CS 498ABD: Algorithms for Big Data

Frequency moments and Counting Distinct Elements

Lecture 05 September 6, 2022

Part I

Frequency Moments

Streaming model

- The input consists of *m* objects/items/tokens *e*₁, *e*₂, ..., *e_m* that are seen one by one by the algorithm.
- The algorithm has "limited" memory say for B tokens where B < m (often $B \ll m$) and hence cannot store all the input
- Want to compute interesting functions over input

Examples:

- Each token in a number from [*n*]
- High-speed network switch: tokens are packets with source, destination IP addresses and message contents.
- Each token is an edge in graph (graph streams)
- Each token in a point in some feature space
- Each token is a row/column of a matrix

Frequency Moment Problem(s)

- A fundamental class of problems
- Formally introduced in the seminal paper of Alon Matias, Szegedy titled "The Space Complexity of Approximating the Frequency Moments" in 1999.

Frequency Moment Problem(s)

- A fundamental class of problems
- Formally introduced in the seminal paper of Alon Matias, Szegedy titled "The Space Complexity of Approximating the Frequency Moments" in 1999.

Stream consists of e_1, e_2, \ldots, e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)

Example: n = 5 and stream is 4, 2, 4, 1, 1, 1, 4, 5

- Stream consists of e₁, e₂,..., e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream
- Consider vector $f = (f_1, f_2, \ldots, f_n)$
- For $k \ge 0$ the k'th frequency moment $F_k = \sum_i f_i^k$. We can also consider the ℓ_k norm of f which is $(F_k)^{1/k}$.

Example: n = 5 and stream is 4, 2, 4, 1, 1, 1, 4, 5

- Stream consists of e₁, e₂,..., e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream Consider vector f = (f₁, f₂, ..., f_n)
- For $k \ge 0$ the k'th frequency moment $F_k = \sum_i f_i^k$.

- Stream consists of e₁, e₂,..., e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream Consider vector f = (f₁, f₂, ..., f_n)
- For $k \ge 0$ the k'th frequency moment $F_k = \sum_i f_i^k$. Important cases/regimes:
 - k = 0: F_0 is simply the number of *distinct elements* in stream

- Stream consists of e₁, e₂,..., e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream Consider vector f = (f₁, f₂, ..., f_n)
- For $k \ge 0$ the k'th frequency moment $F_k = \sum_i f_i^k$. Important cases/regimes:
 - k = 0: F_0 is simply the number of *distinct elements* in stream
 - k = 1: F_1 is the length of stream which is easy

- Stream consists of e₁, e₂,..., e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream Consider vector f = (f₁, f₂, ..., f_n)
- For $k \ge 0$ the k'th frequency moment $F_k = \sum_i f_i^k$. Important cases/regimes:
 - k = 0: F_0 is simply the number of *distinct elements* in stream
 - k = 1: F_1 is the length of stream which is easy
 - k = 2: F_2 is fundamental in many ways as we will see

- Stream consists of e₁, e₂,..., e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream Consider vector f = (f₁, f₂, ..., f_n)
- For $k \ge 0$ the k'th frequency moment $F_k = \sum_i f_i^k$. Important cases/regimes:
 - k = 0: F_0 is simply the number of *distinct elements* in stream
 - k = 1: F_1 is the length of stream which is easy
 - k = 2: F_2 is fundamental in many ways as we will see
 - $k = \infty$: F_{∞} is the maximum frequency (heavy hitters prob)

- Stream consists of e₁, e₂,..., e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream Consider vector f = (f₁, f₂, ..., f_n)
- For $k \ge 0$ the k'th frequency moment $F_k = \sum_i f_i^k$. Important cases/regimes:
 - k = 0: F_0 is simply the number of *distinct elements* in stream
 - k = 1: F_1 is the length of stream which is easy
 - k = 2: F_2 is fundamental in many ways as we will see
 - $k = \infty$: F_{∞} is the maximum frequency (heavy hitters prob)
 - 0 < k < 1 and 1 < k < 2

- Stream consists of e₁, e₂,..., e_m where each e_i is an integer in [n]. We know n in advance (or an upper bound)
- Given a stream let f_i denote the frequency of i or number of times i is seen in the stream Consider vector f = (f₁, f₂, ..., f_n)
- For $k \ge 0$ the k'th frequency moment $F_k = \sum_i f_i^k$. Important cases/regimes:
 - k = 0: F_0 is simply the number of *distinct elements* in stream
 - k = 1: F_1 is the length of stream which is easy
 - k = 2: F_2 is fundamental in many ways as we will see
 - $k = \infty$: F_{∞} is the maximum frequency (heavy hitters prob)
 - 0 < k < 1 and 1 < k < 2
 - 2 < k < ∞

Estimation

Given a stream and k can we estimate F_k exactly/approximately with small memory?

