CS 498ABD: Algorithms for Big Data

Frequency moments and Counting Distinct Elements

Lecture 06
September 8, 2022

Part I

Estimating Distinct Elements

Distinct Elements

Given a stream σ how many distinct elements did we see?

Offline solution via Dictionary data structure

Hashing based idea

- Assume idealized hash function: $\boldsymbol{h}:[\boldsymbol{n}] \rightarrow[0,1]$ that is fully random over the real interval
- Suppose there are k distinct elements in the stream
- What is the expected value of the minimum of hash values?

Analyzing idealized hash function

Lemma

Suppose $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\boldsymbol{k}}$ are random variables that are independent and uniformaly distributed in $[0,1]$ and let $\boldsymbol{Y}=\min _{\boldsymbol{i}} \boldsymbol{X}_{\boldsymbol{i}}$. Then $\mathrm{E}[\boldsymbol{Y}]=\frac{1}{(\boldsymbol{k}+1)}$.

DistinctElements

$$
\begin{aligned}
& \text { Assume ideal hash function } \boldsymbol{h}:[\boldsymbol{n}] \rightarrow[0,1] \\
& \boldsymbol{y} \leftarrow 1 \\
& \text { While (stream is not empty) do } \\
& \quad \text { Let } \boldsymbol{e} \text { be next item in stream } \\
& \quad \boldsymbol{y} \leftarrow \min (\boldsymbol{z}, \boldsymbol{h}(\boldsymbol{e}))
\end{aligned}
$$

EndWhile
Output $\frac{1}{y}-1$

Analyzing idealized hash function

Lemma

Suppose $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\boldsymbol{k}}$ are random variables that are independent and uniformaly distributed in $[0,1]$ and let $\boldsymbol{Y}=\min _{\boldsymbol{i}} \boldsymbol{X}_{\boldsymbol{i}}$. Then $\mathrm{E}[\boldsymbol{Y}]=\frac{1}{(\boldsymbol{k}+1)}$.

Lemma

Suppose $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\boldsymbol{k}}$ are random variables that are independent and uniformaly distributed in $[0,1]$ and let $\boldsymbol{Y}=\min _{\boldsymbol{i}} \boldsymbol{X}_{\boldsymbol{i}}$. Then $\mathrm{E}\left[\boldsymbol{Y}^{2}\right]=\frac{2}{(\boldsymbol{k}+1)(\boldsymbol{k}+2)}$ and $\operatorname{Var}(\boldsymbol{Y})=\frac{\boldsymbol{k}}{(\boldsymbol{k}+1)^{2}(\boldsymbol{k}+2)} \leq \frac{1}{(\boldsymbol{k}+1)^{2}}$.

Analyzing idealized hash function

Apply standard methodology to go from exact statistical estimator to good bounds:

- average \boldsymbol{h} parallel and independent estimates to reduce variance
- apply Chebyshev to show that the average estimator is a $(1+\boldsymbol{\epsilon})$-approximation with constant probability
- use preceding and median trick with $\boldsymbol{O}(\log 1 / \delta)$ parallel copies to obtain a $(1+\boldsymbol{\epsilon})$-approximation with probability $(1-\boldsymbol{\delta})$
Total space: $\boldsymbol{O}\left(\frac{1}{\epsilon^{2}} \log (1 / \boldsymbol{\delta})\right)$ hash values to obtain an estimate that is within $(1 \pm \boldsymbol{\epsilon})$ approximation with probability at least $(1-\boldsymbol{\delta})$.

Algorithm via regular hashing

Do not have idealized hash function.

