CS 498ABD: Algorithms for Big Data

Probabilistic Inequalities and Examples
 Lecture 3
 Aug 30, 2022

Outline

Probabilistic Inequalities

Markov's Inequality

Chebyshev's Inequality

Bernstein-Chernoff-Hoeffding bounds

Some examples

Motivation

- Random variable $Q=$ \#comparisons made by randomized QuickSort on an array of \boldsymbol{n} elements.
- We proved that $\mathrm{E}[Q] \leq 2 \boldsymbol{n} \ln \boldsymbol{n}$.
- But we want to know more because expectation is only one basic piece of information. For instance what is
$\operatorname{Pr}[Q \geq 10 n \ln n]$? What is Var[Q]?
- Of course we would like to know the full distribution of Q but it is not feasible in many cases because Q is the outcome of a non-trivial algorithm.
- Even when we know the full distribution we don't want complex formulas but nice simple closed forms that help us understand the behaviour of a random variable in intuitive ways.

Binomial distribution

Consider flipping a fair coin n times independently, head gives 1 , tail gives zero. How many 1 s ? Let \boldsymbol{X} be the random variable that counts the number of 1 s .

Binomial distribution

Consider flipping a fair coin n times independently, head gives 1 , tail gives zero. How many 1 s ? Let \boldsymbol{X} be the random variable that counts the number of 1 s .
\boldsymbol{X} has the well known Binomial distribution with $\boldsymbol{p}=1 / 2$:
$\operatorname{Pr}[\boldsymbol{X}=\boldsymbol{k}]=\binom{\boldsymbol{n}}{\boldsymbol{k}} 1 / 2^{\boldsymbol{n}}$.
$\mathrm{E}[\boldsymbol{X}]=\boldsymbol{n} / 2$
$\operatorname{Var}[X]=n / 4$

Binomial distribution

Consider flipping a fair coin \boldsymbol{n} times independently, head gives 1 , tail gives zero. How many 1 s ? Let \boldsymbol{X} be the random variable that counts the number of 1 s .
\boldsymbol{X} has the well known Binomial distribution with $\boldsymbol{p}=1 / 2$:
$\operatorname{Pr}[\boldsymbol{X}=\boldsymbol{k}]=\binom{\boldsymbol{n}}{\boldsymbol{k}} 1 / 2^{n}$.
$\mathrm{E}[\boldsymbol{X}]=\boldsymbol{n} / 2$
$\operatorname{Var}[X]=n / 4$
Despite knowing the exact distribution it is hard to grasp how \boldsymbol{X} behaves without some analysis of binomial coefficients etc. Let's plot.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head gives 1 , tail gives zero. How many 1s? Binomial distribution: \boldsymbol{k} w.p. $\binom{n}{k} 1 / 2^{n}$.

Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1 , tail gives zero. How many 1s? Binomial distribution: \boldsymbol{k} w.p. $\binom{n}{k} 1 / 2^{n}$.

Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1 , tail gives zero. How many 1s? Binomial distribution: \boldsymbol{k} w.p. $\binom{n}{k} 1 / 2^{n}$.

Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1 , tail gives zero. How many 1s? Binomial distribution: \boldsymbol{k} w.p. $\binom{n}{k} 1 / 2^{n}$.

Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1 , tail gives zero. How many 1s? Binomial distribution: \boldsymbol{k} w.p. $\binom{n}{k} 1 / 2^{n}$.

Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1 , tail gives zero. How many 1s? Binomial distribution: \boldsymbol{k} w.p. $\binom{n}{k} 1 / 2^{n}$.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head gives 1 , tail gives zero. How many 1s? Binomial distribution: \boldsymbol{k} w.p. $\binom{n}{k} 1 / 2^{n}$.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head gives 1 , tail gives zero. How many 1s? Binomial distribution: \boldsymbol{k} w.p. $\binom{n}{k} 1 / 2^{n}$.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head gives 1 , tail gives zero. How many 1s? Binomial distribution: \boldsymbol{k} w.p. $\binom{n}{k} 1 / 2^{n}$.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head gives 1 , tail gives zero. How many 1s? Binomial distribution: \boldsymbol{k} w.p. $\binom{n}{k} 1 / 2^{n}$.

Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1 , tail gives zero. How many 1s? Binomial distribution: \boldsymbol{k} w.p. $\binom{n}{k} 1 / 2^{n}$.

Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1 , tail gives zero. How many 1s? Binomial distribution: \boldsymbol{k} w.p. $\binom{n}{k} 1 / 2^{n}$.

Massive randomness.. Is not that random.

This is known as concentration of measure.
This is a related to the law of large numbers and Chernoff bounds

Side note...

Informal statement of law of large numbers

For \boldsymbol{n} large enough, the middle portion of the binomial distribution looks like (converges to) the normal/Gaussian distribution.

Part I

Inequalities

Randomized QuickSort

- Random variable $Q=\#$ comparisons made by randomized QuickSort on an array of \boldsymbol{n} elements.
- We proved that $\mathrm{E}[Q] \leq 2 \boldsymbol{n} \ln \boldsymbol{n}$.
- What is $\operatorname{Pr}[Q \geq 10 n \ln n]$?

Question: Can we say anything interesting knowing just the expectation?

Markov’s Inequality

Markov's inequality

Let X be a non-negative random variable over a probability space $(\Omega, \operatorname{Pr})$ and let $\boldsymbol{\mu}=\mathrm{E}[\boldsymbol{X}]$. For any $\boldsymbol{t}>0, \operatorname{Pr}[\boldsymbol{X} \geq \boldsymbol{t} \boldsymbol{\mu}] \leq 1 / \boldsymbol{t}$. Equivalently, for any $a>0, \operatorname{Pr}[X \geq a] \leq \frac{\mu}{a}$.

Markov’s Inequality

Markov's inequality

Let \boldsymbol{X} be a non-negative random variable over a probability space $(\Omega, \operatorname{Pr})$ and let $\boldsymbol{\mu}=\mathrm{E}[\boldsymbol{X}]$. For any $\boldsymbol{t}>0, \operatorname{Pr}[\boldsymbol{X} \geq \boldsymbol{t} \boldsymbol{\mu}] \leq 1 / \boldsymbol{t}$. Equivalently, for any $a>0, \operatorname{Pr}[X \geq a] \leq \frac{\mu}{a}$.

Meaningful only when $t>1$. Example: $\operatorname{Pr}[\boldsymbol{X} \geq 3 \mu] \leq 1 / 3$.

Markov’s Inequality

Markov's inequality

Let X be a non-negative random variable over a probability space $(\Omega, \operatorname{Pr})$ and let $\boldsymbol{\mu}=\mathrm{E}[\boldsymbol{X}]$. For any $\boldsymbol{t}>0, \operatorname{Pr}[\boldsymbol{X} \geq \boldsymbol{t} \boldsymbol{\mu}] \leq 1 / \boldsymbol{t}$. Equivalently, for any $a>0, \operatorname{Pr}[X \geq a] \leq \frac{\mu}{a}$.

Meaningful only when $t>1$. Example: $\operatorname{Pr}[\boldsymbol{X} \geq 3 \boldsymbol{\mu}] \leq 1 / 3$. Proof?

Markov’s Inequality

Markov's inequality

Let \boldsymbol{X} be a non-negative random variable over a probability space $(\Omega, \operatorname{Pr})$ and let $\boldsymbol{\mu}=\mathrm{E}[\boldsymbol{X}]$. For any $\boldsymbol{t}>0, \operatorname{Pr}[\boldsymbol{X} \geq \boldsymbol{t} \boldsymbol{\mu}] \leq 1 / \boldsymbol{t}$. Equivalently, for any $a>0, \operatorname{Pr}[X \geq a] \leq \frac{\mu}{a}$.

Meaningful only when $t>1$. Example: $\operatorname{Pr}[\boldsymbol{X} \geq 3 \boldsymbol{\mu}] \leq 1 / 3$. Proof?
Simple averaging argument.
Split range of X into two disjoint intervals $\boldsymbol{I}_{1}=[0, \boldsymbol{t} \boldsymbol{\mu})$ and $I_{2}=[t \mu, \infty)$. This is because X is non-negative.

