CS 498ABD: Algorithms for Big Data

Frequency moments and Counting Distinct Elements

Lecture 05
September 6, 2022

Part I

Frequency Moments

Streaming model

- The input consists of \boldsymbol{m} objects/items/tokens $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{\boldsymbol{m}}$ that are seen one by one by the algorithm.
- The algorithm has "limited" memory say for B tokens where $\boldsymbol{B}<\boldsymbol{m}$ (often $\boldsymbol{B} \ll \boldsymbol{m}$) and hence cannot store all the input
- Want to compute interesting functions over input

Examples:

- Each token in a number from [n]
- High-speed network switch: tokens are packets with source, destination IP addresses and message contents.
- Each token is an edge in graph (graph streams)
- Each token in a point in some feature space
- Each token is a row/column of a matrix

Frequency Moment Problem(s)

- A fundamental class of problems
- Formally introduced in the seminal paper of Alon Matias, Szegedy titled "The Space Complexity of Approximating the Frequency Moments" in 1999.

Frequency Moment Problem(s)

- A fundamental class of problems
- Formally introduced in the seminal paper of Alon Matias, Szegedy titled "The Space Complexity of Approximating the Frequency Moments" in 1999.

Stream consists of $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{\boldsymbol{m}}$ where each $\boldsymbol{e}_{\boldsymbol{i}}$ is an integer in [$\left.\boldsymbol{n}\right]$. We know \boldsymbol{n} in advance (or an upper bound)

Example: $\boldsymbol{n}=5$ and stream is $4,2,4,1,1,1,4,5$

Frequency Moments

- Stream consists of $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{\boldsymbol{m}}$ where each $\boldsymbol{e}_{\boldsymbol{i}}$ is an integer in [\boldsymbol{n}]. We know \boldsymbol{n} in advance (or an upper bound)
- Given a stream let f_{i} denote the frequency of \boldsymbol{i} or number of times i is seen in the stream
- Consider vector $\mathrm{f}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$
- For $\boldsymbol{k} \geq 0$ the \boldsymbol{k} 'th frequency moment $F_{k}=\sum_{i} f_{i}{ }^{\boldsymbol{k}}$. We can also consider the ℓ_{k} norm of f which is $\left(F_{k}\right)^{1 / k}$.
Example: $\boldsymbol{n}=5$ and stream is $4,2,4,1,1,1,4,5$

Frequency Moments

- Stream consists of $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{\boldsymbol{m}}$ where each $\boldsymbol{e}_{\boldsymbol{i}}$ is an integer in [$\boldsymbol{n}]$. We know \boldsymbol{n} in advance (or an upper bound)
- Given a stream let $\boldsymbol{f}_{\boldsymbol{i}}$ denote the frequency of \boldsymbol{i} or number of times \boldsymbol{i} is seen in the stream Consider vector $\mathrm{f}=\left(\boldsymbol{f}_{1}, f_{2}, \ldots, f_{\boldsymbol{n}}\right)$
- For $\boldsymbol{k} \geq 0$ the \boldsymbol{k} 'th frequency moment $F_{k}=\sum_{i} f_{i}$.

Frequency Moments

- Stream consists of $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{\boldsymbol{m}}$ where each $\boldsymbol{e}_{\boldsymbol{i}}$ is an integer in [\boldsymbol{n}]. We know \boldsymbol{n} in advance (or an upper bound)
- Given a stream let $\boldsymbol{f}_{\boldsymbol{i}}$ denote the frequency of \boldsymbol{i} or number of times \boldsymbol{i} is seen in the stream Consider vector $\mathrm{f}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$
- For $k \geq 0$ the k 'th frequency moment $F_{k}=\sum_{i} f_{i}$. Important cases/regimes:
- $\boldsymbol{k}=0: F_{0}$ is simply the number of distinct elements in stream

Frequency Moments

- Stream consists of $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{\boldsymbol{m}}$ where each $\boldsymbol{e}_{\boldsymbol{i}}$ is an integer in [\boldsymbol{n}]. We know \boldsymbol{n} in advance (or an upper bound)
- Given a stream let $\boldsymbol{f}_{\boldsymbol{i}}$ denote the frequency of \boldsymbol{i} or number of times \boldsymbol{i} is seen in the stream Consider vector $\mathrm{f}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$
- For $k \geq 0$ the k 'th frequency moment $F_{k}=\sum_{i} f_{i}$. Important cases/regimes:
- $\boldsymbol{k}=0: \boldsymbol{F}_{0}$ is simply the number of distinct elements in stream
- $\boldsymbol{k}=1: F_{1}$ is the length of stream which is easy

