CS 498ABD: Algorithms for Big Data

Limited independence and Hashing

Lecture 05/06September 6 and 8, 2022

Chandra (UIUC) CS498ABD 1 Fall 2022 1/42

Pseudorandomness

Randomized algorithms rely on independent random bits

Psuedorandomness: when can we *avoid* or *limit* number of random bits?

- Motivated by fundamental theoretical questions and applications
- Applications: hashing, cryptography, streaming, simulations, derandomization, ...
- A large topic in TCS with many connections to mathematics.

This course: need t-wise independent variables and hashing

Part I

Pairwise and *t*-wise independent random variables

Definition

Discrete random variables X_1, X_2, \ldots, X_n from a range B are independent if for all $b_1, b_2, \ldots, b_n \in B$

$$\mathsf{Pr}[X_1=b_1,X_2=b_2,\ldots,X_n=b_n]=\prod_{i=1}^n\mathsf{Pr}[X_i=b_i]\,.$$

Uniformly distributed if $Pr[X_i = b] = 1/|B|$ for all $i, b \in B$.

Chandra (UIUC) CS498ABD 4 Fall 2022 4 / 42

Definition

Discrete random variables X_1, X_2, \ldots, X_n from a range B are independent if for all $b_1, b_2, \ldots, b_n \in B$

$$\mathsf{Pr}[X_1=b_1,X_2=b_2,\ldots,X_n=b_n]=\prod_{i=1}^n\mathsf{Pr}[X_i=b_i]\,.$$

Uniformly distributed if $Pr[X_i = b] = 1/|B|$ for all $i, b \in B$.

Definition

Random variables X_1, X_2, \ldots, X_n from a range B are **pairwise** independent if for all $1 \le i < j \le n$ and for all $b, b' \in B$,

$$\Pr[X_i = b, X_i = b'] = \Pr[X_i = b] \cdot \Pr[X_i = b'].$$

Definition

Random variables X_1, X_2, \dots, X_n from a range B are pairwise independent if for all 1 < i < j < n and for all $b, b' \in B$,

$$\Pr[X_i = b, X_j = b'] = \Pr[X_i = b] \cdot \Pr[X_j = b']$$
.

If X_1, X_2, \dots, X_n are independent than they are pairwise independent but converse is not necessarily true

CS498ABD 5 Fall 2022 5 / 42

Definition

Random variables X_1, X_2, \ldots, X_n from a range B are pairwise independent if for all $1 \le i < j \le n$ and for all $b, b' \in B$,

$$\Pr[X_i = b, X_j = b'] = \Pr[X_i = b] \cdot \Pr[X_j = b']$$
.

If X_1, X_2, \dots, X_n are independent than they are pairwise independent but converse is not necessarily true

Example: X_1 , X_2 are independent bits (variables from $\{0,1\}$) and $X_3 = X_1 \oplus X_2$. X_1 , X_2 , X_3 are pairwise independent but not independent.

t-wise independence

Generalizing pairwise independence:

Definition

Random variables X_1, X_2, \ldots, X_n from a range B are t-wise independent for integer t > 1 $X_{i_1}, X_{i_2}, \ldots, X_{i_t}$ are independent for any $i_1 \neq i_2 \neq \ldots \neq i_t \in \{1, 2, \ldots, n\}$.

As t increases the variables become more and more independent. If t = n the variables are independent.

Chandra (UIUC) CS498ABD 6 Fall 2022 6 / 42

Motivation for pairwise/t-wise independence from streaming

Want n uniformly distr random variables X_1, X_2, \ldots, X_n , say bits But cannot store n bits because n is too large.

Achievable:

- storage of $O(\log n)$ random bits
- given i where $1 \le i \le n$ can generate X_i in $O(\log n)$ time
- X_1, X_2, \ldots, X_n are pairwise independent and uniform
- Hence, with small storage, can generate n random variables "on the fly". In several applications, pairwise independence (or generalizations) suffice

Chandra (UIUC) CS498ABD 7 Fall 2022 7 / 42

Generating pairwise independent bits

Assume for simplicity $n = 2^k - 1$ (otherwise consider nearest power of 2). Hence $k = O(\log n)$

- Let Y_1, Y_2, \ldots, Y_k be independent bits
- ullet For any $oldsymbol{S}\subset\{1,2,\ldots,k\}$, $oldsymbol{S}
 eq\emptyset$, define $oldsymbol{X_S}=\oplus_{i\in S}oldsymbol{Y_i}$
- $2^k 1$ random variables X_S