If $\operatorname{Pr}\left[\boldsymbol{X} \in \boldsymbol{I}_{2}\right]>1 / \boldsymbol{t}$ then $\mathrm{E}[\boldsymbol{X}]>(1 / \boldsymbol{t})(\boldsymbol{t} \boldsymbol{\mu})>\boldsymbol{\mu}$ a contradiction!

Markov's Inequality

Markov's inequality

Let \boldsymbol{X} be a non-negative random variable over a probability space $(\Omega, \operatorname{Pr})$ and let $\boldsymbol{\mu}=\mathrm{E}[\boldsymbol{X}]$. For any $\boldsymbol{t}>0, \operatorname{Pr}[\boldsymbol{X} \geq \boldsymbol{t} \boldsymbol{\mu}] \leq 1 / \boldsymbol{t}$. Equivalently, for any $a>0, \operatorname{Pr}[X \geq a] \leq \frac{\mu}{a}$.

Proof:

$$
\begin{aligned}
\mathrm{E}[\boldsymbol{X}] & =\sum_{\boldsymbol{\omega} \in \Omega} \boldsymbol{X}(\boldsymbol{\omega}) \operatorname{Pr}[\boldsymbol{\omega}] \\
& =\sum_{\boldsymbol{\omega}, 0 \leq \boldsymbol{X}(\boldsymbol{\omega})<\boldsymbol{a}} \boldsymbol{X}(\boldsymbol{\omega}) \operatorname{Pr}[\boldsymbol{\omega}]+\sum_{\boldsymbol{\omega}, \boldsymbol{x}(\boldsymbol{\omega}) \geq \mathbf{a}} \boldsymbol{X}(\boldsymbol{\omega}) \operatorname{Pr}[\boldsymbol{\omega}] \\
& \geq \sum_{\boldsymbol{\omega} \in \Omega, \boldsymbol{x}(\boldsymbol{\omega}) \geq \mathbf{a}} \boldsymbol{X}(\boldsymbol{\omega}) \operatorname{Pr}[\boldsymbol{\omega}] \\
& \geq \boldsymbol{a} \sum_{\boldsymbol{\omega} \in \Omega, \boldsymbol{X}(\boldsymbol{\omega}) \geq \mathbf{a}} \operatorname{Pr}[\boldsymbol{\omega}] \\
& =\boldsymbol{a} \operatorname{Pr}[\boldsymbol{X} \geq \boldsymbol{a}]
\end{aligned}
$$

Markov’s Inequality

Markov's inequality

Let X be a non-negative random variable over a probability space $(\Omega, \operatorname{Pr})$ and let $\boldsymbol{\mu}=\mathrm{E}[\boldsymbol{X}]$. For any $\boldsymbol{a}>0, \operatorname{Pr}[\boldsymbol{X} \geq a] \leq \frac{\mu}{a}$. Equivalently, for any $t>0, \operatorname{Pr}[X \geq t \mu] \leq 1 / t$.

Proof:

$$
\begin{aligned}
\mathrm{E}[X] & =\int_{0}^{\infty} z f_{X}(z) d z \\
& \geq \int_{a}^{\infty} z f_{X}(z) d z \\
& \geq a \int_{a}^{\infty} f_{X}(z) d z \\
& =a \operatorname{Pr}[X \geq a]
\end{aligned}
$$

Randomized QuickSort

- Random variable $Q=\#$ comparisons made by randomized QuickSort on an array of \boldsymbol{n} elements.
- We proved that $\mathrm{E}[Q] \leq 2 \boldsymbol{n} \ln \boldsymbol{n}$.

Question: What is $\operatorname{Pr}[\boldsymbol{Q} \geq 10 n \ln n]$?
By Markov's inequality at most $1 / 5$.