- Use $\boldsymbol{h}:[\boldsymbol{n}] \rightarrow[\boldsymbol{N}]$ for appropriate choice of \boldsymbol{N}
- Use pairwise independent hash family \mathcal{H} so that random $\boldsymbol{h} \in \mathcal{H}$ can be stored in small space and computation can be done in small memory and fast
Several variants of idea with different trade offs between
- memory
- time to process each new element of the stream
- approximation quality and probability of success

Algorithm from BJKST

BJKST-DistinctElements:

\mathcal{H} is a pairwise independent hash family from [$\boldsymbol{n}]$ to $\left[\boldsymbol{N}=\boldsymbol{n}^{3}\right]$ choose \boldsymbol{h} at random from \mathcal{H}
$t \leftarrow \frac{c}{\epsilon^{2}}$
While (stream is not empty) do
a_{i} is current item
Update the smallest \boldsymbol{t} hash values seen so far with $\boldsymbol{h}\left(\boldsymbol{a}_{\boldsymbol{i}}\right)$ endWhile
Let v be the t 'th smallest value seen in the hast values. Output $\boldsymbol{t N} / \boldsymbol{v}$.

Algorithm from BJKST

BJKST-DistinctElements:

\mathcal{H} is a pairwise independent hash family from $[\boldsymbol{n}]$ to $\left[\boldsymbol{N}=\boldsymbol{n}^{3}\right]$ choose \boldsymbol{h} at random from \mathcal{H}
$t \leftarrow \frac{c}{\epsilon^{2}}$
While (stream is not empty) do
$\boldsymbol{a}_{\boldsymbol{i}}$ is current item
Update the smallest \boldsymbol{t} hash values seen so far with $\boldsymbol{h}\left(\boldsymbol{a}_{\boldsymbol{i}}\right)$ endWhile
Let \boldsymbol{v} be the \boldsymbol{t} 'th smallest value seen in the hast values. Output $t N / v$.

- Memory: $\boldsymbol{t}=\boldsymbol{O}\left(1 / \epsilon^{2}\right)$ values so $\boldsymbol{O}\left(\log n / \epsilon^{2}\right)$ bits. Also $O(\log n)$ bits to store hash function
- Processing time per element: $\boldsymbol{O}(\log (1 / \epsilon))$ comparisons of $\log n$ bit numbers by using a binary search tree. And computing hash value.

Intuition for algorithm/analysis

Let \boldsymbol{d} be true number of distinct value in stream. Assume $\boldsymbol{d}>\boldsymbol{c} \boldsymbol{\epsilon}^{2}$; can keep track of the exact count for small counts. How?

Intuition for algorithm/analysis

Let \boldsymbol{d} be true number of distinct value in stream. Assume $\boldsymbol{d}>\boldsymbol{c} \epsilon^{2}$; can keep track of the exact count for small counts. How?

Ideal hash function maps to real interval $[0,1]$. Instead we map to integers in big range: 1 to $N=n^{3}$.

Intuition for algorithm/analysis

Let \boldsymbol{d} be true number of distinct value in stream. Assume $\boldsymbol{d}>\boldsymbol{c} \epsilon^{2}$; can keep track of the exact count for small counts. How?

Ideal hash function maps to real interval $[0,1]$. Instead we map to integers in big range: 1 to $N=n^{3}$.

If \boldsymbol{h} were truly random min hash value is around $\boldsymbol{N} /(\boldsymbol{d}+1)$

Intuition for algorithm/analysis

Let \boldsymbol{d} be true number of distinct value in stream. Assume $\boldsymbol{d}>\boldsymbol{c} \epsilon^{2}$; can keep track of the exact count for small counts. How?

Ideal hash function maps to real interval $[0,1]$. Instead we map to integers in big range: 1 to $N=n^{3}$.

If \boldsymbol{h} were truly random min hash value is around $\boldsymbol{N} /(\boldsymbol{d}+1)$
t 'th minimum hash value v to be around $t N /(d+1)$.

Intuition for algorithm/analysis

Let \boldsymbol{d} be true number of distinct value in stream. Assume $\boldsymbol{d}>\boldsymbol{c} \boldsymbol{\epsilon}^{2}$; can keep track of the exact count for small counts. How?

Ideal hash function maps to real interval $[0,1]$. Instead we map to integers in big range: 1 to $N=n^{3}$.

If \boldsymbol{h} were truly random min hash value is around $N /(\boldsymbol{d}+1)$
t^{\prime} 'th minimum hash value v to be around $t N /(d+1)$.
Hence $t \boldsymbol{N} / \boldsymbol{v}$ should be around $\boldsymbol{d}+1$
t 'th min hash value more robust estimator than minimum hash value and incorporates the averaging trick to reduce variance

Analysis

Let \boldsymbol{d} be actual number of distinct values in a given stream (assume $\boldsymbol{d}>\boldsymbol{c} / \boldsymbol{\epsilon}^{2}$). Let \boldsymbol{D} be the output of the algorithm which is a random variable.

