CS 498ABD: Algorithms for Big Data

Frequency moments and Counting Distinct Elements

Lecture 06 September 8, 2022

Chandra (UIUC) CS498ABD 1 Fall 2022 1 / 20

Part I

Estimating Distinct Elements

Distinct Elements

Given a stream σ how many distinct elements did we see?

Offline solution via Dictionary data structure

Hashing based idea

- Assume idealized hash function: $h:[n] \to [0,1]$ that is fully random over the real interval
- Suppose there are k distinct elements in the stream
- What is the expected value of the minimum of hash values?

Chandra (UIUC) CS498ABD 4 Fall 2022 4/20

Analyzing idealized hash function

Lemma

Suppose X_1, X_2, \ldots, X_k are random variables that are independent and uniformaly distributed in [0,1] and let $Y = \min_i X_i$. Then $E[Y] = \frac{1}{(k+1)}$.

DistinctElements

```
Assume ideal hash function m{h}:[m{n}] 
ightarrow [0,1] m{y} \leftarrow 1 While (stream is not empty) do

Let m{e} be next item in stream

m{y} \leftarrow \min(m{z}, m{h}(m{e})) EndWhile
Output \frac{1}{y} - 1
```

Chandra (UIUC) CS498ABD 5 Fall 2022 5 / 20

Analyzing idealized hash function

Lemma

Suppose X_1, X_2, \ldots, X_k are random variables that are independent and uniformaly distributed in [0,1] and let $Y = \min_i X_i$. Then $E[Y] = \frac{1}{(k+1)}$.

Lemma

Suppose X_1, X_2, \ldots, X_k are random variables that are independent and uniformaly distributed in [0,1] and let $Y = \min_i X_i$. Then $E[Y^2] = \frac{2}{(k+1)(k+2)}$ and $Var(Y) = \frac{k}{(k+1)^2(k+2)} \leq \frac{1}{(k+1)^2}$.

Chandra (UIUC) CS498ABD 6 Fall 2022 6 / 20

Analyzing idealized hash function

Apply standard methodology to go from exact statistical estimator to good bounds:

- average h parallel and independent estimates to reduce variance
- ullet apply Chebyshev to show that the average estimator is a $(1+\epsilon)$ -approximation with constant probability
- use preceding and median trick with $O(\log 1/\delta)$ parallel copies to obtain a $(1+\epsilon)$ -approximation with probability $(1-\delta)$

Total space: $O(\frac{1}{\epsilon^2}\log(1/\delta))$ hash values to obtain an estimate that is within $(1\pm\epsilon)$ approximation with probability at least $(1-\delta)$.

Chandra (UIUC) CS498ABD 7 Fall 2022 7 / 20

Algorithm via regular hashing

Do not have idealized hash function.

- ullet Use h:[n]
 ightarrow [N] for appropriate choice of N
- Use pairwise independent hash family ${\cal H}$ so that random $h \in {\cal H}$ can be stored in small space and computation can be done in small memory and fast

Several variants of idea with different trade offs between

- memory
- time to process each new element of the stream
- approximation quality and probability of success

Algorithm from BJKST

BJKST-DistinctElements:

 \mathcal{H} is a pairwise independent hash family from [n] to $[N = n^3]$ choose h at random from \mathcal{H} $t \leftarrow \frac{c}{c^2}$ While (stream is not empty) do a; is current item Update the smallest t hash values seen so far with $h(a_i)$

endWhile

Let \mathbf{v} be the \mathbf{t} 'th smallest value seen in the hast values. Output tN/v.

Algorithm from BJKST

BJKST-DistinctElements:

```
\mathcal{H} is a pairwise independent hash family from [n] to [N=n^3] choose h at random from \mathcal{H} t\leftarrow \frac{c}{\epsilon^2} While (stream is not empty) do a_i is current item Update the smallest t hash values seen so far with h(a_i) endWhile Let v be the t'th smallest value seen in the hast values. Output tN/v.
```

- Memory: $t = O(1/\epsilon^2)$ values so $O(\log n/\epsilon^2)$ bits. Also $O(\log n)$ bits to store hash function
- Processing time per element: $O(\log(1/\epsilon))$ comparisons of $\log n$ bit numbers by using a binary search tree. And computing hash value

Let **d** be true number of distinct value in stream. Assume $d > c\epsilon^2$; can keep track of the exact count for small counts. How?

Chandra (UIUC) CS498ABD 10 Fall 2022 10 / 20

Let d be true number of distinct value in stream. Assume $d > c\epsilon^2$; can keep track of the exact count for small counts. How?

Ideal hash function maps to real interval [0,1]. Instead we map to integers in big range: 1 to $N = n^3$.

Chandra (UIUC) CS498ABD 10 Fall 2022 10 / 20

Let **d** be true number of distinct value in stream. Assume $d > c\epsilon^2$; can keep track of the exact count for small counts. How?

