CS 498ABD: Algorithms for Big Data

AMS Sampling, Estimating Frequency moments, F_2 Estimation

Lecture 07 September 13, 2022

Frequency Moments

- Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream
- Consider vector $f = (f_1, f_2, \dots, f_n)$
- For $k \ge 0$ the k'th frequency moment $F_k = \sum_i f_i^k$. We can also consider the ℓ_k norm of f which is $(F_k)^{1/k}$.

Example: n = 5 and stream is 4, 2, 4, 1, 1, 1, 4, 5

Problem: Estimate F_k from stream using small memory

A more general estimation problem

- Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream
- Consider vector $f = (f_1, f_2, \dots, f_n)$
- Define a function $g(\sigma)$ of stream σ to be $\sum_{i=1}^m g_i(f_i)$ where $g_i : \mathbb{R} \to \mathbb{R}$ is a real-valued function such that $g_i(0) = 0$.

A more general estimation problem

- Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream
- Consider vector $f = (f_1, f_2, \dots, f_n)$
- Define a function $g(\sigma)$ of stream σ to be $\sum_{i=1}^{m} g_i(f_i)$ where $g_i : \mathbb{R} \to \mathbb{R}$ is a real-valued function such that $g_i(0) = 0$.

Examples:

- Frequency moments F_k where for each i, $g_i(f_i) = h(f_i)$ where $h(x) = x^k$
- Entropy of stream: $g(\sigma) = \sum_{i} f_{i} \log(f_{i})$ (assume $0 \log 0 = 0$)

Part I

AMS Sampling

AMS Sampling

An unbiased statistical estimator for $g(\sigma)$

- ullet Sample e_J uniformly at random from stream of length m
- Suppose $e_J = i$ where $i \in [n]$
- Let $R = |\{j \mid J \le j \le m, e_j = e_J = i\}|$
- Output $(g_i(R) g_i(R-1)) \cdot m$

AMS Sampling

An unbiased statistical estimator for $g(\sigma)$

- ullet Sample e_J uniformly at random from stream of length m
- Suppose $e_J = i$ where $i \in [n]$
- Let $R = |\{j \mid J \le j \le m, e_j = e_J = i\}|$
- Output $(g_i(R) g_i(R-1)) \cdot m$

Can be implemented in streaming setting with reservoir sampling.

Streaming Implementation

```
AMS-Estimate:
     s \leftarrow null
     m \leftarrow 0
     \mathbf{R} \leftarrow 0
     While (stream is not done)
           m \leftarrow m + 1
           am is current item
           Toss a biased coin that is heads with probability 1/m
           If (coin turns up heads)
                 s \leftarrow a_m
                  R \leftarrow 1
           Else If (a_m == s)
                 R \leftarrow R + 1
     endWhile
     Output (\mathbf{g}_s(\mathbf{R}) - \mathbf{g}_s(\mathbf{R} - 1)) \cdot \mathbf{m}
```

Expectation of output

Let **Y** be the output of the algorithm.

Lemma

$$E[Y] = g(\sigma) = \sum_{i \in [n]} g_i(f_i).$$

Expectation of output

Let **Y** be the output of the algorithm.

Lemma

$$E[Y] = g(\sigma) = \sum_{i \in [n]} g_i(f_i).$$

 $Pr[e_J = i] = f_i/m$ since e_J is chosen uniformly from stream.

Expectation of output

Let **Y** be the output of the algorithm.

Lemma

$$E[Y] = g(\sigma) = \sum_{i \in [n]} g_i(f_i).$$

$$Pr[e_J = i] = f_i/m$$
 since e_J is chosen uniformly from stream.

$$\begin{split} \mathsf{E}[Y] &= \sum_{i \in [n]} \mathsf{Pr}[a_J = i] \, \mathsf{E}[Y|a_J = i] \\ &= \sum_{i \in [n]} \frac{f_i}{m} \, \mathsf{E}[Y|a_J = i] \\ &= \sum_{i \in [n]} \frac{f_i}{m} \sum_{\ell=1}^{f_i} m \frac{1}{f_i} \left(g_i(\ell) - g_i(\ell-1) \right) \\ &= \sum_{i \in [n]} g_i(f_i). \end{split}$$

Chandra (UIUC)

Application to estimating frequency moments

Suppose $g(\sigma) = F_k$ for some k > 1. That is $g_i(x) = x^k$ for each i. What is Var(Y)?

Application to estimating frequency moments

Suppose $g(\sigma) = F_k$ for some k > 1. That is $g_i(x) = x^k$ for each i. What is Var(Y)?