Analysis

Let \boldsymbol{d} be actual number of distinct values in a given stream (assume $\boldsymbol{d}>\boldsymbol{c} / \epsilon^{2}$). Let \boldsymbol{D} be the output of the algorithm which is a random variable.

Lemma
$\operatorname{Pr}[\boldsymbol{D}<(1-\boldsymbol{\epsilon}) \boldsymbol{d}] \leq 1 / 6$.
Lemma
$\operatorname{Pr}[\boldsymbol{D}>(1+\boldsymbol{\epsilon}) \boldsymbol{d}] \leq 1 / 6$.

Hence $\operatorname{Pr}[|\boldsymbol{D}-\boldsymbol{d}| \geq \boldsymbol{\epsilon} \boldsymbol{d}]<1 / 3$. Can do median trick to reduce error probability to δ with $O(\log 1 / \delta)$ parallel repetitions.

Analysis

For simplicity assume no collisions. Prove following as exercise.

Lemma

Since $N=\boldsymbol{n}^{3}$ the probability that there are no collisions in \boldsymbol{h} is at least $1-1 / n$.

Recall

Lemma

$\boldsymbol{X}=\boldsymbol{X}_{1}+\boldsymbol{X}_{2}+\ldots+\boldsymbol{X}_{\boldsymbol{k}}$ where $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\boldsymbol{k}}$ are pairwise independent. Then $\operatorname{Var}(\boldsymbol{X})=\sum_{i} \operatorname{Var}\left(\boldsymbol{X}_{\boldsymbol{i}}\right)$.
$\frac{1}{1-\epsilon}=1+\epsilon+\epsilon^{2} \cdots \Rightarrow 1+\epsilon \leq \frac{1}{1-\epsilon} \leq 1+\frac{3 \epsilon}{2}$ for $\epsilon<1 / 2$.
$\frac{1}{1+\epsilon}=1-\epsilon+\epsilon^{2} \ldots \Rightarrow 1-\epsilon \leq \frac{1}{1+\epsilon} \leq 1-\frac{\epsilon}{2}$.

Analysis

Let $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{\boldsymbol{d}}$ be the distinct values in the stream.
Recall $D=t N / v$ where v is the t 'th smallest hash value seen.

- Each b_{i} hashed to a uniformly random bucket from 1 to N
- Consider buckets in interval $I=\left[1 . . \frac{t N}{d}\right]$
- Expected number of distinct items hashed into I is t
- Estimate $\boldsymbol{D}<(1-\boldsymbol{\epsilon}) \boldsymbol{d}$ implies less than \boldsymbol{t} hashed in interval $\boldsymbol{I}_{1}=\left[1 . . \frac{t N}{(1-\epsilon) d}\right]$ when expected is $\frac{t}{1-\epsilon}$
- Esitmate $\boldsymbol{D}>(1+\boldsymbol{\epsilon}) \boldsymbol{d}$ implies more than \boldsymbol{t} hashed in interval $I_{2}=\left[1 \cdot \frac{t N}{(1+\epsilon) \boldsymbol{d}}\right]$ when expected is $\frac{t}{(1+\epsilon)}$.
- Use Chebyshev to analyse "bad" event probabilities via pairwise independence of hash function.

Analysis

Lemma
$\operatorname{Pr}[D<(1-\boldsymbol{\epsilon}) \boldsymbol{d}] \leq 1 / 6$.
Let $b_{1}, b_{2}, \ldots, b_{\boldsymbol{d}}$ be the distinct values in the stream.
Recall $D=t N / v$ where v is the t 'th smallest hash value seen.
$D<(1-\epsilon) d$ iff $v>\frac{t N}{(1-\epsilon) d}$. Implies less than t hash values fell in the interval $\boldsymbol{I}=\left[1 . \frac{t N}{(1-\epsilon) d}\right]$.