Generating pairwise independent bits

Assume for simplicity $n = 2^k - 1$ (otherwise consider nearest power of 2). Hence $k = O(\log n)$

- Let Y_1, Y_2, \ldots, Y_k be independent bits
- ullet For any $oldsymbol{S}\subset\{1,2,\ldots,k\}$, $oldsymbol{S}
 eq\emptyset$, define $oldsymbol{X_S}=\oplus_{oldsymbol{i}\in oldsymbol{S}}oldsymbol{Y_i}$
- $2^k 1$ random variables X_S

Claim: If $S \neq T$ then X_S and X_T are independent

Generating pairwise independent bits

Assume for simplicity $n = 2^k - 1$ (otherwise consider nearest power of 2). Hence $k = O(\log n)$

- Let Y_1, Y_2, \ldots, Y_k be independent bits
- For any $S \subset \{1, 2, \dots, k\}$, $S \neq \emptyset$, define $X_S = \bigoplus_{i \in S} Y_i$
- $2^k 1$ random variables X_S

Claim: If $S \neq T$ then X_S and X_T are independent

Proof.

 X_S and X_T are both uniformaly distributed over $\{0,1\}$. Suppose $S-T\neq\emptyset$. Even knowing all outcomes of variables in T the variables in S-T are independent and hence $\Pr[X_S=0\mid T]=1/2$ and hence X_S is independent of X_T . If $S\subset T$ then apply same argument to T-S.

Chandra (UIUC) CS498ABD 8 Fall 2022 8 / 42

Pairwise independent variables with larger range

Suppose we want n pairwise independent random variables in range $\{0,1,2,\ldots,m-1\}$ where $m=2^k-1$ for some k

Chandra (UIUC) CS498ABD 9 Fall 2022 9 / 42

Pairwise independent variables with larger range

Suppose we want n pairwise independent random variables in range $\{0,1,2,\ldots,m-1\}$ where $m=2^k-1$ for some k

- Now each X_i needs to be a log m bit string
- Use preceding construction for each bit independently
- Requires $O(\log m \log n)$ bits total
- Can in fact do $O(\log n + \log m)$ bits

Chandra (UIUC) CS498ABD 9 Fall 2022 9 / 42

Assume n = m = p where p is a prime number

Want p pairwise random variables distributed uniformly in $\mathbb{Z}_p = \{0, 1, 2, \dots, p-1\}$

Chandra (UIUC) CS498ABD 10 Fall 2022 10 / 42

Assume n = m = p where p is a prime number

Want p pairwise random variables distributed uniformly in $\mathbb{Z}_{p} = \{0, 1, 2, \dots, p-1\}$

- Choose $a, b \in \{0, 1, 2, \dots, p-1\}$ uniformly and independently at random. Requires $2\lceil \log p \rceil$ random bits
- For 0 < i < p-1 set $X_i = ai + b \mod p$
- Note that one needs to store only a, b, p and can generate X_i efficiently on the fly from i

Chandra (UIUC) CS498ABD 10 Fall 2022 10 / 42

Assume n = m = p where p is a prime number

Want p pairwise random variables distributed uniformly in $\mathbb{Z}_p = \{0, 1, 2, \dots, p-1\}$

- Choose $a, b \in \{0, 1, 2, ..., p-1\}$ uniformly and independently at random. Requires $2\lceil \log p \rceil$ random bits
- For $0 \le i \le p-1$ set $X_i = ai + b \mod p$
- Note that one needs to store only a, b, p and can generate X_i efficiently on the fly from i

Exercise: Prove that each X_i is uniformly distributed in \mathbb{Z}_p .

Claim: For $i \neq j$, X_i and X_i are independent.

10 / 42

Claim: For $i \neq j$, X_i and X_j are independent.

Some math required:

• \mathbb{Z}_p is a field for any prime p. That is $\{0, 1, 2, \ldots, p-1\}$ forms a commutative group under addition mod p (easy). And more importantly $\{1, 2, \ldots, p-1\}$ forms a commutative group under multiplication.

Some math required...

Lemma (LemmaUnique)

Let **p** be a prime number,

x: an integer number in $\{1, \ldots, p-1\}$.

 \implies There exists a unique y s.t. $xy = 1 \mod p$.