Frequency Moments

- Stream consists of $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{\boldsymbol{m}}$ where each $\boldsymbol{e}_{\boldsymbol{i}}$ is an integer in [$\boldsymbol{n}]$. We know \boldsymbol{n} in advance (or an upper bound)
- Given a stream let $\boldsymbol{f}_{\boldsymbol{i}}$ denote the frequency of \boldsymbol{i} or number of times \boldsymbol{i} is seen in the stream Consider vector $\mathrm{f}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$
- For $k \geq 0$ the k 'th frequency moment $F_{k}=\sum_{i} f_{i}{ }^{k}$. Important cases/regimes:
- $\boldsymbol{k}=0: F_{0}$ is simply the number of distinct elements in stream
- $\boldsymbol{k}=1: F_{1}$ is the length of stream which is easy
- $\boldsymbol{k}=2: \boldsymbol{F}_{2}$ is fundamental in many ways as we will see

Frequency Moments

- Stream consists of $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{\boldsymbol{m}}$ where each $\boldsymbol{e}_{\boldsymbol{i}}$ is an integer in [\boldsymbol{n}]. We know \boldsymbol{n} in advance (or an upper bound)
- Given a stream let f_{i} denote the frequency of \boldsymbol{i} or number of times i is seen in the stream Consider vector $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$
- For $k \geq 0$ the k 'th frequency moment $F_{k}=\sum_{i} f_{i}{ }^{k}$. Important cases/regimes:
- $\boldsymbol{k}=0: F_{0}$ is simply the number of distinct elements in stream
- $\boldsymbol{k}=1: \boldsymbol{F}_{1}$ is the length of stream which is easy
- $\boldsymbol{k}=2: \boldsymbol{F}_{2}$ is fundamental in many ways as we will see
- $k=\infty$: F_{∞} is the maximum frequency (heavy hitters prob)

Frequency Moments

- Stream consists of $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{\boldsymbol{m}}$ where each $\boldsymbol{e}_{\boldsymbol{i}}$ is an integer in [\boldsymbol{n}]. We know \boldsymbol{n} in advance (or an upper bound)
- Given a stream let $\boldsymbol{f}_{\boldsymbol{i}}$ denote the frequency of \boldsymbol{i} or number of times i is seen in the stream Consider vector $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$
- For $k \geq 0$ the k 'th frequency moment $F_{k}=\sum_{i} f_{i}{ }^{k}$. Important cases/regimes:
- $\boldsymbol{k}=0: F_{0}$ is simply the number of distinct elements in stream
- $\boldsymbol{k}=1: \boldsymbol{F}_{1}$ is the length of stream which is easy
- $\boldsymbol{k}=2: \boldsymbol{F}_{2}$ is fundamental in many ways as we will see
- $k=\infty$: F_{∞} is the maximum frequency (heavy hitters prob)
- $0<k<1$ and $1<k<2$

Frequency Moments

- Stream consists of $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{\boldsymbol{m}}$ where each $\boldsymbol{e}_{\boldsymbol{i}}$ is an integer in [\boldsymbol{n}]. We know \boldsymbol{n} in advance (or an upper bound)
- Given a stream let $\boldsymbol{f}_{\boldsymbol{i}}$ denote the frequency of \boldsymbol{i} or number of times i is seen in the stream Consider vector $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$
- For $k \geq 0$ the k 'th frequency moment $F_{k}=\sum_{i} f_{i}{ }^{k}$. Important cases/regimes:
- $\boldsymbol{k}=0: F_{0}$ is simply the number of distinct elements in stream
- $\boldsymbol{k}=1: \boldsymbol{F}_{1}$ is the length of stream which is easy
- $\boldsymbol{k}=2: \boldsymbol{F}_{2}$ is fundamental in many ways as we will see
- $k=\infty$: F_{∞} is the maximum frequency (heavy hitters prob)
- $0<k<1$ and $1<k<2$
- $2<k<\infty$

Frequency Moments: Questions

Estimation

Given a stream and \boldsymbol{k} can we estimate $\boldsymbol{F}_{\boldsymbol{k}}$ exactly/approximately with small memory?