Analysis

Lemma
$\operatorname{Pr}[D<(1-\boldsymbol{\epsilon}) \boldsymbol{d}] \leq 1 / 6$.
Let $b_{1}, b_{2}, \ldots, b_{\boldsymbol{d}}$ be the distinct values in the stream.
Recall $D=t N / v$ where v is the t 'th smallest hash value seen.
$D<(1-\epsilon) d$ iff $v>\frac{t N}{(1-\epsilon) d}$. Implies less than t hash values fell in the interval $\boldsymbol{I}=\left[1 . . \frac{t N}{(1-\epsilon) d}\right]$. What is the probability of this event?

Let $\boldsymbol{X}_{\boldsymbol{i}}$ be indicator for $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right) \leq \frac{t N}{(1-\epsilon) \boldsymbol{d}}$.
And $\boldsymbol{X}=\sum_{i=1}^{\boldsymbol{d}} \boldsymbol{X}_{\boldsymbol{i}}$ is number that hashed to \boldsymbol{I}

$$
\operatorname{Pr}[\boldsymbol{D}<(1-\boldsymbol{\epsilon}) \boldsymbol{d}]=\operatorname{Pr}[\boldsymbol{X}<\boldsymbol{t}] .
$$

Analysis

Let $\boldsymbol{X}_{\boldsymbol{i}}$ be indicator for $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right) \leq \frac{t N}{(1-\epsilon) \boldsymbol{d}}$. And $\boldsymbol{X}=\sum_{\boldsymbol{i}=1}^{\boldsymbol{d}} \boldsymbol{X}_{\boldsymbol{i}}$

- Since $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right)$ is uniformly distributed in $\{1, \ldots, N\}$, $\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=\frac{\boldsymbol{t}}{(1-\epsilon) \boldsymbol{d}} \geq(1+\boldsymbol{\epsilon}) \boldsymbol{t} / \boldsymbol{d}$.

Analysis

Let $\boldsymbol{X}_{\boldsymbol{i}}$ be indicator for $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right) \leq \frac{t N}{(1-\epsilon) \boldsymbol{d}}$. And $\boldsymbol{X}=\sum_{\boldsymbol{i}=1}^{\boldsymbol{d}} \boldsymbol{X}_{\boldsymbol{i}}$

- Since $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right)$ is uniformly distributed in $\{1, \ldots, N\}$, $\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=\frac{\boldsymbol{t}}{(1-\epsilon) \boldsymbol{d}} \geq(1+\boldsymbol{\epsilon}) \boldsymbol{t} / \boldsymbol{d}$.
- $\mathrm{E}[\boldsymbol{X}] \geq(1+\boldsymbol{\epsilon}) \boldsymbol{t}$.

Analysis

Let $\boldsymbol{X}_{\boldsymbol{i}}$ be indicator for $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right) \leq \frac{\boldsymbol{t N}}{(1-\epsilon) \boldsymbol{d}}$. And $\boldsymbol{X}=\sum_{\boldsymbol{i}=1}^{\boldsymbol{d}} \boldsymbol{X}_{\boldsymbol{i}}$

- Since $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right)$ is uniformly distributed in $\{1, \ldots, N\}$, $\mathrm{E}\left[\boldsymbol{X}_{\boldsymbol{i}}\right]=\operatorname{Pr}\left[\boldsymbol{X}_{\boldsymbol{i}}=1\right]=\frac{\boldsymbol{t}}{(1-\epsilon) \boldsymbol{d}} \geq(1+\boldsymbol{\epsilon}) \boldsymbol{t} / \boldsymbol{d}$.
- $\mathrm{E}[\boldsymbol{X}] \geq(1+\boldsymbol{\epsilon}) \boldsymbol{t}$.

Recall $\operatorname{Pr}[\boldsymbol{D}<(1-\boldsymbol{\epsilon}) \boldsymbol{d}]=\operatorname{Pr}[\boldsymbol{X}<\boldsymbol{t}]$
Thus $\boldsymbol{D}<(1-\boldsymbol{\epsilon}) \boldsymbol{d}$ only if $\boldsymbol{X}-\mathrm{E}[\boldsymbol{X}]<\boldsymbol{\epsilon} \boldsymbol{t}$. Use Chebyshev to upper bound this probability.