In other words: For every element there is a unique inverse.

 $\implies \mathbb{Z}_{p} = \{0, 1, \dots, p-1\}$ when working modulo p is a field.

Proof of LemmaUnique

Claim

Let p be a prime number. For any $x, y, z \in \{1, \dots, p-1\}$ s.t. $y \neq z$, we have that $xy \mod p \neq xz \mod p$.

Proof.

Assume for the sake of contradiction $xy \mod p = xz \mod p$.

$$x(y-z) = 0 \mod p$$
 $\implies p \text{ divides } x(y-z)$
 $\implies p \text{ divides } y-z$
 $\implies y-z=0$
 $\implies y=z.$

And that is a contradiction.

13 / 42

Proof of LemmaUnique

Lemma (LemmaUnique)

Let p be a prime number,

x: an integer number in $\{1,\ldots,p-1\}$.

 \implies There exists a unique y s.t. $xy = 1 \mod p$.

Proof.

By the above claim if $xy = 1 \mod p$ and $xz = 1 \mod p$ then y = z. Hence uniqueness follows.

Proof of LemmaUnique

Lemma (LemmaUnique)

Let **p** be a prime number,

x: an integer number in $\{1, \ldots, p-1\}$.

 \implies There exists a unique y s.t. $xy = 1 \mod p$.

Proof.

By the above claim if $xy = 1 \mod p$ and $xz = 1 \mod p$ then y = z. Hence uniqueness follows.

Existence. For any $x \in \{1, \ldots, p-1\}$ we have that $\{x*1 \mod p, x*2 \mod p, \ldots, x*(p-1) \mod p\} = \{1, 2, \ldots, p-1\}.$

 \implies There exists a number $y \in \{1, \dots, p-1\}$ such that $xy = 1 \mod p$.

Proof of pairwise independence

Lemma

If $i \neq j$ then for each

$$(r,s) \in \mathbb{Z}_p imes \mathbb{Z}_p$$
 there is exactly one pair $(a,b) \in \mathbb{Z}_p imes \mathbb{Z}_p$ such that $ai+b \mod p = r$ and $aj+b \mod p = s$

Proof.

Solve the two equations:

$$ai + b = r \mod p$$
 and $aj + b = s \mod p$

One-to-one correspondence between (a, b) and (r, s)

We get
$$a = \frac{r-s}{i-i} \mod p$$
 and $b = r - ax \mod p$.

Chandra (UIUC) CS498ABD 15 Fall 2022 15 / 42

Proof of pairwise independence

Lemma

If $i \neq j$ then for each

$$(r,s) \in \mathbb{Z}_p imes \mathbb{Z}_p$$
 there is exactly one pair $(a,b) \in \mathbb{Z}_p imes \mathbb{Z}_p$ such that $ai+b \mod p = r$ and $aj+b \mod p = s$

Proof.

Solve the two equations:

$$ai + b = r \mod p$$
 and $aj + b = s \mod p$

We get
$$a = \frac{r-s}{i-i} \mod p$$
 and $b = r - ax \mod p$.

One-to-one correspondence between (a, b) and (r, s) \Rightarrow if (a, b) is uniformly at random from $\mathbb{Z}_p \times \mathbb{Z}_p$ then (r, s) is uniformly at random from $\mathbb{Z}_p \times \mathbb{Z}_p$. X_i, X_j independent.

Pairwise independence for n, m powers of 2

We saw how to create n pairwise independent random variables when n = m = p where p is a prime number. We want n, m arbitrary. Easy to assume n is power of 2 (discard the unnecessary rvs) but harder if m is not power of 2. Here we only consider powers of 2.

n > m is the more difficult case and also relevant.

The following is a fundamental theorem on finite fields.

Theorem

Every finite field \mathbb{F} has order p^k for some prime p and some integer $k \geq 1$. For every prime p and integer $k \geq 1$ there is a finite field \mathbb{F} of order p^k and is unique up to isomorphism.

We will assume n and m are powers of 2. From above can assume we have a field \mathbb{F} of size $n = 2^k$.

Pairwise independence for n, m powers of 2

We have a field \mathbb{F} of size $n = 2^k$.

Generate n pairwise independent random variables from [n] to [n] by picking random $a,b\in\mathbb{F}$ and setting $X_i=ai+b$ (operations in \mathbb{F}). From previous proof (we only used that \mathbb{Z}_p is a field) X_i are pairwise independent.