Lemma

When $g(x) = x^k$ and $k \ge 1$, $Var[Y] \le kF_1F_{2k-1} \le kn^{1-\frac{1}{k}}F_k^2$.

Application to estimating frequency moments

Suppose $g(\sigma) = F_k$ for some k > 1. That is $g_i(x) = x^k$ for each i. What is Var(Y)?

Lemma

When
$$g(x) = x^k$$
 and $k \ge 1$, $Var[Y] \le kF_1F_{2k-1} \le kn^{1-\frac{1}{k}}F_k^2$.

 $\mathsf{E}[Y] = F_k$ and $Var(Y) \leq kn^{1-\frac{1}{k}}F_k^2$. Hence, if we want to use averaging and Cheybyshev we need to average $h = \Omega(\frac{1}{\epsilon^2}kn^{1-\frac{1}{k}})$ parallel runs and space to get a $(1 \pm \epsilon)$ estimate to F_k with constant probability.

Variance calculation

$$\begin{aligned} \textit{Var}[Y] & \leq & \mathsf{E}[Y^2] \\ & \leq & \sum_{i \in [n]} \mathsf{Pr}[a_J = i] \sum_{\ell=1}^{f_i} \frac{m^2}{f_i} \left(\ell^k - (\ell-1)^k\right)^2 \\ & \leq & \sum_{i \in [n]} \frac{f_i}{m} \sum_{\ell=1}^{f_i} \frac{m^2}{f_i} (\ell^k - (\ell-1)^k) (\ell^k - (\ell-1)^k) \\ & \leq & m \sum_{i \in [n]} \sum_{\ell=1}^{f_i} k \ell^{k-1} (\ell^k - (\ell-1)^k) \quad \text{using } x^k - (x-1)^k \leq k x^{k-1} \\ & \leq & k m \sum_{i \in [n]} f_i^{k-1} f_i^k \\ & \leq & k m F_{2k-1} = k F_1 F_{2k-1}. \end{aligned}$$

Chandra (UIUC)

Variance calculation

Claim: For $k \ge 1$, $F_1 F_{2k-1} \le n^{1-1/k} (F_k)^2$.

Variance calculation

Claim: For $k \ge 1$, $F_1 F_{2k-1} \le n^{1-1/k} (F_k)^2$.

The function $g(x) = x^k$ is convex for $k \ge 1$. Implies $\sum_i x_i/n \le ((\sum_i x_i^k)/n)^{1/k}$.

$$F_{1}F_{2k-1} = (\sum_{i} f_{i})(\sum_{i} f_{i}^{2k-1}) \leq (\sum_{i} f_{i})(F_{\infty})^{k-1}(\sum_{i} f_{i}^{k})$$

$$\leq (\sum_{i} f_{i})(\sum_{i} f_{i}^{k})^{\frac{k-1}{k}}(\sum_{i} f_{i}^{k})$$

$$\leq n^{1-1/k}(\sum_{i} f_{i}^{k})^{1/k}(\sum_{i} f_{i}^{k})^{\frac{k-1}{k}}(\sum_{i} f_{i}^{k})$$

$$= n^{1-1/k}(F_{k})^{2}$$

Worst case is when $f_i = m/n$ for each $i \in [n]$.

Chandra (UIUC) CS498ABD 10 Fall 2022

10/25

Frequency moment estimation

AMS-Estimator shows that F_k can be estimated in $O(n^{1-1/k})$ space.

Question: Can one do better?

Frequency moment estimation

AMS-Estimator shows that F_k can be estimated in $O(n^{1-1/k})$ space.

Question: Can one do better?

- For F_2 and $1 \le k \le 2$ one can do O(polylog(n)) space!
- For k > 2 space complexity is $\tilde{O}(n^{1-2/k})$ which is known to be essentially tight.

Thus a phase transition at k = 2.

Part II

F₂ Estimation

Estimating F_2

- Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream
- Consider vector $f = (f_1, f_2, \dots, f_n)$

Question: Estimate $F_2 = \sum_{i=1}^m f_i^2$ in small space.

Using generic AMS sampling scheme we can do this in $O(\sqrt{n} \log n)$ space. Can we do it better?