Analysis

Let $\boldsymbol{X}_{\boldsymbol{i}}$ be indicator for $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right) \leq \frac{t N}{(1-\epsilon) \boldsymbol{d}}$. And $\boldsymbol{X}=\sum_{i=1}^{\boldsymbol{d}} \boldsymbol{X}_{\boldsymbol{i}}$

- Since $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right)$ is uniformly distributed in $\{1, \ldots, N\}$, $\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=\frac{t}{(1-\epsilon) \boldsymbol{d}} \geq(1+\epsilon / 2) \boldsymbol{t} / \boldsymbol{d}$
- $\mathrm{E}[\boldsymbol{X}] \geq(1+\epsilon) t$.
- $\boldsymbol{X}_{\boldsymbol{i}}$ is a binary rv hence $\operatorname{Var}\left(\boldsymbol{X}_{\boldsymbol{i}}\right) \leq \mathrm{E}\left[\boldsymbol{X}_{\boldsymbol{i}}\right] \leq(1+3 \epsilon / 2) \boldsymbol{t} / \boldsymbol{d}$.

Analysis

Let $\boldsymbol{X}_{\boldsymbol{i}}$ be indicator for $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right) \leq \frac{\boldsymbol{t N}}{(1-\epsilon) \boldsymbol{d}}$. And $\boldsymbol{X}=\sum_{\boldsymbol{i}=1}^{\boldsymbol{d}} \boldsymbol{X}_{\boldsymbol{i}}$

- Since $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right)$ is uniformly distributed in $\{1, \ldots, N\}$, $\mathrm{E}\left[\boldsymbol{X}_{\boldsymbol{i}}\right]=\operatorname{Pr}\left[\boldsymbol{X}_{\boldsymbol{i}}=1\right]=\frac{\boldsymbol{t}}{(1-\epsilon) \boldsymbol{d}} \geq(1+\boldsymbol{\epsilon} / 2) \boldsymbol{t} / \boldsymbol{d}$
- $E[X] \geq(1+\boldsymbol{\epsilon}) \boldsymbol{t}$.
- $\boldsymbol{X}_{\boldsymbol{i}}$ is a binary rv hence $\operatorname{Var}\left(\boldsymbol{X}_{\boldsymbol{i}}\right) \leq \mathrm{E}\left[\boldsymbol{X}_{\boldsymbol{i}}\right] \leq(1+3 \boldsymbol{\epsilon} / 2) \boldsymbol{t} / \boldsymbol{d}$.
- $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\boldsymbol{d}}$ are pair-wise independent random variables hence $\operatorname{Var}(\boldsymbol{X})=\sum_{\boldsymbol{i}} \operatorname{Var}\left(\boldsymbol{X}_{\boldsymbol{i}}\right) \leq(1+3 \boldsymbol{\epsilon} / 2) \boldsymbol{t}$.

Analysis

Let $\boldsymbol{X}_{\boldsymbol{i}}$ be indicator for $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right) \leq \frac{t N}{(1-\epsilon) \boldsymbol{d}}$. And $\boldsymbol{X}=\sum_{i=1}^{\boldsymbol{d}} X_{i}$

- Since $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right)$ is uniformly distributed in $\{1, \ldots, N\}$,

$$
\mathrm{E}\left[\boldsymbol{X}_{\boldsymbol{i}}\right]=\operatorname{Pr}\left[\boldsymbol{X}_{\boldsymbol{i}}=1\right]=\frac{\boldsymbol{t}}{(1-\epsilon) \boldsymbol{d}} \geq(1+\boldsymbol{\epsilon} / 2) \boldsymbol{t} / \boldsymbol{d}
$$