Now $X_i \in [n]$. Truncate X_i to [m] by dropping the most significant $\log n - \log m$ bits. Resulting variables are still pairwise independent (both n, m being powers of 2 useful here).

Need to only store a, b, n and can generate $X_i = ai + b$. Skipping details on computational aspects of \mathbb{F} which are closely tied to the proof of the theorem on fields.

t-wise independence

Generalizing pairwise independence:

Definition

Random variables X_1, X_2, \ldots, X_n from a range B are t-wise independent for integer t > 1 $X_{i_1}, X_{i_2}, \ldots, X_{i_t}$ are independent for any $i_1 \neq i_2 \neq \ldots \neq i_t \in \{1, 2, \ldots, n\}$.

As t increases the variables become more and more independent. If t = n the variables are independent.

Fact: For any n, m one can create n random t-wise independent random variables from the range [m] using $O(t(\log n + \log m))$ true random bits. Can store only bits and generate the variables on the fly in $O(t \operatorname{polylog}(m+n))$ time.

t-wise independence

Construction using polynomials

- Let F be a field
- Pick t random (with replacement) numbers from \mathbb{F} :

$$a_0, a_1, \ldots, a_{t-1}$$

ullet For each $i\in [|\mathbb{F}|]$ set $oldsymbol{X_i}=oldsymbol{a_0}+oldsymbol{a_1}oldsymbol{i}+oldsymbol{a_2}oldsymbol{i}^2+\ldots+oldsymbol{a_{t-1}}oldsymbol{i}^{t-1}$

Pairwise Independence and Chebyshev's Inequality

Chebyshev's Inequality

For $a \ge 0$, $\Pr[|X - E[X]| \ge a] \le \frac{Var(X)}{a^2}$ equivalently for any t > 0, $\Pr[|X - E[X]| \ge t\sigma_X] \le \frac{1}{t^2}$ where $\sigma_X = \sqrt{Var(X)}$ is the standard deviation of X.

Suppose $X = X_1 + X_2 + \ldots + X_n$. If X_1, X_2, \ldots, X_n are independent then $Var(X) = \sum_i Var(X_i)$. Recall application to random walk on line

Chandra (UIUC) CS498ABD 20 Fall 2022 20 / 42

Pairwise Independence and Chebyshev's Inequality

Chebyshev's Inequality

For $a \ge 0$, $\Pr[|X - E[X]| \ge a] \le \frac{Var(X)}{a^2}$ equivalently for any t > 0, $\Pr[|X - E[X]| \ge t\sigma_X] \le \frac{1}{t^2}$ where $\sigma_X = \sqrt{Var(X)}$ is the standard deviation of X.

Suppose
$$X = X_1 + X_2 + ... + X_n$$
.
If $X_1, X_2, ..., X_n$ are independent then $Var(X) = \sum_i Var(X_i)$.
Recall application to random walk on line

Lemma

Suppose $X = \sum_{i} X_{i}$ and $X_{1}, X_{2}, \dots, X_{n}$ are pairwise independent, then $Var(X) = \sum_{i} Var(X_{i})$.

Chandra (UIUC) CS498ABD 20 Fall 2022 20 / 42

Part II

Hashing

Balls and Bins and Load Balancing

Suppose we want to distribute jobs to machines in a simple way to achieve load balancing.

Throwing each new job into a random machine is a simple, distributed, oblivious strategy with many benefits

Balls and bins is simple mathematical model to analyze the core principles

Balls and Bins → Hashing

Hashing:

- Want a "function" $h: \mathcal{U} \to B$.
- Want h to behave like a "random function". That is for any distinct $x_1, x_2, \ldots, x_n \in \mathcal{U}$ we have $h(x_1), h(x_2), \ldots, h(x_n)$ to be uniformly distributed over B and independent.
- But want h to be efficiently computable and stored in small memory

Chandra (UIUC) CS498ABD 23 Fall 2022 23 / 42

Balls and Bins → Hashing

Hashing:

- Want a "function" $h: \mathcal{U} \to B$.
- Want h to behave like a "random function". That is for any distinct $x_1, x_2, \ldots, x_n \in \mathcal{U}$ we have $h(x_1), h(x_2), \ldots, h(x_n)$ to be uniformly distributed over B and independent.
- But want h to be efficiently computable and stored in small memory

Many applications: hash tables as dictionary data structure, cryptography/security, pseudorandomness, ...