Chebyshev's Inequality: Variance

Variance

Given a random variable \boldsymbol{X} over probability space $(\Omega, \operatorname{Pr})$, variance of \boldsymbol{X} is the measure of how much does it deviate from its mean value.
Formally, $\operatorname{Var}(\boldsymbol{X})=\mathrm{E}\left[(\boldsymbol{X}-\mathrm{E}[\boldsymbol{X}])^{2}\right]=\mathrm{E}\left[\boldsymbol{X}^{2}\right]-(\mathrm{E}[\boldsymbol{X}])^{2}$

Derivation

Define $\boldsymbol{Y}=(\boldsymbol{X}-\mathrm{E}[\boldsymbol{X}])^{2}=\boldsymbol{X}^{2}-2 \boldsymbol{X} \mathrm{E}[\boldsymbol{X}]+\mathrm{E}[\boldsymbol{X}]^{2}$.

$$
\begin{aligned}
\operatorname{Var}(\boldsymbol{X}) & =\mathrm{E}[\boldsymbol{Y}] \\
& =\mathrm{E}\left[\boldsymbol{X}^{2}\right]-2 \mathrm{E}[\boldsymbol{X}] \mathrm{E}[\boldsymbol{X}]+\mathrm{E}[\boldsymbol{X}]^{2} \\
& =\mathrm{E}\left[\boldsymbol{X}^{2}\right]-\mathrm{E}[\boldsymbol{X}]^{2}
\end{aligned}
$$

Tightness of Markov's Inequality

Exercise: Prove that Markov's inequality is tight.
More formally: for any given $t>1$ describe a simple probability space and a non-negative random variable \boldsymbol{X} with $\boldsymbol{\mu}=\mathrm{E}[\boldsymbol{X}]$ finite such that $\operatorname{Pr}[\boldsymbol{X} \geq \boldsymbol{t} \boldsymbol{\mu}]=1 / t$.

Thus, improving on Markov's inequality requires additional knowledge/assumption on distribution of \boldsymbol{X}.

Chebyshev's Inequality: Variance

Independence

Random variables X and Y are called mutually independent if

$$
\forall x, y \in \mathbb{R}, \operatorname{Pr}[\boldsymbol{X}=\boldsymbol{x} \wedge \boldsymbol{Y}=\boldsymbol{y}]=\operatorname{Pr}[\boldsymbol{X}=\boldsymbol{x}] \operatorname{Pr}[\boldsymbol{Y}=\boldsymbol{y}]
$$

Lemma

If X and Y are independent random variables then $\operatorname{Var}(X+\boldsymbol{Y})=\operatorname{Var}(X)+\operatorname{Var}(Y)$.

Chebyshev's Inequality: Variance

Independence

Random variables X and Y are called mutually independent if

$$
\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}, \operatorname{Pr}[\boldsymbol{X}=\boldsymbol{x} \wedge \boldsymbol{Y}=\boldsymbol{y}]=\operatorname{Pr}[\boldsymbol{X}=\boldsymbol{x}] \operatorname{Pr}[\boldsymbol{Y}=\boldsymbol{y}]
$$

Lemma

If X and Y are independent random variables then $\operatorname{Var}(X+\boldsymbol{Y})=\operatorname{Var}(X)+\operatorname{Var}(\boldsymbol{Y})$.

Lemma

If \boldsymbol{X} and \boldsymbol{Y} are mutually independent, then $\mathrm{E}[\boldsymbol{X} \boldsymbol{Y}]=\mathrm{E}[\boldsymbol{X}] \mathrm{E}[\boldsymbol{Y}]$.

Chebyshev's Inequality

Chebyshev's Inequality

If $\operatorname{Var} X<\infty$, for any $a \geq 0, \operatorname{Pr}[|X-\mathrm{E}[X]| \geq a] \leq \frac{\operatorname{Var}(X)}{a^{2}}$

Chebyshev's Inequality

Chebyshev's Inequality

If $\operatorname{Var} X<\infty$, for any $a \geq 0, \operatorname{Pr}[|X-E[X]| \geq a] \leq \frac{\operatorname{Var}(X)}{a^{2}}$

Proof.

$\boldsymbol{Y}=(\boldsymbol{X}-\mathrm{E}[\boldsymbol{X}])^{2}$ is a non-negative random variable. Apply Markov's Inequality to Y for a^{2}.

$$
\begin{aligned}
\left.\operatorname{Pr}\left[Y \geq a^{2}\right] \leq E Y\right] / a^{2} & \Leftrightarrow \operatorname{Pr}\left[(X-E[X])^{2} \geq a^{2}\right] \leq \operatorname{Var}(X) / a^{2} \\
& \Leftrightarrow \operatorname{Pr}[|X-E[X]| \geq a] \leq \operatorname{Var}(X) / a^{2}
\end{aligned}
$$

Chebyshev's Inequality

Chebyshev's Inequality

If $\operatorname{Var} X<\infty$, for any $a \geq 0, \operatorname{Pr}[|X-E[X]| \geq a] \leq \frac{\operatorname{Var}(X)}{a^{2}}$

Proof.