- $\mathrm{E}[\boldsymbol{X}] \geq(1+\boldsymbol{\epsilon}) \boldsymbol{t}$.
- $\boldsymbol{X}_{\boldsymbol{i}}$ is a binary rv hence $\operatorname{Var}\left(\boldsymbol{X}_{\boldsymbol{i}}\right) \leq \mathrm{E}\left[X_{\boldsymbol{i}}\right] \leq(1+3 \epsilon / 2) \boldsymbol{t} / \boldsymbol{d}$.
- $X_{1}, X_{2}, \ldots, X_{d}$ are pair-wise independent random variables hence $\operatorname{Var}(\boldsymbol{X})=\sum_{i} \operatorname{Var}\left(\boldsymbol{X}_{\boldsymbol{i}}\right) \leq(1+3 \epsilon / 2) \boldsymbol{t}$.
By Chebyshev:

$$
\begin{aligned}
\operatorname{Pr}[\boldsymbol{X}<\boldsymbol{t}] \leq \operatorname{Pr}[|\boldsymbol{X}-\mathrm{E}[\boldsymbol{X}]|>\epsilon \boldsymbol{t}] & \leq \operatorname{Var}(\boldsymbol{X}) / \epsilon^{2} \boldsymbol{t}^{2} \\
& \leq(1+3 \epsilon / 2) / c
\end{aligned}
$$

Analysis

Let $\boldsymbol{X}_{\boldsymbol{i}}$ be indicator for $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right) \leq \frac{t N}{(1-\epsilon) \boldsymbol{d}}$. And $\boldsymbol{X}=\sum_{i=1}^{\boldsymbol{d}} X_{i}$

- Since $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right)$ is uniformly distributed in $\{1, \ldots, N\}$,

$$
\mathrm{E}\left[\boldsymbol{X}_{\boldsymbol{i}}\right]=\operatorname{Pr}\left[\boldsymbol{X}_{\boldsymbol{i}}=1\right]=\frac{\boldsymbol{t}}{(1-\epsilon) \boldsymbol{d}} \geq(1+\boldsymbol{\epsilon} / 2) \boldsymbol{t} / \boldsymbol{d}
$$

- $\mathrm{E}[\boldsymbol{X}] \geq(1+\epsilon) t$.
- $\boldsymbol{X}_{\boldsymbol{i}}$ is a binary rv hence $\operatorname{Var}\left(\boldsymbol{X}_{\boldsymbol{i}}\right) \leq \mathrm{E}\left[X_{\boldsymbol{i}}\right] \leq(1+3 \epsilon / 2) \boldsymbol{t} / \boldsymbol{d}$.
- $X_{1}, X_{2}, \ldots, X_{d}$ are pair-wise independent random variables hence $\operatorname{Var}(\boldsymbol{X})=\sum_{i} \operatorname{Var}\left(\boldsymbol{X}_{\boldsymbol{i}}\right) \leq(1+3 \boldsymbol{\epsilon} / 2) \boldsymbol{t}$.
By Chebyshev:

$$
\begin{aligned}
\operatorname{Pr}[\boldsymbol{X}<\boldsymbol{t}] \leq \operatorname{Pr}[|\boldsymbol{X}-\mathrm{E}[\boldsymbol{X}]|>\epsilon \boldsymbol{t}] & \leq \operatorname{Var}(\boldsymbol{X}) / \epsilon^{2} \boldsymbol{t}^{2} \\
& \leq(1+3 \epsilon / 2) / c
\end{aligned}
$$

Choose \boldsymbol{c} sufficiently large to ensure ratio is at most $1 / 6$.

Analysis

Lemma
$\operatorname{Pr}[\boldsymbol{D}>(1+\boldsymbol{\epsilon}) \boldsymbol{d}] \leq 1 / 6]$.
Let $b_{1}, b_{2}, \ldots, b_{\boldsymbol{d}}$ be the distinct values in the stream.
Recall $D=t N / v$ where v is the t 'th smallest hash value seen.
$D>(1+\epsilon) \boldsymbol{d}$ iff $v<\frac{t N}{(1+\epsilon) \boldsymbol{d}}$. Implies more than \boldsymbol{t} hash values fell in the interval $\left[1 . . \frac{t N}{(1+\epsilon) d}\right]$.