Frequency Moments: Questions

Estimation

Given a stream and \boldsymbol{k} can we estimate F_{k} exactly/approximately with small memory?

Sampling

Given a stream and \boldsymbol{k} can we sample an item \boldsymbol{i} in proportion to $\boldsymbol{f}_{i}^{\boldsymbol{k}}$?

Frequency Moments: Questions

Estimation

Given a stream and k can we estimate F_{k} exactly/approximately with small memory?

Sampling

Given a stream and \boldsymbol{k} can we sample an item \boldsymbol{i} in proportion to $\boldsymbol{f}_{\boldsymbol{i}}^{\boldsymbol{k}}$?

Sketching

Given a stream and k can we create a sketch/summary of small size?

Frequency Moments: Questions

Estimation

Given a stream and \boldsymbol{k} can we estimate $\boldsymbol{F}_{\boldsymbol{k}}$ exactly/approximately with small memory?

Sampling

Given a stream and \boldsymbol{k} can we sample an item \boldsymbol{i} in proportion to $\boldsymbol{f}_{\boldsymbol{i}}^{\boldsymbol{k}}$?

Sketching

Given a stream and \boldsymbol{k} can we create a sketch/summary of small size?
Questions easy if we have memory $\Omega(\boldsymbol{n})$: store f explicitly. Interesting when memory is $\ll \boldsymbol{n}$. Ideally want to do it with $\log ^{c} \boldsymbol{n}$ memory for some fixed $c \geq 1(\operatorname{polylog}(\boldsymbol{n}))$. Note that $\log \boldsymbol{n}$ is roughly the memory required to store one token/number.

Need for approximation and randomization

For most of the interesting problems $\Omega(\boldsymbol{n})$ lower bound on memory if one wants exact answer or wants deterministic algorithms.

Need for approximation and randomization

For most of the interesting problems $\Omega(\boldsymbol{n})$ lower bound on memory if one wants exact answer or wants deterministic algorithms. Hence

- focus on $(1 \pm \epsilon)$-approximation or constant factor approximation
- and randomized algorithms

Need for approximation and randomization

For most of the interesting problems $\Omega(\boldsymbol{n})$ lower bound on memory if one wants exact answer or wants deterministic algorithms. Hence

- focus on $(1 \pm \epsilon)$-approximation or constant factor approximation
- and randomized algorithms

Relative approximation

Let $g(\sigma)$ be a real-valued non-negative function over streams σ.

Definition

Let $\mathcal{A}(\sigma)$ be the real-valued output of a randomized streaming algorithm on stream $\boldsymbol{\sigma}$. We say that \mathcal{A} provides an $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ relative approximation for a real-valued function g if for all $\boldsymbol{\sigma}$:

$$
\operatorname{Pr}\left[\left|\frac{\mathcal{A}(\sigma)}{\boldsymbol{g}(\sigma)}-1\right|>\boldsymbol{\alpha}\right] \leq \boldsymbol{\beta}
$$

Our ideal goal is to obtain a $(\boldsymbol{\epsilon}, \boldsymbol{\delta})$-approximation for any given $\epsilon, \delta \in(0,1)$.

Additive approximation

Let $g(\sigma)$ be a real-valued function over streams σ. If $g(\sigma)$ can be negative, focus on additive approximation.

Definition

Let $\mathcal{A}(\sigma)$ be the real-valued output of a randomized streaming algorithm on stream $\boldsymbol{\sigma}$. We say that \mathcal{A} provides an $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ additive approximation for a real-valued function \boldsymbol{g} if for all $\boldsymbol{\sigma}$:

$$
\operatorname{Pr}[|\mathcal{A}(\sigma)-g(\sigma)|>\alpha] \leq \beta
$$

When working with additive approximations some normalization/scaling is typically necessary. Our ideal goal is to obtain a (ϵ, δ)-approximation for any given $\epsilon, \delta \in(0,1)$.

Part II

Estimating Distinct Elements

Distinct Elements

Given a stream σ how many distinct elements did we see?
Example: in a network switch, during some time window how many distinct destination (or source) IP addresses were seen in the packets?