Ideal hash function maps to real interval [0,1]. Instead we map to integers in big range: 1 to $N = n^3$.

If h were truly random min hash value is around N/(d+1)

Chandra (UIUC) CS498ABD 10 Fall 2022 10 / 20

Let **d** be true number of distinct value in stream. Assume $d > c\epsilon^2$; can keep track of the exact count for small counts. How?

Ideal hash function maps to real interval [0,1]. Instead we map to integers in big range: 1 to $N = n^3$.

If h were truly random min hash value is around N/(d+1)

t'th minimum hash value v to be around tN/(d+1).

Let d be true number of distinct value in stream. Assume $d>c\epsilon^2$; can keep track of the exact count for small counts. How?

Ideal hash function maps to real interval [0,1]. Instead we map to integers in big range: 1 to $N = n^3$.

If h were truly random min hash value is around N/(d+1)

t'th minimum hash value v to be around tN/(d+1).

Hence tN/v should be around d+1

t'th min hash value more robust estimator than minimum hash value and incorporates the averaging trick to reduce variance

10 / 20

Let d be actual number of distinct values in a given stream (assume $d>c/\epsilon^2$). Let D be the output of the algorithm which is a random variable.

Let d be actual number of distinct values in a given stream (assume $d>c/\epsilon^2$). Let D be the output of the algorithm which is a random variable.

Lemma

$$\Pr[\mathbf{D} < (1 - \epsilon)\mathbf{d}] \le 1/6.$$

Lemma

$$\Pr[D > (1 + \epsilon)d] \le 1/6.$$

Hence $\Pr[|D - d| \ge \epsilon d] < 1/3$. Can do median trick to reduce error probability to δ with $O(\log 1/\delta)$ parallel repetitions.

11/20

For simplicity assume no collisions. Prove following as exercise.

Lemma

Since $N = n^3$ the probability that there are no collisions in h is at least 1 - 1/n.

Recall

Lemma

 $X = X_1 + X_2 + \ldots + X_k$ where X_1, X_2, \ldots, X_k are pairwise independent. Then $Var(X) = \sum_i Var(X_i)$.

$$\begin{array}{l} \frac{1}{1-\epsilon} = 1+\epsilon+\epsilon^2 \cdots \Rightarrow 1+\epsilon \leq \frac{1}{1-\epsilon} \leq 1+\frac{3\epsilon}{2} \text{ for } \epsilon < 1/2. \\ \frac{1}{1+\epsilon} = 1-\epsilon+\epsilon^2 \ldots \Rightarrow 1-\epsilon \leq \frac{1}{1+\epsilon} \leq 1-\frac{\epsilon}{2}. \end{array}$$

Let b_1, b_2, \ldots, b_d be the distinct values in the stream. Recall D = tN/v where v is the t'th smallest hash value seen.

- Each b_i hashed to a uniformly random bucket from 1 to N
- ullet Consider buckets in interval $m{I} = [1.. rac{tN}{d}]$
- Expected number of distinct items hashed into I is t
- Estimate $D < (1 \epsilon)d$ implies less than t hashed in interval $I_1 = [1...\frac{tN}{(1-\epsilon)d}]$ when expected is $\frac{t}{1-\epsilon}$
- Esitmate $D > (1 + \epsilon)d$ implies more than t hashed in interval $I_2 = [1..\frac{tN}{(1+\epsilon)d}]$ when expected is $\frac{t}{(1+\epsilon)}$.
- Use Chebyshev to analyse "bad" event probabilities via pairwise independence of hash function.

Chandra (UIUC) CS498ABD 13 Fall 2022 13 / 20

Lemma

$$\Pr[D < (1 - \epsilon)d] \le 1/6.$$

Let b_1, b_2, \ldots, b_d be the distinct values in the stream. Recall D = tN/v where v is the t'th smallest hash value seen.

 $D < (1 - \epsilon)d$ iff $v > \frac{tN}{(1 - \epsilon)d}$. Implies *less than t* hash values fell in the interval $I = [1..\frac{tN}{(1 - \epsilon)d}]$.

Lemma

$$\Pr[\mathbf{D} < (1 - \epsilon)\mathbf{d}] \le 1/6.$$

Let b_1, b_2, \ldots, b_d be the distinct values in the stream. Recall D = tN/v where v is the t'th smallest hash value seen.

 $D < (1 - \epsilon)d$ iff $v > \frac{tN}{(1 - \epsilon)d}$. Implies *less than t* hash values fell in the interval $I = [1...\frac{tN}{(1 - \epsilon)d}]$. What is the probability of this event?

Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1-\epsilon)d}$.

And $X = \sum_{i=1}^{d} X_i$ is number that hashed to I

$$\Pr[D < (1 - \epsilon)d] = \Pr[X < t]$$
.

