sigma_{2}$ of two streams σ_{1} and σ_{1} can be computed from $C\left(\sigma_{1}\right)$ and $C\left(\sigma_{2}\right)$. The output of the algorithm is some function of the sketch.

Introduction to (Linear) Sketching

A sketch of a stream σ is a summary data structure $C(\sigma)$ (ideally of small space) such that the sketch of the composition $\sigma_{1} \cdot \sigma_{2}$ of two streams σ_{1} and σ_{1} can be computed from $C\left(\sigma_{1}\right)$ and $C\left(\sigma_{2}\right)$. The output of the algorithm is some function of the sketch.

What is the summary of algorithm for F_{2} estimation? Is it a sketch?

Introduction to (Linear) Sketching

A sketch of a stream σ is a summary data structure $C(\sigma)$ (ideally of small space) such that the sketch of the composition $\sigma_{1} \cdot \sigma_{2}$ of two streams σ_{1} and σ_{1} can be computed from $C\left(\sigma_{1}\right)$ and $C\left(\sigma_{2}\right)$. The output of the algorithm is some function of the sketch.

What is the summary of algorithm for F_{2} estimation? Is it a sketch?
A sketch is a linear sketch if $C\left(\sigma_{1} \cdot \sigma_{2}\right)=C\left(\sigma_{1}\right)+C\left(\sigma_{2}\right)$.

Introduction to (Linear) Sketching

A sketch of a stream σ is a summary data structure $C(\sigma)$ (ideally of small space) such that the sketch of the composition $\sigma_{1} \cdot \sigma_{2}$ of two streams σ_{1} and σ_{1} can be computed from $C\left(\sigma_{1}\right)$ and $C\left(\sigma_{2}\right)$. The output of the algorithm is some function of the sketch.

What is the summary of algorithm for F_{2} estimation? Is it a sketch?
A sketch is a linear sketch if $C\left(\sigma_{1} \cdot \sigma_{2}\right)=C\left(\sigma_{1}\right)+C\left(\sigma_{2}\right)$.
Is the sketch for F_{2} estimation a linear sketch?

F_{2} Estimation as Linear Sketching

Recall that we take average of independent estimators and take median to reduce error. Can we view all this as a sketch?

AMS- ℓ_{2}-Sketch :

$$
\ell=\boldsymbol{c} \log (1 / \delta) / \epsilon^{2}
$$

$$
\text { Let } \boldsymbol{M} \text { be a } \ell \times \boldsymbol{n} \text { matrix with entries in }\{-1,1\} \text { s.t }
$$

(i) rows are independent and
(ii) in each row entries are 4-wise independent
z is a $\ell \times 1$ vector initialized to 0
While (stream is not empty) do

$$
\begin{aligned}
& a_{j}=\left(i_{j}, \Delta_{j}\right) \text { is current update } \\
& z \leftarrow z+\Delta_{j} M e_{i_{j}}
\end{aligned}
$$

endWhile
Output vector z as sketch.
M is compactly represented via ℓ hash functions, one per row, independently chosen from 4-wise independent hash familty.

An Application to Join Size Estimation

In Databases an important operation is the "join" operation

- A relation/table \boldsymbol{r} of arity \boldsymbol{k} consists of tuples of size \boldsymbol{k} where each tuple element is from some given type. Example: (netid, uin, last name, first name, dob, address) in a student data base
- Given two relations r and s and a common attribute \boldsymbol{a} one often needs to compute their join $r \bowtie s$ over some common attribute that they share
- $r \bowtie s$ can have size quadratic in size of r and s

Question: Estimate size of $r \bowtie s$ without computing it explicitly. Very useful in database query optimization.

An Application to Join Size Estimation

In Databases an important operation is the "join" operation

- A relation/table \boldsymbol{r} of arity \boldsymbol{k} consists of tuples of size \boldsymbol{k} where each tuple element is from some given type. Example: (netid, uin, last name, first name, dob, address) in a student data base
- Given two relations r and s and a common attribute \boldsymbol{a} one often needs to compute their join $r \bowtie s$ over some common attribute that they share
- $r \bowtie s$ can have size quadratic in size of r and s

Question: Estimate size of $r \bowtie s$ without computing it explicitly. Very useful in database query optimization.
Estimating $\boldsymbol{r} \bowtie \boldsymbol{r}$ over an attribute \boldsymbol{a} is same as \boldsymbol{F}_{2} estimation. Why?

Sketching: a shift in perspective

- Sketching ideas have many powerful applications in theory and practice
- In particular linear sketches are powerful. Allows one to handle negative entries and deletions. Surprisingly linear sketches are feasible in several settings.
- Connected to dimension reduction (JL Lemma), subspace embeddings and other important topics