$\boldsymbol{Y}=(\boldsymbol{X}-\mathrm{E}[\boldsymbol{X}])^{2}$ is a non-negative random variable. Apply Markov's Inequality to Y for a^{2}.

$$
\begin{aligned}
\left.\operatorname{Pr}\left[Y \geq a^{2}\right] \leq E Y\right] / a^{2} & \Leftrightarrow \operatorname{Pr}\left[(X-E[X])^{2} \geq a^{2}\right] \leq \operatorname{Var}(X) / a^{2} \\
& \Leftrightarrow \operatorname{Pr}[|X-E[X]| \geq a] \leq \operatorname{Var}(X) / a^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}[\boldsymbol{X} \leq \mathrm{E}[\boldsymbol{X}]-\boldsymbol{a}] \leq \boldsymbol{\operatorname { V a r }}(\boldsymbol{X}) / \boldsymbol{a}^{2} \text { AND } \\
& \operatorname{Pr}[\boldsymbol{X} \geq \mathrm{E}[\boldsymbol{X}]+\boldsymbol{a}] \leq \boldsymbol{\operatorname { V a r }}(\boldsymbol{X}) / \boldsymbol{a}^{2}
\end{aligned}
$$

Chebyshev's Inequality

Chebyshev's Inequality

Given $a \geq 0, \operatorname{Pr}[|X-E[X]| \geq a] \leq \frac{\operatorname{Var}(X)}{a^{2}}$ equivalently for any $t>0, \operatorname{Pr}\left[|X-\mathrm{E}[X]| \geq t \sigma_{X}\right] \leq \frac{1}{t^{2}}$ where $\sigma_{X}=\sqrt{\operatorname{Var}(X)}$ is the standard deviation of \boldsymbol{X}.

Example: Random walk on the line

- Start at origin 0. At each step move left one unit with probability $1 / 2$ and move right with probability $1 / 2$.
- After \boldsymbol{n} steps how far from the origin?

Example: Random walk on the line

- Start at origin 0. At each step move left one unit with probability $1 / 2$ and move right with probability $1 / 2$.
- After n steps how far from the origin?

At time \boldsymbol{i} let $\boldsymbol{X}_{\boldsymbol{i}}$ be -1 if move to left and 1 if move to right.
$\boldsymbol{Y}_{\boldsymbol{n}}$ position at time \boldsymbol{n}
$Y_{n}=\sum_{i=1}^{n} X_{i}$

Example: Random walk on the line

- Start at origin 0 . At each step move left one unit with probability $1 / 2$ and move right with probability $1 / 2$.
- After n steps how far from the origin?

At time \boldsymbol{i} let $\boldsymbol{X}_{\boldsymbol{i}}$ be -1 if move to left and 1 if move to right.
Y_{n} position at time n
$Y_{\boldsymbol{n}}=\sum_{i=1}^{n} X_{i}$
$\mathrm{E}\left[Y_{n}\right]=0$ and $\operatorname{Var}\left(Y_{n}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=n$

Example: Random walk on the line

- Start at origin 0 . At each step move left one unit with probability $1 / 2$ and move right with probability $1 / 2$.
- After n steps how far from the origin?