Chandra (UIUC) CS498ABD 14

14 / 20

Let X_i be indicator for $h(b_i) \leq rac{tN}{(1-\epsilon)d}$. And $X = \sum_{i=1}^d X_i$

• Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1-\epsilon)d} \ge (1+\epsilon)t/d$.

Let X_i be indicator for $h(b_i) \leq rac{tN}{(1-\epsilon)d}$. And $X = \sum_{i=1}^d X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1-\epsilon)d} \ge (1+\epsilon)t/d$.
- $E[X] \geq (1+\epsilon)t$.

Let X_i be indicator for $h(b_i) \leq rac{tN}{(1-\epsilon)d}$. And $X = \sum_{i=1}^d X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1-\epsilon)d} \ge (1+\epsilon)t/d$.
- $\bullet \ \mathsf{E}[X] \geq (1+\epsilon)t.$

Recall
$$\Pr[oldsymbol{D} < (1 - \epsilon) oldsymbol{d}] = \Pr[oldsymbol{X} < oldsymbol{t}]$$

Thus $D < (1 - \epsilon)d$ only if $X - E[X] < \epsilon t$. Use Chebyshev to upper bound this probability.

Chandra (UIUC) CS498ABD 15 Fall 2022 15 / 20

Let X_i be indicator for $h(b_i) \leq rac{tN}{(1-\epsilon)d}$. And $X = \sum_{i=1}^d X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1-\epsilon)d} \ge (1+\epsilon/2)t/d$
- $E[X] \geq (1+\epsilon)t$.
- X_i is a binary rv hence $Var(X_i) \leq E[X_i] \leq (1 + 3\epsilon/2)t/d$.

Chandra (UIUC) CS498ABD 16 Fall 2022 16 / 20

Let X_i be indicator for $h(b_i) \leq rac{tN}{(1-\epsilon)d}$. And $X = \sum_{i=1}^d X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1-\epsilon)d} \ge (1+\epsilon/2)t/d$
- $\bullet \ \mathsf{E}[X] \geq (1+\epsilon)t.$
- X_i is a binary rv hence $Var(X_i) \leq E[X_i] \leq (1 + 3\epsilon/2)t/d$.
- X_1, X_2, \ldots, X_d are pair-wise independent random variables hence $Var(X) = \sum_i Var(X_i) \le (1 + 3\epsilon/2)t$.

Chandra (UIUC) CS498ABD 16 Fall 2022 16 / 20

Let $\pmb{X_i}$ be indicator for $\pmb{h}(\pmb{b_i}) \leq rac{tN}{(1-\epsilon)\pmb{d}}$. And $\pmb{X} = \sum_{\pmb{i}=1}^{\pmb{d}} \pmb{X_i}$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1-\epsilon)d} \ge (1+\epsilon/2)t/d$
- $E[X] \geq (1+\epsilon)t$.
- X_i is a binary rv hence $Var(X_i) \leq E[X_i] \leq (1 + 3\epsilon/2)t/d$.
- X_1, X_2, \ldots, X_d are pair-wise independent random variables hence $Var(X) = \sum_i Var(X_i) \le (1 + 3\epsilon/2)t$.

By Chebyshev:

$$\Pr[X < t] \le \Pr[|X - E[X]| > \epsilon t] \le Var(X)/\epsilon^2 t^2$$

 $\le (1 + 3\epsilon/2)/c$

Let X_i be indicator for $h(b_i) \leq rac{tN}{(1-\epsilon)d}$. And $X = \sum_{i=1}^d X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1-\epsilon)d} \ge (1+\epsilon/2)t/d$
- $\bullet \ \mathsf{E}[X] \geq (1+\epsilon)t.$
- X_i is a binary rv hence $Var(X_i) \leq E[X_i] \leq (1 + 3\epsilon/2)t/d$.
- X_1, X_2, \ldots, X_d are pair-wise independent random variables hence $Var(X) = \sum_i Var(X_i) \le (1 + 3\epsilon/2)t$.

By Chebyshev:

$$\Pr[X < t] \le \Pr[|X - E[X]| > \epsilon t] \le Var(X)/\epsilon^2 t^2$$

 $\le (1 + 3\epsilon/2)/c$

Choose c sufficiently large to ensure ratio is at most 1/6.

Chandra (UIUC)

Lemma

$$\Pr[\mathbf{D} > (1+\epsilon)\mathbf{d}] \le 1/6].$$

Let b_1, b_2, \ldots, b_d be the distinct values in the stream. Recall D = tN/v where v is the t'th smallest hash value seen.

 $D > (1+\epsilon)d$ iff $v < \frac{tN}{(1+\epsilon)d}$. Implies more than t hash values fell in the interval $[1...\frac{tN}{(1+\epsilon)d}]$.