Dictionary Data Structure

- $oldsymbol{0}$ $oldsymbol{\mathcal{U}}$: universe of keys : numbers, strings, images, etc.
- ② Data structure to store a subset $S \subseteq \mathcal{U}$
- Operations:
 - **1** Search/look up: given $x \in \mathcal{U}$ is $x \in S$?
 - **2** Insert: given $x \notin S$ add x to S.
 - **3 Delete**: given $x \in S$ delete x from S
- **Static** structure: **S** given in advance or changes very infrequently, main operations are lookups.
- **Dynamic** structure: **S** changes rapidly so inserts and deletes as important as lookups.

Dictionary Data Structure

- ullet Standard dictionary data structures such binary search trees rely on universe $oldsymbol{\mathcal{U}}$ being a total order and hence can be compared
- Comparison based data structures take $\Theta(\log n)$ comparisons when storing n items from $\mathcal U$ and typically require pointer based data structure
- All objects represented in computers are essentially strings so technically one can use a comparison based data structure always
- Disadvantages of comparison based data structures:
 - Comparisons are expensive for many objects
 - Dynamic memory allocation and pointers
- Hashing based dictionaries:
 - O(1) expected time operations
 - Depending on implementation, can avoid pointers

Hash Table data structure:

- **1** A (hash) table/array T of size m (the table size).
- ② A hash function $h: \mathcal{U} \to \{0, \dots, m-1\}$.
- 1 Item $x \in \mathcal{U}$ hashes to slot h(x) in T.

Chandra (UIUC) CS498ABD 26 Fall 2022 26 / 42

Hash Table data structure:

- **1** A (hash) table/array T of size m (the table size).
- ② A hash function $h: \mathcal{U} \to \{0, \dots, m-1\}$.
- **1** Item $x \in \mathcal{U}$ hashes to slot h(x) in T.

Given $S \subseteq \mathcal{U}$. How do we store S and how do we do lookups?

Hash Table data structure:

- A (hash) table/array T of size m (the table size).
- ② A hash function $h: \mathcal{U} \to \{0, \dots, m-1\}$.
- **1** Item $x \in \mathcal{U}$ hashes to slot h(x) in T.

Given $S \subseteq \mathcal{U}$. How do we store S and how do we do lookups?

Ideal situation:

- Each element $x \in S$ hashes to a distinct slot in T. Store x in slot h(x)
- **2** Lookup: Given $y \in \mathcal{U}$ check if T[h(y)] = y. O(1) time!

Chandra (UIUC) CS498ABD 26 Fall 2022 26 / 42

Hash Table data structure:

- A (hash) table/array T of size m (the table size).
- ② A hash function $h: \mathcal{U} \to \{0, \dots, m-1\}$.
- **1** Item $x \in \mathcal{U}$ hashes to slot h(x) in T.

Given $S \subseteq \mathcal{U}$. How do we store S and how do we do lookups?

Ideal situation:

- Each element $x \in S$ hashes to a distinct slot in T. Store x in slot h(x)
- **2 Lookup**: Given $y \in \mathcal{U}$ check if T[h(y)] = y. O(1) time!

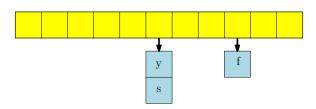
Collisions unavoidable if $|T| < |\mathcal{U}|$. Several techniques to handle them.

Handling Collisions: Chaining

Collision: h(x) = h(y) for some $x \neq y$.

Chaining/Open hashing to handle collisions:

- For each slot i store all items hashed to slot i in a linked list. T[i] points to the linked list
- **2** Lookup: to find if $y \in \mathcal{U}$ is in T, check the linked list at T[h(y)]. Time proportion to size of linked list.



Chain length determines time for operations. Ideally want O(1).

Chandra (UIUC) CS498ABD 27 Fall 2022 27 / 42

Parameters: $N = |\mathcal{U}|$ (very large), m = |T|, n = |S|

Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If $N \geq m^2$, then for any hash function $h: \mathcal{U} \to T$ there exists i < m such that at least $N/m \geq m$ elements of \mathcal{U} get hashed to slot i.