Distinct Elements

Given a stream σ how many distinct elements did we see?
Example: in a network switch, during some time window how many distinct destination (or source) IP addresses were seen in the packets?

Offline solution?

Distinct Elements

Given a stream σ how many distinct elements did we see?
Example: in a network switch, during some time window how many distinct destination (or source) IP addresses were seen in the packets?

Offline solution? via Dictionary data structure

Offline Solution

DistinctElements

Initialize dictionary \mathcal{D} to be empty $k \leftarrow 0$
While (stream is not empty) do Let \boldsymbol{e} be next item in stream If $(\boldsymbol{e} \notin \mathcal{D})$ then

Insert \boldsymbol{e} into \mathcal{D} $\boldsymbol{k} \leftarrow \boldsymbol{k}+1$
EndWhile
Output k

Offline Solution

DistinctElements

$$
\begin{aligned}
& \text { Initialize dictionary } \mathcal{D} \text { to be empty } \\
& \boldsymbol{k} \leftarrow 0 \\
& \text { While (stream is not empty) do } \\
& \text { Let } \boldsymbol{e} \text { be next item in stream } \\
& \text { If (} \boldsymbol{e} \notin \mathcal{D} \text {) then } \\
& \text { Insert } \boldsymbol{e} \text { into } \mathcal{D} \\
& \boldsymbol{k} \leftarrow \boldsymbol{k}+1
\end{aligned}
$$

EndWhile
Output k
Which dictionary data structure?

Offline Solution

DistinctElements

$$
\begin{aligned}
& \text { Initialize dictionary } \mathcal{D} \text { to be empty } \\
& \boldsymbol{k} \leftarrow 0 \\
& \text { While (stream is not empty) do } \\
& \text { Let } \boldsymbol{e} \text { be next item in stream } \\
& \text { If }(\boldsymbol{e} \notin \mathcal{D}) \text { then } \\
& \quad \text { Insert } \boldsymbol{e} \text { into } \mathcal{D} \\
& \quad \boldsymbol{k} \leftarrow \boldsymbol{k}+1 \\
& \text { EndWhile } \\
& \text { Output } \boldsymbol{k}
\end{aligned}
$$

Which dictionary data structure?

- Binary search trees: space $\boldsymbol{O}(\boldsymbol{k})$ and total time $\boldsymbol{O}(\boldsymbol{m} \log \boldsymbol{k})$
- Hashing: space $O(k)$ and expected time $\boldsymbol{O}(\boldsymbol{m})$.

Hashing based idea

- Use hash function $\boldsymbol{h}:[\boldsymbol{n}] \rightarrow[\boldsymbol{N}]$ for some \boldsymbol{N} polynomial in \boldsymbol{n}.
- Store only the minimum hash value seen. That is $\min _{e_{i}} h\left(e_{i}\right)$. Need only $\boldsymbol{O}(\log n)$ bits since numbers are in range $[N]$.

Hashing based idea

- Use hash function $\boldsymbol{h}:[\boldsymbol{n}] \rightarrow[\boldsymbol{N}]$ for some \boldsymbol{N} polynomial in \boldsymbol{n}.
- Store only the minimum hash value seen. That is $\min _{e_{i}} h\left(e_{i}\right)$. Need only $\boldsymbol{O}(\log n)$ bits since numbers are in range $[N]$.

Question: why is this good?

- Assume idealized hash function: $\boldsymbol{h}:[\boldsymbol{n}] \rightarrow[0,1]$ that is fully random over the real interval

Hashing based idea

- Use hash function $\boldsymbol{h}:[\boldsymbol{n}] \rightarrow[\boldsymbol{N}]$ for some \boldsymbol{N} polynomial in \boldsymbol{n}.
- Store only the minimum hash value seen. That is $\min _{e_{i}} h\left(e_{i}\right)$. Need only $\boldsymbol{O}(\log n)$ bits since numbers are in range $[N]$.

Question: why is this good?

- Assume idealized hash function: $\boldsymbol{h}:[\boldsymbol{n}] \rightarrow[0,1]$ that is fully random over the real interval
- Suppose there are \boldsymbol{k} distinct elements in the stream

Hashing based idea

- Use hash function $\boldsymbol{h}:[\boldsymbol{n}] \rightarrow[\boldsymbol{N}]$ for some \boldsymbol{N} polynomial in \boldsymbol{n}.
- Store only the minimum hash value seen. That is $\min _{e_{i}} h\left(e_{i}\right)$. Need only $\boldsymbol{O}(\log n)$ bits since numbers are in range $[N]$.