Analysis

Lemma

$\operatorname{Pr}[\boldsymbol{D}>(1+\boldsymbol{\epsilon}) \boldsymbol{d}] \leq 1 / 6]$.
Let $b_{1}, b_{2}, \ldots, b_{\boldsymbol{d}}$ be the distinct values in the stream. Recall $D=t N / v$ where v is the t 'th smallest hash value seen.
$D>(1+\epsilon) \boldsymbol{d}$ iff $v<\frac{t N}{(1+\epsilon) \boldsymbol{d}}$. Implies more than \boldsymbol{t} hash values fell in the interval $\left[1 \cdot \frac{t N}{(1+\epsilon) d}\right]$. What is the probability of this event?

Let $\boldsymbol{X}_{\boldsymbol{i}}$ be indicator for $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right) \leq \frac{t N}{(1+\epsilon) \boldsymbol{d}}$.
And $X=\sum_{i=1}^{d} X_{i}$

$$
\operatorname{Pr}[\boldsymbol{D}>(1+\boldsymbol{\epsilon}) \boldsymbol{d}]=\operatorname{Pr}[\boldsymbol{Y}>\boldsymbol{t}] .
$$

Analysis

Let $\boldsymbol{X}_{\boldsymbol{i}}$ be indicator for $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right) \leq \frac{\boldsymbol{t N}}{(1+\epsilon) \boldsymbol{d}}$. And $\boldsymbol{X}=\sum_{\boldsymbol{i}=1}^{\boldsymbol{d}} \boldsymbol{X}_{\boldsymbol{i}}$

- Since $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right)$ is uniformly distributed in $\{1, \ldots, \boldsymbol{N}\}$, $\mathrm{E}\left[\boldsymbol{X}_{\boldsymbol{i}}\right]=\operatorname{Pr}\left[\boldsymbol{X}_{\boldsymbol{i}}=1\right]=\frac{\boldsymbol{t}}{(1+\epsilon) \boldsymbol{d}} \leq(1-\boldsymbol{\epsilon} / 2) \boldsymbol{t} / \boldsymbol{d}$.
- $\mathrm{E}[X] \leq(1-\epsilon / 2) t$.
- $\boldsymbol{X}_{\boldsymbol{i}}$ is a binary rv hence $\operatorname{Var}\left(\boldsymbol{X}_{\boldsymbol{i}}\right) \leq \mathrm{E}\left[\boldsymbol{X}_{\boldsymbol{i}}\right] \leq(1-\boldsymbol{\epsilon} / 2) \boldsymbol{t} / \boldsymbol{d}$.
- $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\boldsymbol{d}}$ are pair-wise independent random variables hence $\operatorname{Var}(\boldsymbol{X})=\sum_{i} \operatorname{Var}\left(X_{i}\right) \leq(1-\epsilon / 2) t$.

Analysis

Let X_{i} be indicator for $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right) \leq \frac{\boldsymbol{t N}}{(1+\epsilon) \boldsymbol{d}}$. And $X=\sum_{\boldsymbol{i}=1}^{\boldsymbol{d}} X_{\boldsymbol{i}}$

- Since $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right)$ is uniformly distributed in $\{1, \ldots, N\}$,

$$
\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=\frac{\boldsymbol{t}}{(1+\epsilon) \boldsymbol{d}} \leq(1-\epsilon / 2) \boldsymbol{t} / \boldsymbol{d}
$$

- $\mathrm{E}[X] \leq(1-\epsilon / 2) t$.
- $\boldsymbol{X}_{\boldsymbol{i}}$ is a binary rv hence $\operatorname{Var}\left(\boldsymbol{X}_{\boldsymbol{i}}\right) \leq \mathrm{E}\left[\boldsymbol{X}_{\boldsymbol{i}}\right] \leq(1-\boldsymbol{\epsilon} / 2) \boldsymbol{t} / \boldsymbol{d}$.
- $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\boldsymbol{d}}$ are pair-wise independent random variables hence $\operatorname{Var}(X)=\sum_{i} \operatorname{Var}\left(X_{i}\right) \leq(1-\epsilon / 2) t$.
By Chebyshev:

$$
\begin{aligned}
\operatorname{Pr}[\boldsymbol{X}>\boldsymbol{t}] \leq \operatorname{Pr}[|\boldsymbol{X}-E[\boldsymbol{X}]|>\boldsymbol{\epsilon} \boldsymbol{t} / 2] & \leq 4 \operatorname{Var}(\boldsymbol{X}) / \boldsymbol{\epsilon}^{2} \boldsymbol{t}^{2} \\
& \leq 4(1-\boldsymbol{\epsilon} / 2) / \boldsymbol{c}
\end{aligned}
$$