Chandra (UIUC) CS498ABD 28 Fall 2022 28 / 42

Parameters: $N = |\mathcal{U}|$ (very large), m = |T|, n = |S|

Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If $N \ge m^2$, then for any hash function $h: \mathcal{U} \to T$ there exists i < m such that at least $N/m \ge m$ elements of \mathcal{U} get hashed to slot i. Any S containing all of these is a **very very bad set for** h!

Parameters: $N = |\mathcal{U}|$ (very large), m = |T|, n = |S|

Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If $N \geq m^2$, then for any hash function $h: \mathcal{U} \to T$ there exists i < m such that at least $N/m \geq m$ elements of \mathcal{U} get hashed to slot i. Any S containing all of these is a **very very bad set for** h! Such a bad set may lead to O(m) lookup time!

Parameters: $N = |\mathcal{U}|$ (very large), m = |T|, n = |S|

Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If $N \ge m^2$, then for any hash function $h: \mathcal{U} \to T$ there exists i < m such that at least $N/m \ge m$ elements of \mathcal{U} get hashed to slot i. Any S containing all of these is a **very very bad set for** h! Such a bad set may lead to O(m) lookup time!

In practice:

- Dictionary applications: choose a simple hash function and hope that worst-case bad sets do not arise
- Crypto applications: create "hard" and "complex" function very carefully which makes finding collisions difficult

Chandra (UIUC) CS498ABD 28 Fall 2022 28 / 42

Hashing from a theoretical point of view

- ullet Consider a family ${\cal H}$ of hash functions with good properties and choose ${\it h}$ randomly from ${\cal H}$
- Guarantees: small # collisions in expectation for any given S.
- $oldsymbol{\cdot}$ thould allow efficient sampling.
- Each $h \in \mathcal{H}$ should be efficient to evaluate and require small memory to store.

In other worse a hash function is a "pseudorandom" function

Question: What are good properties of ${\cal H}$ in distributing data?

Chandra (UIUC) CS498ABD 30 Fall 2022 30 / 42

Question: What are good properties of \mathcal{H} in distributing data?

1 Uniform: Consider any element $x \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then x should go into a random slot in T. In other words $\Pr[h(x) = i] = 1/m$ for every $0 \le i < m$.

Question: What are good properties of \mathcal{H} in distributing data?

- **1 Uniform:** Consider any element $x \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then x should go into a random slot in T. In other words $\Pr[h(x) = i] = 1/m$ for every $0 \le i < m$.
- **2** (2)-Strongly Universal: Consider any two distinct elements $x, y \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then h(x) and h(y) should be independent random variables.

Chandra (UIUC) CS498ABD 30 Fall 2022 30 / 42

Question: What are good properties of \mathcal{H} in distributing data?

- **1** Uniform: Consider any element $x \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then x should go into a random slot in T. In other words $\Pr[h(x) = i] = 1/m$ for every $0 \le i < m$.
- **2** (2)-Strongly Universal: Consider any two distinct elements $x, y \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then h(x) and h(y) should be independent random variables.

Note: Fix $x \in \mathcal{U}$. h(x) is a random variable with range $\{0, 1, 2, \ldots, m-1\}$. Strong universal hash family implies that the variables $h(x), x \in S$ are uniform and pairwise independent random variables.

Universal Hashing

Question: What are good properties of \mathcal{H} in distributing data?

• (2)-Universal: Consider any two distinct elements $x, y \in \mathcal{U}$. Then if $h \in \mathcal{H}$ is picked randomly then the probability of a collision between x and y should be at most 1/m. In other words $\Pr[h(x) = h(y)] \le 1/m$.

Note: we do not insist on uniformity.

Definition

A family of hash functions \mathcal{H} is (2-)strongly universal if for all distinct $x, y \in \mathcal{U}$, h(x) and h(y) are independent for h chosen uniformly at random from \mathcal{H} , and for all x, h(x) is uniformly distributed.

Definition

A family of hash functions \mathcal{H} is (2-)universal if for all distinct $x, y \in \mathcal{U}$, $\Pr_{h \sim \mathcal{H}}[h(x) = h(y)] < 1/m$ where m is the table size.

Chandra (UIUC) CS498ABD 32 Fall 2022 32 / 42

Definition

A family of hash functions \mathcal{H} is (2-)strongly universal if for all distinct $x, y \in \mathcal{U}$, h(x) and h(y) are independent for h chosen uniformly at random from \mathcal{H} , and for all x, h(x) is uniformly distributed.