At time \boldsymbol{i} let $\boldsymbol{X}_{\boldsymbol{i}}$ be -1 if move to left and 1 if move to right.
Y_{n} position at time n
$Y_{\boldsymbol{n}}=\sum_{i=1}^{n} X_{i}$
$\mathrm{E}\left[Y_{n}\right]=0$ and $\operatorname{Var}\left(Y_{n}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\boldsymbol{n}$
By Chebyshev: $\operatorname{Pr}\left[\left|Y_{n}\right| \geq t \sqrt{n}\right] \leq 1 / t^{2}$

Chernoff Bound: Motivation

In many applications we are interested in \boldsymbol{X} which is sum of independent and bounded random variables.
$\boldsymbol{X}=\sum_{i=1}^{k} \boldsymbol{X}_{\boldsymbol{i}}$ where $\boldsymbol{X}_{\boldsymbol{i}} \in[0,1]$ or $[-1,1]$ (normalizing)
Chebyshev not strong enough. For random walk on line one can prove

$$
\operatorname{Pr}\left[\left|Y_{n}\right| \geq t \sqrt{n}\right] \leq 2 \exp \left(-t^{2} / 2\right)
$$

Chernoff Bound: Non-negative case

Lemma

Let $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{k}$ be k independent binary random variables such that, for each $\boldsymbol{i} \in[\boldsymbol{k}], \mathrm{E}\left[\boldsymbol{X}_{\boldsymbol{i}}\right]=\operatorname{Pr}\left[\boldsymbol{X}_{\boldsymbol{i}}=1\right]=\boldsymbol{p}_{\boldsymbol{i}}$. Let $\boldsymbol{X}=\sum_{i=1}^{\boldsymbol{k}} \boldsymbol{X}_{\boldsymbol{i}}$. Then $\mathrm{E}[X]=\sum_{i} \boldsymbol{p}_{i}$.

Chernoff Bound: Non-negative case

Lemma

Let X_{1}, \ldots, X_{k} be k independent binary random variables such that, for each $\boldsymbol{i} \in[k], \mathrm{E}\left[\boldsymbol{X}_{\boldsymbol{i}}\right]=\operatorname{Pr}\left[\boldsymbol{X}_{\boldsymbol{i}}=1\right]=\boldsymbol{p}_{\boldsymbol{i}}$. Let $\boldsymbol{X}=\sum_{i=1}^{\boldsymbol{k}} \boldsymbol{X}_{\boldsymbol{i}}$. Then $\mathrm{E}[X]=\sum_{i} p_{i}$.

- Upper tail bound: For any $\boldsymbol{\mu} \geq \mathrm{E}[\boldsymbol{X}]$ and any $\delta>0$,

$$
\operatorname{Pr}[\boldsymbol{X} \geq(1+\delta) \boldsymbol{\mu}] \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}
$$

- Lower tail bound: For any $0<\boldsymbol{\mu}<\mathrm{E}[\boldsymbol{X}]$ and any $0<\boldsymbol{\delta}<1$,

$$
\operatorname{Pr}[\boldsymbol{X} \leq(1-\delta) \boldsymbol{\mu}] \leq\left(\frac{e^{-\delta}}{(1-\boldsymbol{\delta})^{(1-\delta)}}\right)^{\mu}
$$

Chernoff Bound: Non-negative case, simplifying

When $0<\delta<1$ an important regime of interest we can simplify.

Lemma

Let X_{1}, \ldots, X_{k} be k independent random variables such that, for each $\boldsymbol{i} \in[1, k], \boldsymbol{X}_{\boldsymbol{i}}$ equals 1 with probability $\boldsymbol{p}_{\boldsymbol{i}}$, and 0 with probability $\left(1-p_{i}\right)$. Let $\boldsymbol{X}=\sum_{i=1}^{k} X_{i}$ and $\boldsymbol{\mu}=\mathrm{E}[\boldsymbol{X}]=\sum_{i} \boldsymbol{p}_{\boldsymbol{i}}$. For any $0<\delta<1$, it holds that:

- $\operatorname{Pr}[\boldsymbol{X} \geq(1+\delta) \mu] \leq e^{-\frac{\delta^{2} \mu}{3}}$
- $\operatorname{Pr}[\boldsymbol{X} \leq(1-\delta) \boldsymbol{\mu}] \leq e^{-\frac{\delta^{2} \mu}{2}}$
- Hence by union bound: $\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 e^{\frac{-\delta^{2} \mu}{3}}$

Chernoff Bound: Non-negative case

Important: non-negative case bound depends only on $\boldsymbol{\mu}$, not on \boldsymbol{k}.
Regimes of interest for δ for upper tail.