Analysis

Let X_{i} be indicator for $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right) \leq \frac{\boldsymbol{t N}}{(1+\epsilon) \boldsymbol{d}}$. And $X=\sum_{\boldsymbol{i}=1}^{\boldsymbol{d}} X_{\boldsymbol{i}}$

- Since $\boldsymbol{h}\left(\boldsymbol{b}_{\boldsymbol{i}}\right)$ is uniformly distributed in $\{1, \ldots, N\}$,

$$
\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=\frac{\boldsymbol{t}}{(1+\epsilon) \boldsymbol{d}} \leq(1-\epsilon / 2) \boldsymbol{t} / \boldsymbol{d}
$$

- $\mathrm{E}[X] \leq(1-\epsilon / 2) t$.
- $\boldsymbol{X}_{\boldsymbol{i}}$ is a binary rv hence $\operatorname{Var}\left(\boldsymbol{X}_{\boldsymbol{i}}\right) \leq \mathrm{E}\left[\boldsymbol{X}_{\boldsymbol{i}}\right] \leq(1-\boldsymbol{\epsilon} / 2) \boldsymbol{t} / \boldsymbol{d}$.
- $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\boldsymbol{d}}$ are pair-wise independent random variables hence $\operatorname{Var}(X)=\sum_{i} \operatorname{Var}\left(X_{i}\right) \leq(1-\epsilon / 2) t$.
By Chebyshev:

$$
\begin{aligned}
\operatorname{Pr}[\boldsymbol{X}>\boldsymbol{t}] \leq \operatorname{Pr}[|\boldsymbol{X}-\mathrm{E}[\boldsymbol{X}]|>\boldsymbol{\epsilon} \boldsymbol{t} / 2] & \leq 4 \operatorname{Var}(\boldsymbol{X}) / \boldsymbol{\epsilon}^{2} \boldsymbol{t}^{2} \\
& \leq 4(1-\boldsymbol{\epsilon} / 2) / \boldsymbol{c}
\end{aligned}
$$

Choose \boldsymbol{c} sufficiently large to ensure ratio is at most $1 / 6$.

Question

Where did we use the fact that $d \geq c / \epsilon^{2}$?

Question

Where did we use the fact that $d \geq c / \epsilon^{2}$?
Analysis need to be more careful in using $\frac{N}{(1-\epsilon) d}$ and $\frac{N}{(1+\epsilon) d}$ since we need to round them to nearest integer; technically have to use floor and cielings. If $\boldsymbol{d}>\boldsymbol{c} / \boldsymbol{\epsilon}^{2}$ then rounding error of 1 does not matter — adds only $\boldsymbol{\epsilon d}$ error.

We avoid floor and ceiling etc in lecture for clarity.

Summary on Distinct Elements

- with $\boldsymbol{O}\left(\frac{1}{\epsilon^{2}} \log (1 / \delta) \log \boldsymbol{n}\right)$ bits algorithm output estimate \boldsymbol{D} such that $|\boldsymbol{D}-\boldsymbol{d}| \leq \boldsymbol{\epsilon} \boldsymbol{d}$ with probability at least $(1-\boldsymbol{\delta})$
- Best known memory bound: $\boldsymbol{O}\left(\frac{\log (1 / \delta)}{\epsilon^{2}}+\log \boldsymbol{n}\right)$ bits and for any fixed δ this meets lower bound within constant factors. Both lower bound and upper bound quite technical - potential reading for projects.
- Continuous monitoring: want estimate to be correct not only at end of stream but also at all intermediate steps. Can be done with $\boldsymbol{O}\left(\frac{\log \log n+\log (1 / \delta)}{\epsilon^{2}}+\log n\right)$ bits.
- Deletions allowed! Can also be done. More on this later.