Estimation

Given a stream and k can we estimate F_k exactly/approximately with small memory?

Sampling

Given a stream and k can we sample an item i in proportion to f_i^k ?

Estimation

Given a stream and k can we estimate F_k exactly/approximately with small memory?

Sampling

Given a stream and k can we sample an item i in proportion to f_i^k ?

Sketching

Given a stream and k can we create a *sketch/summary* of small size?

Estimation

Given a stream and k can we estimate F_k exactly/approximately with small memory?

Sampling

Given a stream and k can we sample an item i in proportion to f_i^k ?

Sketching

Given a stream and k can we create a *sketch/summary* of small size?

Questions easy if we have memory $\Omega(n)$: store f explicitly. Interesting when memory is $\ll n$. Ideally want to do it with $\log^c n$ memory for some fixed $c \ge 1$ (polylog(n)). Note that $\log n$ is roughly the memory required to store one token/number.

Need for approximation and randomization

For most of the interesting problems $\Omega(n)$ lower bound on memory if one wants exact answer or wants deterministic algorithms.

Need for approximation and randomization

For most of the interesting problems $\Omega(n)$ lower bound on memory if one wants exact answer or wants deterministic algorithms. Hence

- ullet focus on $(1\pm\epsilon)\mbox{-approximation}$ or constant factor approximation
- and randomized algorithms

Need for approximation and randomization

For most of the interesting problems $\Omega(n)$ lower bound on memory if one wants exact answer or wants deterministic algorithms. Hence

- ullet focus on $(1\pm\epsilon)\mbox{-approximation}$ or constant factor approximation
- and randomized algorithms

Relative approximation

Let $g(\sigma)$ be a real-valued *non-negative* function over streams σ .

Definition

Let $\mathcal{A}(\sigma)$ be the real-valued output of a randomized streaming algorithm on stream σ . We say that \mathcal{A} provides an (α, β) relative approximation for a real-valued function g if for all σ :

$$\Pr\left[\left|\frac{\mathcal{A}(\sigma)}{g(\sigma)}-1\right|>lpha
ight]\leqeta.$$

Our ideal goal is to obtain a (ϵ, δ) -approximation for any given $\epsilon, \delta \in (0, 1)$.

Additive approximation

Let $g(\sigma)$ be a real-valued function over streams σ . If $g(\sigma)$ can be negative, focus on additive approximation.

Definition

Let $\mathcal{A}(\sigma)$ be the real-valued output of a randomized streaming algorithm on stream σ . We say that \mathcal{A} provides an (α, β) additive approximation for a real-valued function g if for all σ :

$$\Pr\left[\left|\mathcal{A}(\sigma)-g(\sigma)
ight|>lpha
ight]\leqeta.$$

When working with additive approximations some normalization/scaling is typically necessary. Our ideal goal is to obtain a (ϵ, δ) -approximation for any given $\epsilon, \delta \in (0, 1)$.

Part II

Estimating Distinct Elements

Distinct Elements

Given a stream σ how many distinct elements did we see?

Example: in a network switch, during some time window how many distinct destination (or source) IP addresses were seen in the packets?

Distinct Elements

Given a stream σ how many distinct elements did we see?

Example: in a network switch, during some time window how many distinct destination (or source) IP addresses were seen in the packets?

Offline solution?

Distinct Elements

Given a stream σ how many distinct elements did we see?

Example: in a network switch, during some time window how many distinct destination (or source) IP addresses were seen in the packets?