Definition

A family of hash functions \mathcal{H} is (2-)universal if for all distinct $x, y \in \mathcal{U}$, $\Pr_{h \sim \mathcal{H}}[h(x) = h(y)] \leq 1/m$ where m is the table size.

Generalizes to t-strongly universal and t-universal families. Need property for any tuple of t items.

Chandra (UIUC) CS498ABD 32 Fall 2022 32 / 42

Question: Fixing set S, what is the *expected* time to look up $x \in S$ when h is picked uniformly at random from H?

- $\ell(x)$: the size of the list at T[h(x)]. We want $E[\ell(x)]$
- ② For $y \in S$ let $D_y = 1$ if h(y) = h(x), else 0. $\ell(x) = \sum_{y \in S} D_y$

Chandra (UIUC) CS498ABD 33 Fall 2022 33 / 42

Question: Fixing set S, what is the *expected* time to look up $x \in S$ when h is picked uniformly at random from \mathcal{H} ?

- **1** $\ell(x)$: the size of the list at T[h(x)]. We want $E[\ell(x)]$
- ② For $y \in S$ let $D_y = 1$ if h(y) = h(x), else 0. $\ell(x) = \sum_{y \in S} D_y$

$$\begin{array}{lll} \mathsf{E}[\ell(x)] & = & \sum_{y \in \mathcal{S}} \mathsf{E}[D_y] = \sum_{y \in \mathcal{S}} \Pr[h(x) = h(y)] \\ & \leq & 1 + \sum_{y \in \mathcal{S}, y \neq x} \frac{1}{m} \quad (\mathcal{H} \text{ is a universal hash family}) \\ & \leq & 1 + (|\mathcal{S}| - 1)/m \leq 2 \quad \text{if } |\mathcal{S}| \leq m \end{array}$$

Question: What is the *expected* time to look up x in T using h assuming chaining used to resolve collisions?

Answer: O(n/m).

Chandra (UIUC) CS498ABD 34 Fall 2022 34 / 42

Question: What is the *expected* time to look up x in T using h assuming chaining used to resolve collisions?

Answer: O(n/m).

Comments:

- $\mathbf{0}$ O(1) expected time also holds for insertion.
- ② Analysis assumes static set S but holds as long as S is a set formed with at most O(m) insertions and deletions.
- **3 Worst-case**: look up time can be large! How large? In principle $\Omega(n)$ time but if \mathcal{H} has good properties then $O(\sqrt{n})$ or $O(\log n/\log\log n)$ with high probability.

Universal Hash Family

Universal: \mathcal{H} such that $\Pr[h(x) = h(y)] = 1/m$.

All functions

 \mathcal{H} : Set of all possible functions $h: \mathcal{U} \to \{0, \dots, m-1\}$.

Universal.

Chandra (UIUC) CS498ABD 35 Fall 2022 35 / 42

Universal Hash Family

Universal: \mathcal{H} such that Pr[h(x) = h(y)] = 1/m.

All functions

 \mathcal{H} : Set of all possible functions $h: \mathcal{U} \to \{0, \dots, m-1\}$.

- Universal.
- $\bullet |\mathcal{H}| = m^{|\mathcal{U}|}$
- representing h requires $|\mathcal{U}| \log m$ Not O(1)!

Chandra (UIUC) CS498ABD 35 Fall 2022 35 / 42

Universal Hash Family

Universal: \mathcal{H} such that Pr[h(x) = h(y)] = 1/m.

All functions

 \mathcal{H} : Set of all possible functions $h: \mathcal{U} \to \{0, \dots, m-1\}$.

- Universal.
- $\bullet |\mathcal{H}| = m^{|\mathcal{U}|}$
- representing h requires $|\mathcal{U}| \log m \text{Not } O(1)!$

We need compactly representable universal family.

Chandra (UIUC) CS498ABD 35 Fall 2022 35 / 42

Compact Stongly Universal Hash Family

Similar to construction of N pairwise independent random variables with range [m].

The function is given by the algorithm to construct X_i given i.

Can do with $O(\log N)$ bits of storage since $N \ge m$ in hashing application.

Chandra (UIUC) CS498ABD 36 Fall 2022 36 / 42

Parameters: $N = |\mathcal{U}|$, m = |T|, n = |S|. Assumption $m \leq N$.