AMS Scheme for F_2

```
AMS-F_2-Estimate:

Let h: [n] \to \{-1,1\} be chosen from a 4-wise independent hash family \mathcal{H}. z \leftarrow 0

While (stream is not empty) do a_j is current item z \leftarrow z + h(a_j) endWhile Output z^2
```

AMS Scheme for F_2

```
AMS-F_2-Estimate:

Let h: [n] \to \{-1,1\} be chosen from a 4-wise independent hash family \mathcal{H}. z \leftarrow 0

While (stream is not empty) do a_j is current item z \leftarrow z + h(a_j) endWhile Output z^2
```

```
\begin{array}{lll} \mathbf{AMS-F_2\text{-}Estimate:} \\ & \text{Let } \mathbf{Y}_1, \mathbf{Y}_2, \dots, \mathbf{Y}_n \text{ be } \{-1, +1\} \text{ random variable that are} \\ & \mathbf{4}\text{-wise independent} \\ & \mathbf{z} \leftarrow 0 \\ & \text{While (stream is not empty) do} \\ & & \mathbf{a}_j \text{ is current item} \\ & & \mathbf{z} \leftarrow \mathbf{z} + \mathbf{Y}_{\mathbf{a}_j} \\ & \text{endWhile} \\ & \text{Output } \mathbf{z}^2 \end{array}
```

$$Z = \sum_{i=1}^{n} f_i Y_i$$
 and output is Z^2

$$Z = \sum_{i=1}^{n} f_i Y_i$$
 and output is Z^2

- $E[Y_i] = 0$ and $Var(Y_i) = E[Y_i^2] = 1$
- For $i \neq j$, since Y_i and Y_j are pairwise-independent $E[Y_i Y_j] = 0$.

$$Z = \sum_{i=1}^{n} f_i Y_i$$
 and output is Z^2

- $E[Y_i] = 0$ and $Var(Y_i) = E[Y_i^2] = 1$
- For $i \neq j$, since Y_i and Y_j are pairwise-independent $E[Y_iY_i] = 0$.

$$\mathbf{Z}^2 = \sum_{i} \mathbf{f}_{i}^2 \mathbf{Y}_{i}^2 + 2 \sum_{i \neq j} \mathbf{f}_{i} \mathbf{f}_{j} \mathbf{Y}_{i} \mathbf{Y}_{j}$$

and hence

$$\mathsf{E}\big[\mathbf{Z}^2\big] = \sum_{i} \mathbf{f}_i^2 = \mathbf{F}_2.$$

What is $Var(Z^2)$?

What is $Var(Z^2)$?

$$\boldsymbol{E}[\boldsymbol{Z}^4] = \sum_{i \in [n]} \sum_{j \in [n]} \sum_{k \in [n]} \sum_{\ell \in [n]} f_i f_j f_k f_\ell \boldsymbol{E}[\boldsymbol{Y}_i \boldsymbol{Y}_j \boldsymbol{Y}_k \boldsymbol{Y}_\ell].$$

What is $Var(Z^2)$?

$$\boldsymbol{E}[\boldsymbol{Z}^4] = \sum_{i \in [n]} \sum_{j \in [n]} \sum_{k \in [n]} \sum_{\ell \in [n]} f_i f_j f_k f_\ell \boldsymbol{E}[\boldsymbol{Y}_i \boldsymbol{Y}_j \boldsymbol{Y}_k \boldsymbol{Y}_\ell].$$

4-wise independence implies $E[Y_i Y_j Y_k Y_\ell] = 0$ if there is a number among i, j, k, ℓ that occurs only once. Otherwise 1.

What is $Var(Z^2)$?

$$\boldsymbol{E}[\boldsymbol{Z}^4] = \sum_{i \in [n]} \sum_{j \in [n]} \sum_{k \in [n]} \sum_{\ell \in [n]} f_i f_j f_k f_\ell \boldsymbol{E}[\boldsymbol{Y}_i \boldsymbol{Y}_j \boldsymbol{Y}_k \boldsymbol{Y}_\ell].$$

4-wise independence implies $E[Y_i Y_j Y_k Y_\ell] = 0$ if there is a number among i, j, k, ℓ that occurs only once. Otherwise 1.

$$E[Z^4] = \sum_{i \in [n]} \sum_{j \in [n]} \sum_{k \in [n]} \sum_{\ell \in [n]} f_i f_j f_k f_\ell E[Y_i Y_j Y_k Y_\ell]$$
$$= \sum_{i \in [n]} f_i^4 + 6 \sum_{i=1}^n \sum_{j=i+1}^n f_i^2 f_j^2.$$

$$Var(Z^{2}) = E[Z^{4}] - (E[Z^{2}])^{2}$$

$$= F_{4} - F_{2}^{2} + 6 \sum_{i=1}^{n} \sum_{j=i+1}^{n} f_{i}^{2} f_{j}^{2}$$

$$= F_{4} - (F_{4} + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} f_{i}^{2} f_{j}^{2}) + 6 \sum_{i=1}^{n} \sum_{j=i+1}^{n} f_{i}^{2} f_{j}^{2}$$

$$= 4 \sum_{i=1}^{n} \sum_{j=i+1}^{n} f_{i}^{2} f_{j}^{2}$$

$$\leq 2F_{2}^{2}.$$

Averaging and median trick again

Output is
$$\mathbf{Z}^2$$
: and $\mathrm{E}[\mathbf{Z}^2] = \mathbf{F}_2$ and $\mathbf{Var}(\mathbf{Z}^4) \leq 2\mathbf{F}_2^2$