Offline solution? via Dictionary data structure

Offline Solution

```
\begin{array}{l} \textbf{DistinctElements} \\ \textbf{Initialize dictionary } \mathcal{D} \text{ to be empty} \\ \textbf{\textit{k}} \leftarrow 0 \\ \textbf{While (stream is not empty) do} \\ \textbf{Let $e$ be next item in stream} \\ \textbf{If ($e \not\in \mathcal{D}$) then} \\ \textbf{Insert $e$ into $\mathcal{D}$} \\ \textbf{\textit{k}} \leftarrow \textbf{\textit{k}} + 1 \\ \textbf{EndWhile} \\ \textbf{Output $k$} \end{array}
```

Offline Solution

```
\begin{array}{l} \textbf{DistinctElements} \\ & \text{Initialize dictionary } \mathcal{D} \text{ to be empty} \\ \textit{\textit{k}} \leftarrow 0 \\ & \text{While (stream is not empty) do} \\ & \text{Let $\textit{e}$ be next item in stream} \\ & \text{If ($e \not\in \mathcal{D}$) then} \\ & \text{Insert $\textit{e}$ into $\mathcal{D}$} \\ & \textit{\textit{k}} \leftarrow \textit{\textit{k}} + 1 \\ & \text{EndWhile} \\ & \text{Output $\textit{k}$} \end{array}
```

Which dictionary data structure?

Offline Solution

```
\begin{array}{l} \textbf{DistinctElements} \\ & \text{Initialize dictionary } \mathcal{D} \text{ to be empty} \\ \textbf{\textit{k}} \leftarrow 0 \\ & \textbf{While (stream is not empty) do} \\ & \text{Let $\textbf{e}$ be next item in stream} \\ & \text{If ($\textbf{e} \not\in \mathcal{D}$) then} \\ & \text{Insert $\textbf{e}$ into $\mathcal{D}$} \\ & \textbf{\textit{k}} \leftarrow \textbf{\textit{k}} + 1 \\ & \text{EndWhile} \\ & \text{Output $\textbf{k}$} \end{array}
```

Which dictionary data structure?

- Binary search trees: space O(k) and total time $O(m \log k)$
- Hashing: space O(k) and expected time O(m).

• Use hash function $h: [n] \rightarrow [N]$ for some N polynomial in n.

 Store only the minimum hash value seen. That is min_{ei} h(ei). Need only O(log n) bits since numbers are in range [N].

- Use hash function $h: [n] \rightarrow [N]$ for some N polynomial in n.
- Store only the minimum hash value seen. That is min_{ei} h(ei).
 Need only O(log n) bits since numbers are in range [N].

Question: why is this good?

• Assume *idealized* hash function: $h: [n] \rightarrow [0, 1]$ that is fully random over the real interval

- Use hash function $h: [n] \rightarrow [N]$ for some N polynomial in n.
- Store only the minimum hash value seen. That is min_{ei} h(ei).
 Need only O(log n) bits since numbers are in range [N].

Question: why is this good?

- Assume *idealized* hash function: $h: [n] \rightarrow [0, 1]$ that is fully random over the real interval
- Suppose there are k distinct elements in the stream

- Use hash function $h: [n] \rightarrow [N]$ for some N polynomial in n.
- Store only the minimum hash value seen. That is min_{ei} h(ei).
 Need only O(log n) bits since numbers are in range [N].

Question: why is this good?

- Assume *idealized* hash function: $h : [n] \rightarrow [0, 1]$ that is fully random over the real interval
- Suppose there are k distinct elements in the stream
- What is the expected value of the minimum of hash values?

Lemma

Suppose $X_1, X_2, ..., X_k$ are random variables that are independent and uniformaly distributed in [0, 1] and let $Y = \min_i X_i$. Then $E[Y] = \frac{1}{(k+1)}$.

Lemma

Suppose $X_1, X_2, ..., X_k$ are random variables that are independent and uniformaly distributed in [0, 1] and let $Y = \min_i X_i$. Then $E[Y] = \frac{1}{(k+1)}$.

```
\begin{array}{l} \textbf{DistinctElements} \\ \text{Assume ideal hash function } \boldsymbol{h}:[\boldsymbol{n}] \rightarrow [0,1] \\ \boldsymbol{y} \leftarrow 1 \\ \text{While (stream is not empty) do} \\ \text{Let } \boldsymbol{e} \text{ be next item in stream} \\ \boldsymbol{y} \leftarrow \min(\boldsymbol{y}, \boldsymbol{h}(\boldsymbol{e})) \\ \text{EndWhile} \\ \text{Output } \frac{1}{\boldsymbol{y}} - 1 \end{array}
```

Lemma

Suppose X_1, X_2, \ldots, X_k are random variables that are independent and uniformaly distributed in [0, 1] and let $Y = \min_i X_i$. Then $E[Y] = \frac{1}{(k+1)}$. And $Var(Y) = \frac{k}{(k+1)^2(k+2)} \leq \frac{1}{(k+1)^2}$.