- $0 \leq \boldsymbol{\delta}<1: \operatorname{Pr}[\boldsymbol{X} \geq(1+\boldsymbol{\delta}) \boldsymbol{\mu}] \leq \boldsymbol{e}^{-\frac{\delta^{2}}{3} \cdot \boldsymbol{\mu}}$
- $\boldsymbol{\delta} \geq 1: \operatorname{Pr}[\boldsymbol{X} \geq(1+\boldsymbol{\delta}) \boldsymbol{\mu}] \leq e^{-\frac{\delta}{3} \cdot \boldsymbol{\mu}}$
(useful when δ is close to a small constant)
- $\boldsymbol{\delta} \geq 1$: $\operatorname{Pr}[\boldsymbol{X} \geq(1+\boldsymbol{\delta}) \boldsymbol{\mu}] \leq e^{-\frac{(1+\delta) \ln (1+\delta)}{4} \cdot \mu}$. (useful when δ is large)

Chernoff Bound: general

Lemma

Let $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{k}}$ be \boldsymbol{k} independent random variables such that, for each $\boldsymbol{i} \in[1, k], \boldsymbol{X}_{\boldsymbol{i}} \in[-1,1]$.

Chernoff Bound: general

Lemma

Let $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{k}}$ be \boldsymbol{k} independent random variables such that, for each $\boldsymbol{i} \in[1, k], X_{i} \in[-1,1]$. Let $\boldsymbol{X}=\sum_{i=1}^{k} \boldsymbol{X}_{\boldsymbol{i}}$. For any $a>0$,

$$
\operatorname{Pr}[|X-\mathrm{E}[X]| \geq a] \leq 2 \exp \left(\frac{-a^{2}}{2 n}\right)
$$

When variables are not positive the bound depends on n while in the non-negative case there is no dependence on \boldsymbol{n} (dimension-free)

Chernoff Bound: general

Lemma

Let $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{k}}$ be \boldsymbol{k} independent random variables such that, for each $\boldsymbol{i} \in[1, k], X_{i} \in[-1,1]$. Let $\boldsymbol{X}=\sum_{i=1}^{k} \boldsymbol{X}_{\boldsymbol{i}}$. For any $a>0$,

$$
\operatorname{Pr}[|X-\mathrm{E}[X]| \geq a] \leq 2 \exp \left(\frac{-a^{2}}{2 n}\right)
$$

When variables are not positive the bound depends on n while in the non-negative case there is no dependence on \boldsymbol{n} (dimension-free) Applying to random walk:

$$
\operatorname{Pr}\left[\left|Y_{n}\right| \geq t \sqrt{n}\right] \leq 2 \exp \left(-t^{2} / 2\right)
$$

Extensions and variations

Hoeffding extension: Theorems hold as long as $\boldsymbol{X}_{\boldsymbol{i}}$ is bounded variables do not have to be $\{0,1\}$.

- For non-negative $\boldsymbol{X}_{\boldsymbol{i}} \in[0,1]$
- For general $X_{i} \in[-1,1]$

Averaging version: Bound $X=\frac{1}{k}\left(\sum_{i=1}^{k} X_{i}\right)$ instead of the sum. Use variable $Y=k X$ and bound on Y.

Scaling variables: If X_{i} is in $[0, B]$ use $Y_{i}=X_{i} / B$.
Shifting variables: If $X_{i} \in\left[a_{i}, b_{i}\right]$ where $b_{i}-a_{i}$ is small consider $Y_{i}=X_{i}-a_{i}$.

Many variations and generalization. See pointers on course webpage.

Part II

Balls and Bins

Balls and Bins

- \boldsymbol{m} balls and \boldsymbol{n} bins
- Each ball thrown independently and uniformly in a bin
- Want to understand properties of bin loads
- Fundamental problem with many applications

Balls and Bins

- \boldsymbol{m} balls and \boldsymbol{n} bins
- Each ball thrown independently and uniformly in a bin
- Want to understand properties of bin loads
- Fundamental problem with many applications
- $\boldsymbol{Z}_{i j}$ indicator for ball \boldsymbol{i} falling into bin \boldsymbol{j}
- $X_{j}=\sum_{i=1}^{m} Z_{i j}$ is number of balls in bin j
- $\sum_{j=1}^{n} Z_{i j}=1$ deterministically
- $\mathrm{E}\left[Z_{i j}\right]=1 / \boldsymbol{n}$ for all $\boldsymbol{i}, \boldsymbol{j}$, and hence $\mathrm{E}\left[\boldsymbol{X}_{\boldsymbol{j}}\right]=\boldsymbol{m} / \boldsymbol{n}$ for each bin \boldsymbol{j}

Maximum load

Question: Suppose we throw \boldsymbol{n} balls into \boldsymbol{n} bins. What is the expectation of the maximum load?