- Reduce variance by averaging $8/\epsilon^2$ independent estimates. Let Y be the averaged estimator.
- Apply Chebyshev to average estimator. $\Pr[|\mathbf{Y} \mathbf{F}_2| \ge \epsilon \mathbf{F}_2] \le 1/4$.
- Reduce error probability to δ by independently doing $O(\log(1/\delta))$ estimators above.
- Total space $O(\log(1/\delta)\frac{1}{\epsilon^2}\log n)$

Geometric Interpretation

Observation: The estimation algorithm works even when f_i 's can be negative. What does this mean?

Geometric Interpretation

Observation: The estimation algorithm works even when f_i 's can be negative. What does this mean?

Richer model:

- Want to estimate a function of a vector $x \in \mathbb{R}^n$ which is initially assume to be the all 0's vector. (previously we were thinking of the frequency vector f)
- Each element e_j of a stream is a tuple (i_j, Δ_j) where $i_j \in [n]$ and $\Delta_i \in \mathbb{R}$ is a real-value: this updates x_{i_j} to $x_{i_j} + \Delta_j$. $(\Delta_j$ can be positive or negative)

Algorithm revisited

$\begin{array}{l} \textbf{AMS-}\ell_2\textbf{-Estimate}\colon\\ \text{Let } \textbf{\textit{Y}}_1, \textbf{\textit{Y}}_2, \dots, \textbf{\textit{Y}}_n \text{ be } \{-1, +1\} \text{ random variable that are} \\ \textbf{\textit{4}-wise independent} \\ \textbf{\textit{z}} \leftarrow 0 \\ \text{While (stream is not empty) do} \\ \textbf{\textit{a}}_j = (\textbf{\textit{i}}_j, \Delta_j) \text{ is current update} \\ \textbf{\textit{z}} \leftarrow \textbf{\textit{z}} + \Delta_j \textbf{\textit{Y}}_{i_j} \\ \text{endWhile} \\ \text{Output } \textbf{\textit{z}}^2 \end{array}$

Algorithm revisited

```
\begin{array}{l} \textbf{AMS-}\ell_2\textbf{-Estimate}\colon\\ \text{Let } \textbf{\textit{Y}}_1, \textbf{\textit{Y}}_2, \dots, \textbf{\textit{Y}}_n \text{ be } \{-1, +1\} \text{ random variable that are }\\ \textbf{\textit{4-wise independent}}\\ \textbf{\textit{z}} \leftarrow 0\\ \text{While (stream is not empty) do}\\ \textbf{\textit{aj}} = (\textbf{\textit{ij}}, \Delta_{\textbf{\textit{j}}}) \text{ is current update}\\ \textbf{\textit{z}} \leftarrow \textbf{\textit{z}} + \Delta_{\textbf{\textit{j}}} \textbf{\textit{Y}}_{\textbf{\textit{ij}}}\\ \text{endWhile}\\ \text{Output } \textbf{\textit{z}}^2 \end{array}
```

Claim: Output estimates $||x||_2^2$ where x is the vector at end of stream of updates.

$$Z = \sum_{i=1}^{n} x_i Y_i$$
 and output is Z^2

$$Z = \sum_{i=1}^{n} x_i Y_i$$
 and output is Z^2

- $E[Y_i] = 0$ and $Var(Y_i) = E[Y_i^2] = 1$
- For $i \neq j$, since Y_i and Y_j are pairwise-independent $E[Y_iY_i] = 0$.

$$Z^2 = \sum_{i} x_i^2 Y_i^2 + 2 \sum_{i \neq j} x_i x_j Y_i Y_j$$

and hence

$$E[Z^2] = \sum_i x_i^2 = ||x||_2^2.$$

$$Z = \sum_{i=1}^{n} x_i Y_i$$
 and output is Z^2

- $E[Y_i] = 0$ and $Var(Y_i) = E[Y_i^2] = 1$
- For $i \neq j$, since Y_i and Y_j are pairwise-independent $E[Y_iY_i] = 0$.

$$Z^2 = \sum_{i} x_i^2 Y_i^2 + 2 \sum_{i \neq j} x_i x_j Y_i Y_j$$

and hence

$$E[Z^2] = \sum_i x_i^2 = ||x||_2^2.$$

And as before one can show that $Var(Z^2) \le 2(E[Z^2])^2$.