 $\Pr[\mathbf{Y} \leq t] = 1 - (1-t)^k$ for $t \in [0,1]$. Hence probability density function of \mathbf{Y} is $k(1-t)^{k-1}$. Thus, $\mathbb{E}[\mathbf{Y}] = \int_0^1 tk(1-t)^{k-1}dt$ and $\mathbb{E}[\mathbf{Y}^2] = \int_0^2 t^2 k(1-t)^{k-1}dt$. Change variable: z = (1-t) to integrate easily.

Apply standard methodology to go from exact statistical estimator to good bounds:

- average h parallel and independent estimates to reduce variance
- apply Chebyshev to show that the average estimator is a $(1+\epsilon)\text{-approximation}$ with constant probability
- use preceding and median trick with $O(\log 1/\delta)$ parallel copies to obtain a $(1 + \epsilon)$ -approximation with probability (1δ)

- Run basic estimator independently and in parallel h times to obtain X₁, X₂, ..., X_h
- 2 Let $Z = \frac{1}{h}X_i$
- **Output** $\frac{1}{z} 1$

- Run basic estimator independently and in parallel h times to obtain X₁, X₂, ..., X_h
- 2 Let $Z = \frac{1}{h}X_i$
- **Output** $\frac{1}{z} 1$
- Claim: $E[Z] = \frac{1}{(k+1)}$ and $Var(Z) \leq \frac{1}{h} \frac{1}{(k+1)^2}$.

- Run basic estimator independently and in parallel h times to obtain X₁, X₂,..., X_h
- 2 Let $Z = \frac{1}{h}X_i$
- **3** Output $\frac{1}{z} 1$
- Claim: $E[Z] = \frac{1}{(k+1)}$ and $Var(Z) \leq \frac{1}{h} \frac{1}{(k+1)^2}$.

Choosing $h = 1/(\eta \epsilon^2)$ and using Chebyshev: $\Pr\left[|Z - \frac{1}{k+1}| \ge \frac{\epsilon}{k+1}\right] \le \eta.$

- Run basic estimator independently and in parallel *h* times to obtain X₁, X₂, ..., X_h
- 2 Let $Z = \frac{1}{h}X_i$
- **3** Output $\frac{1}{z} 1$

Claim:
$$\mathsf{E}[Z] = rac{1}{(k+1)}$$
 and $Var(Z) \leq rac{1}{h} rac{1}{(k+1)^2}$.

Choosing
$$h = 1/(\eta \epsilon^2)$$
 and using Chebyshev:
 $\Pr\left[|Z - \frac{1}{k+1}| \ge \frac{\epsilon}{k+1}\right] \le \eta.$

Hence $\Pr\left[\left|\left(\frac{1}{Z}-1\right)-k\right|\right] \geq O(\epsilon)k \leq \eta$.

- Run basic estimator independently and in parallel h times to obtain X₁, X₂, ..., X_h
- 2 Let $Z = \frac{1}{h}X_i$
- **3** Output $\frac{1}{z} 1$

Claim:
$$\mathsf{E}[Z] = rac{1}{(k+1)}$$
 and $Var(Z) \leq rac{1}{h} rac{1}{(k+1)^2}$.

Choosing $h = 1/(\eta \epsilon^2)$ and using Chebyshev: $\Pr\left[|Z - \frac{1}{k+1}| \ge \frac{\epsilon}{k+1}\right] \le \eta.$

Hence $\Pr\left[\left|\left(\frac{1}{Z}-1\right)-k\right|\right] \geq O(\epsilon)k \leq \eta$.

Repeat $O(\log 1/\delta)$ times and output median. Error probability $< \delta$.

Algorithm via regular hashing

Do not have idealized hash function.

- Use $h: [n] \rightarrow [N]$ for appropriate choice of N
- Use pairwise independent hash family \mathcal{H} so that random $h \in \mathcal{H}$ can be stored in small space and computation can be done in small memory and fast
- Several variants of idea with different trade offs between
 - memory
 - time to process each new element of the stream
 - approximation quality and probability of success