- ① Choose a **prime** number $p \geq N$. $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ is a field.
- ② For $a, b \in \mathbb{Z}_p$, $a \neq 0$, define the hash function $h_{a,b}$ as $h_{a,b}(x) = ((ax + b) \mod p) \mod m$.
- 3 Let $\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0\}$. Note that $|\mathcal{H}| = p(p-1)$.

Parameters: $N = |\mathcal{U}|$, m = |T|, n = |S|. Assumption $m \leq N$.

- ① Choose a **prime** number $p \geq N$. $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ is a field.
- ② For $a, b \in \mathbb{Z}_p$, $a \neq 0$, define the hash function $h_{a,b}$ as $h_{a,b}(x) = ((ax + b) \mod p) \mod m$.
- 3 Let $\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0\}$. Note that $|\mathcal{H}| = p(p-1)$.

Theorem

H is a universal hash family.

Parameters: $N = |\mathcal{U}|$, m = |T|, n = |S|. Assumption $m \leq N$.

- ① Choose a **prime** number $p \ge N$. $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ is a field.
- ② For $a, b \in \mathbb{Z}_p$, $a \neq 0$, define the hash function $h_{a,b}$ as $h_{a,b}(x) = ((ax + b) \mod p) \mod m$.
- 3 Let $\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0\}$. Note that $|\mathcal{H}| = p(p-1)$.

Theorem

H is a universal hash family.

Comments:

- 1 Hash family is of small size, easy to sample from.
- 2 Easy to store a hash function (a, b have to be stored) and evaluate it.

Chandra (UIUC)

- g(x) = ax + b is uniformly distributed in $\{0, 1, ..., p 1\}$ but h(x) is not uniformly distributed unless m = p.
- $\Pr[h(x) = i] \le 2/m$ for any i.

Chandra (UIUC) CS498ABD 38 Fall 2022 38 / 42

Hashing:

- **1** To insert x in dictionary store x in table in location h(x)
- $oldsymbol{0}$ To lookup y in dictionary check contents of location h(y)

Chandra (UIUC) CS498ABD 39 Fall 2022 39 / 42

Hashing:

- **1** To insert x in dictionary store x in table in location h(x)
- 2 To lookup y in dictionary check contents of location h(y)

Bloom Filter: tradeoff space for false positives

- Storing items in dictionary expensive in terms of memory, especially if items are unwieldy objects such a long strings, images, etc with non-uniform sizes.
- ② To insert x in dictionary set bit to 1 in location h(x) (initially all bits are set to 0)
- 3 To lookup y if bit in location h(y) is 1 say yes, else no.

Chandra (UIUC) CS498ABD 39 Fall 2022 39 / 42

Chandra (UIUC) CS498ABD 40 Fall 2022 40 / 42

Bloom Filter: tradeoff space for false positives

- ① To insert x in dictionary set bit to 1 in location h(x) (initially all bits are set to 0)
- 2 To lookup y if bit in location h(y) is 1 say yes, else no
- No false negatives but false positives possible due to collisions

Reducing false positives:

- **1** Pick k hash functions h_1, h_2, \ldots, h_k independently
- ② To insert x, for each i, set bit in location $h_i(x)$ in table i to 1
- 3 To lookup y compute $h_i(y)$ for $1 \le i \le k$ and say yes only if each bit in the corresponding location is 1, otherwise say no. If probability of false positive for one hash function is $\alpha < 1$ then with k independent hash function it is α^k .

Chandra (UIUC) CS498ABD 40 Fall 2022 40 / 42

Take away points

- Hashing is a powerful and important technique for dictionaries.
 Many practical applications.
- Randomization fundamental to understanding hashing.
- Good and efficient hashing possible in theory and practice with proper definitions (universal, perfect, etc).
- Related ideas of creating a compact fingerprint/sketch for objects is very powerful in theory and practice.

Practical Issues

Hashing used typically for integers, vectors, strings etc.

- Universal hashing is defined for integers. To implement for other objects need to map objects in some fashion to integers (via representation)
- Practical methods for various important cases such as vectors, strings are studied extensively. See http://en.wikipedia.org/wiki/Universal_hashing for some pointers.
- Details on Cuckoo hashing and its advantage over chaining http://en.wikipedia.org/wiki/Cuckoo_hashing.
- Recent important paper bridging theory and practice of hashing.
 "The power of simple tabulation hashing" by Mikkel Thorup and Mihai Patrascu, 2011. See
 http://en.wikipedia.org/wiki/Tabulation_hashing