Chandra (UIUC) CS498ABD 21 Fall 2022

21/25

A *sketch* of a stream σ is a summary data structure $C(\sigma)$ (ideally of small space) such that the sketch of the composition $\sigma_1 \cdot \sigma_2$ of two streams σ_1 and σ_1 can be computed from $C(\sigma_1)$ and $C(\sigma_2)$. The output of the algorithm is some function of the sketch.

A sketch of a stream σ is a summary data structure $C(\sigma)$ (ideally of small space) such that the sketch of the composition $\sigma_1 \cdot \sigma_2$ of two streams σ_1 and σ_1 can be computed from $C(\sigma_1)$ and $C(\sigma_2)$. The output of the algorithm is some function of the sketch.

What is the summary of algorithm for F_2 estimation? Is it a sketch?

A sketch of a stream σ is a summary data structure $C(\sigma)$ (ideally of small space) such that the sketch of the composition $\sigma_1 \cdot \sigma_2$ of two streams σ_1 and σ_1 can be computed from $C(\sigma_1)$ and $C(\sigma_2)$. The output of the algorithm is some function of the sketch.

What is the summary of algorithm for F_2 estimation? Is it a sketch?

A sketch is a *linear* sketch if $C(\sigma_1 \cdot \sigma_2) = C(\sigma_1) + C(\sigma_2)$.

A sketch of a stream σ is a summary data structure $C(\sigma)$ (ideally of small space) such that the sketch of the composition $\sigma_1 \cdot \sigma_2$ of two streams σ_1 and σ_1 can be computed from $C(\sigma_1)$ and $C(\sigma_2)$. The output of the algorithm is some function of the sketch.

What is the summary of algorithm for F_2 estimation? Is it a sketch?

A sketch is a *linear* sketch if $C(\sigma_1 \cdot \sigma_2) = C(\sigma_1) + C(\sigma_2)$.

Is the sketch for F_2 estimation a linear sketch?

F₂ Estimation as Linear Sketching

Recall that we take average of independent estimators and take median to reduce error. Can we view all this as a sketch?

```
AMS-l<sub>2</sub>-Sketch:
     \ell = \mathbf{c} \log(1/\delta)/\epsilon^2
     Let M be a \ell \times n matrix with entries in \{-1,1\} s.t
          (i) rows are independent and
          (ii) in each row entries are 4-wise independent
     z is a \ell \times 1 vector initialized to 0
     While (stream is not empty) do
          a_i = (i_i, \Delta_i) is current update
          z \leftarrow z + \Delta_i Me_i
     endWhile
     Output vector z as sketch.
```

 ${\it M}$ is compactly represented via ℓ hash functions, one per row, independently chosen from 4-wise independent hash familty.

An Application to Join Size Estimation

In Databases an important operation is the "join" operation

- A relation/table r of arity k consists of tuples of size k where each tuple element is from some given type. Example: (netid, uin, last name, first name, dob, address) in a student data base
- Given two relations r and s and a common attribute a one often needs to compute their join $r\bowtie s$ over some common attribute that they share
- $r \bowtie s$ can have size quadratic in size of r and s

Question: Estimate size of $r \bowtie s$ without computing it explicitly. Very useful in database query optimization.

An Application to Join Size Estimation

In Databases an important operation is the "join" operation

- A relation/table r of arity k consists of tuples of size k where each tuple element is from some given type. Example: (netid, uin, last name, first name, dob, address) in a student data base
- Given two relations r and s and a common attribute a one often needs to compute their join $r\bowtie s$ over some common attribute that they share
- $r \bowtie s$ can have size quadratic in size of r and s

Question: Estimate size of $r \bowtie s$ without computing it explicitly. Very useful in database query optimization.

Estimating $r \bowtie r$ over an attribute a is same as F_2 estimation. Why?

Sketching: a shift in perspective

- Sketching ideas have many powerful applications in theory and practice
- In particular linear sketches are powerful. Allows one to handle negative entries and deletions. Surprisingly linear sketches are feasible in several settings.
- Connected to dimension reduction (JL Lemma), subspace embeddings and other important topics