Question: why is this good?

- Assume idealized hash function: $\boldsymbol{h}:[\boldsymbol{n}] \rightarrow[0,1]$ that is fully random over the real interval
- Suppose there are k distinct elements in the stream
- What is the expected value of the minimum of hash values?

Analyzing idealized hash function

Lemma
 Suppose $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\boldsymbol{k}}$ are random variables that are independent and uniformaly distributed in $[0,1]$ and let $\boldsymbol{Y}=\min _{\boldsymbol{i}} \boldsymbol{X}_{\boldsymbol{i}}$. Then $\mathrm{E}[\boldsymbol{Y}]=\frac{1}{(\boldsymbol{k}+1)}$.

Analyzing idealized hash function

Lemma

Suppose $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\boldsymbol{k}}$ are random variables that are independent and uniformaly distributed in $[0,1]$ and let $\boldsymbol{Y}=\min _{\boldsymbol{i}} \boldsymbol{X}_{\boldsymbol{i}}$. Then $\mathrm{E}[\boldsymbol{Y}]=\frac{1}{(\boldsymbol{k}+1)}$.

DistinctElements

```
Assume ideal hash function \(\boldsymbol{h}:[\boldsymbol{n}] \rightarrow[0,1]\)
\(\boldsymbol{y} \leftarrow 1\)
    While (stream is not empty) do
        Let \(\boldsymbol{e}\) be next item in stream
        \(\boldsymbol{y} \leftarrow \min (\boldsymbol{y}, \boldsymbol{h}(\boldsymbol{e}))\)
```

 EndWhile
 Output \(\frac{1}{y}-1\)

Analyzing idealized hash function

Lemma

Suppose $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\boldsymbol{k}}$ are random variables that are independent and uniformaly distributed in $[0,1]$ and let $\boldsymbol{Y}=\min _{\boldsymbol{i}} \boldsymbol{X}_{\boldsymbol{i}}$. Then $\mathrm{E}[\boldsymbol{Y}]=\frac{1}{(k+1)}$. And $\operatorname{Var}(\boldsymbol{Y})=\frac{k}{(k+1)^{2}(k+2)} \leq \frac{1}{(k+1)^{2}}$.
$\operatorname{Pr}[\boldsymbol{Y} \leq t]=1-(1-t)^{\boldsymbol{k}}$ for $t \in[0,1]$. Hence probability density function of Y is $k(1-t)^{k-1}$. Thus, $E[Y]=\int_{0}^{1} t k(1-t)^{k-1} d t$ and $E\left[\boldsymbol{Y}^{2}\right]=\int_{0}^{2} \boldsymbol{t}^{2} \boldsymbol{k}(1-\boldsymbol{t})^{\boldsymbol{k}-1} \boldsymbol{d} \boldsymbol{t}$. Change variable: $\boldsymbol{z}=(1-\boldsymbol{t})$ to integrate easily.

Analyzing idealized hash function

Apply standard methodology to go from exact statistical estimator to good bounds:

- average \boldsymbol{h} parallel and independent estimates to reduce variance
- apply Chebyshev to show that the average estimator is a $(1+\boldsymbol{\epsilon})$-approximation with constant probability
- use preceding and median trick with $O(\log 1 / \delta)$ parallel copies to obtain a $(1+\boldsymbol{\epsilon})$-approximation with probability $(1-\boldsymbol{\delta})$

Averaging and reducing variance

(1) Run basic estimator independently and in parallel \boldsymbol{h} times to obtain $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\boldsymbol{h}}$
(2) Let $Z=\frac{1}{h} X_{i}$
(3) Output $\frac{1}{Z}-1$

Averaging and reducing variance

(1) Run basic estimator independently and in parallel \boldsymbol{h} times to obtain $X_{1}, X_{2}, \ldots, X_{\boldsymbol{h}}$
(2) Let $Z=\frac{1}{h} X_{i}$
(3) Output $\frac{1}{Z}-1$

Claim: $\mathrm{E}[Z]=\frac{1}{(\boldsymbol{k}+1)}$ and $\operatorname{Var}(Z) \leq \frac{1}{\boldsymbol{h}} \frac{1}{(\boldsymbol{k}+1)^{2}}$.