Chandra (UIUC) CS498ABD 17 Fall 2022 17 / 20

Lemma

$$\Pr[D > (1 + \epsilon)d] \le 1/6].$$

Let b_1, b_2, \ldots, b_d be the distinct values in the stream. Recall D = tN/v where v is the t'th smallest hash value seen.

 $D > (1+\epsilon)d$ iff $v < \frac{tN}{(1+\epsilon)d}$. Implies more than t hash values fell in the interval $[1...\frac{tN}{(1+\epsilon)d}]$. What is the probability of this event?

Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1+\epsilon)d}$. And $X = \sum_{i=1}^{d} X_i$

$$\Pr[D > (1+\epsilon)d] = \Pr[Y > t]$$
.

Chandra (UIUC) CS498ABD 17 Fall 2022 17 / 20

Let X_i be indicator for $h(b_i) \leq rac{tN}{(1+\epsilon)d}$. And $X = \sum_{i=1}^d X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1+\epsilon)d} \le (1-\epsilon/2)t/d$.
- $E[X] \leq (1 \epsilon/2)t$.
- X_i is a binary rv hence $Var(X_i) \leq E[X_i] \leq (1 \epsilon/2)t/d$.
- X_1, X_2, \ldots, X_d are pair-wise independent random variables hence $Var(X) = \sum_i Var(X_i) \le (1 \epsilon/2)t$.

18

Let X_i be indicator for $h(b_i) \leq rac{tN}{(1+\epsilon)d}$. And $X = \sum_{i=1}^d X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = Pr[X_i = 1] = \frac{t}{(1+\epsilon)d} \le (1-\epsilon/2)t/d$.
- $\bullet \ \mathsf{E}[X] \le (1 \epsilon/2)t.$
- X_i is a binary rv hence $Var(X_i) \leq E[X_i] \leq (1 \epsilon/2)t/d$.
- X_1, X_2, \ldots, X_d are pair-wise independent random variables hence $Var(X) = \sum_i Var(X_i) \le (1 \epsilon/2)t$.

By Chebyshev:

$$\Pr[\mathbf{X} > t] \le \Pr[|\mathbf{X} - \mathbf{E}[\mathbf{X}]| > \epsilon t/2] \le 4 \operatorname{Var}(\mathbf{X})/\epsilon^2 t^2$$

$$\le 4(1 - \epsilon/2)/c$$

Let X_i be indicator for $h(b_i) \leq \frac{tN}{(1+\epsilon)d}$. And $X = \sum_{i=1}^d X_i$

- Since $h(b_i)$ is uniformly distributed in $\{1, \ldots, N\}$, $E[X_i] = \Pr[X_i = 1] = \frac{t}{(1+\epsilon)d} \le (1-\epsilon/2)t/d$.
- $E[X] \leq (1 \epsilon/2)t$.
- X_i is a binary rv hence $Var(X_i) \leq E[X_i] \leq (1 \epsilon/2)t/d$.
- X_1, X_2, \ldots, X_d are pair-wise independent random variables hence $Var(X) = \sum_i Var(X_i) \le (1 \epsilon/2)t$.

By Chebyshev:

$$\Pr[X > t] \le \Pr[|X - E[X]| > \epsilon t/2] \le 4Var(X)/\epsilon^2 t^2$$

$$\le 4(1 - \epsilon/2)/c$$

Choose c sufficiently large to ensure ratio is at most 1/6.

Chandra (UIUC)

Question

Where did we use the fact that $d \geq c/\epsilon^2$?

Chandra (UIUC) CS498ABD 19 Fall 2022 19 / 20

Question

Where did we use the fact that $d \geq c/\epsilon^2$?

Analysis need to be more careful in using $\frac{\textit{N}}{(1-\epsilon)\textit{d}}$ and $\frac{\textit{N}}{(1+\epsilon)\textit{d}}$ since we need to round them to nearest integer; technically have to use floor and cielings. If $\textit{d} > c/\epsilon^2$ then rounding error of 1 does not matter — adds only $\epsilon \textit{d}$ error.

We avoid floor and ceiling etc in lecture for clarity.

Summary on Distinct Elements

- with $O(\frac{1}{\epsilon^2}\log(1/\delta)\log n)$ bits algorithm output estimate D such that $|D-d| \le \epsilon d$ with probability at least $(1-\delta)$
- Best known memory bound: $O(\frac{\log(1/\delta)}{\epsilon^2} + \log n)$ bits and for any fixed δ this meets lower bound within constant factors. Both lower bound and upper bound quite technical potential reading for projects.
- Continuous monitoring: want estimate to be correct not only at end of stream but also at all intermediate steps. Can be done with $O(\frac{\log\log n + \log(1/\delta)}{\epsilon^2} + \log n)$ bits.
- Deletions allowed! Can also be done. More on this later.

Chandra (UIUC) CS498ABD 20 Fall 2022 20 / 20