Averaging and reducing variance

(1) Run basic estimator independently and in parallel \boldsymbol{h} times to obtain $X_{1}, X_{2}, \ldots, X_{\boldsymbol{h}}$
(2) Let $Z=\frac{1}{h} X_{i}$
(3) Output $\frac{1}{Z}-1$

Claim: $\mathrm{E}[Z]=\frac{1}{(\boldsymbol{k}+1)}$ and $\operatorname{Var}(Z) \leq \frac{1}{\boldsymbol{h}} \frac{1}{(\boldsymbol{k}+1)^{2}}$.
Choosing $\boldsymbol{h}=1 /\left(\boldsymbol{\eta} \boldsymbol{\epsilon}^{2}\right)$ and using Chebyshev:
$\operatorname{Pr}\left[\left|Z-\frac{1}{k+1}\right| \geq \frac{\epsilon}{k+1}\right] \leq \boldsymbol{\eta}$.

Averaging and reducing variance

(1) Run basic estimator independently and in parallel \boldsymbol{h} times to obtain $X_{1}, X_{2}, \ldots, X_{\boldsymbol{h}}$
(2) Let $Z=\frac{1}{h} X_{i}$
(3) Output $\frac{1}{Z}-1$

Claim: $\mathrm{E}[Z]=\frac{1}{(\boldsymbol{k}+1)}$ and $\operatorname{Var}(Z) \leq \frac{1}{\boldsymbol{h}} \frac{1}{(\boldsymbol{k}+1)^{2}}$.
Choosing $\boldsymbol{h}=1 /\left(\boldsymbol{\eta} \boldsymbol{\epsilon}^{2}\right)$ and using Chebyshev:
$\operatorname{Pr}\left[\left|Z-\frac{1}{\boldsymbol{k}+1}\right| \geq \frac{\epsilon}{\boldsymbol{k}+1}\right] \leq \boldsymbol{\eta}$.
Hence $\operatorname{Pr}\left[\left|\left(\frac{1}{\boldsymbol{z}}-1\right)-\boldsymbol{k}\right|\right] \geq \boldsymbol{O}(\boldsymbol{\epsilon}) \boldsymbol{k} \leq \boldsymbol{\eta}$.

Averaging and reducing variance

(1) Run basic estimator independently and in parallel \boldsymbol{h} times to obtain $X_{1}, X_{2}, \ldots, X_{\boldsymbol{h}}$
(2) Let $Z=\frac{1}{h} X_{i}$
(3) Output $\frac{1}{Z}-1$

Claim: $\mathrm{E}[Z]=\frac{1}{(\boldsymbol{k}+1)}$ and $\operatorname{Var}(Z) \leq \frac{1}{\boldsymbol{h}} \frac{1}{(\boldsymbol{k}+1)^{2}}$.
Choosing $\boldsymbol{h}=1 /\left(\boldsymbol{\eta} \epsilon^{2}\right)$ and using Chebyshev:
$\operatorname{Pr}\left[\left|Z-\frac{1}{\boldsymbol{k}+1}\right| \geq \frac{\epsilon}{\boldsymbol{k}+1}\right] \leq \boldsymbol{\eta}$.
Hence $\operatorname{Pr}\left[\left|\left(\frac{1}{\boldsymbol{z}}-1\right)-\boldsymbol{k}\right|\right] \geq \boldsymbol{O}(\boldsymbol{\epsilon}) \boldsymbol{k} \leq \boldsymbol{\eta}$.
Repeat $\boldsymbol{O}(\log 1 / \delta)$ times and output median. Error probability $<\boldsymbol{\delta}$.

Algorithm via regular hashing

Do not have idealized hash function.

- Use $\boldsymbol{h}:[\boldsymbol{n}] \rightarrow[\boldsymbol{N}]$ for appropriate choice of \boldsymbol{N}
- Use pairwise independent hash family \mathcal{H} so that random $\boldsymbol{h} \in \mathcal{H}$ can be stored in small space and computation can be done in small memory and fast
Several variants of idea with different trade offs between
- memory
- time to process each new element of the stream
- approximation quality and probability of success