Maximum load

Question: Suppose we throw \boldsymbol{n} balls into \boldsymbol{n} bins. What is the expectation of the maximum load?

Theorem

Let $Y=\max _{j=1}^{n} X_{j}$ be the maximum load. Then
$\operatorname{Pr}[Y>10 \ln n / \ln \ln n]<1 / \boldsymbol{n}^{2}$ (high probability) and hence $\mathrm{E}[\boldsymbol{Y}]=\boldsymbol{O}(\ln \boldsymbol{n} / \ln \ln \boldsymbol{n})$.

One can also show that $\mathrm{E}[\boldsymbol{Y}]=\Theta(\ln \boldsymbol{n} / \ln \ln \boldsymbol{n})$.

Maximum load

Question: Suppose we throw \boldsymbol{n} balls into \boldsymbol{n} bins. What is the expectation of the maximum load?

Theorem

Let $Y=\max _{j=1}^{n} X_{j}$ be the maximum load. Then
$\operatorname{Pr}[\boldsymbol{Y}>10 \ln n / \ln \ln n]<1 / n^{2}$ (high probability) and hence
$\mathrm{E}[\boldsymbol{Y}]=\boldsymbol{O}(\ln \boldsymbol{n} / \ln \ln \boldsymbol{n})$.
One can also show that $\mathrm{E}[\boldsymbol{Y}]=\Theta(\ln \boldsymbol{n} / \ln \ln \boldsymbol{n})$.
Proof technique: combine Chernoff bound and union bound which is powerful and general template

Maximum load

Focus on bin 1 without loss of generality since bins are symmetric. Simplifying notation $\boldsymbol{X}=\sum_{\boldsymbol{i}} \boldsymbol{Z}_{\boldsymbol{i}}$ where \boldsymbol{X} is load of bin 1 and $\boldsymbol{Z}_{\boldsymbol{i}}$ is indicator of ball \boldsymbol{i} falling in bin.

- Want to know $\operatorname{Pr}[\boldsymbol{X} \geq 12 \ln \boldsymbol{n} / \ln \ln \boldsymbol{n}]$

Maximum load

Focus on bin 1 without loss of generality since bins are symmetric. Simplifying notation $\boldsymbol{X}=\sum_{i} \boldsymbol{Z}_{\boldsymbol{i}}$ where \boldsymbol{X} is load of bin 1 and $\boldsymbol{Z}_{\boldsymbol{i}}$ is indicator of ball \boldsymbol{i} falling in bin.

- Want to know $\operatorname{Pr}[\boldsymbol{X} \geq 12 \ln \boldsymbol{n} / \ln \ln \boldsymbol{n}]$
- $\mu=\mathrm{E}[\boldsymbol{X}]=1$
- $(1+\boldsymbol{\delta})=12 \ln \boldsymbol{n} / \ln \ln \boldsymbol{n}$. We are in large $\boldsymbol{\delta}$ setting
- Apply the Chernoff upper tail bound (with simplification) :

$$
\operatorname{Pr}[X \geq(1+\delta) \mu] \leq e^{-\frac{(1+\delta) \ln (1+\delta)}{4} \cdot \mu}
$$

Maximum load

Focus on bin 1 without loss of generality since bins are symmetric. Simplifying notation $\boldsymbol{X}=\sum_{\boldsymbol{i}} \boldsymbol{Z}_{\boldsymbol{i}}$ where \boldsymbol{X} is load of bin 1 and $\boldsymbol{Z}_{\boldsymbol{i}}$ is indicator of ball \boldsymbol{i} falling in bin.

- Want to know $\operatorname{Pr}[\boldsymbol{X} \geq 12 \ln \boldsymbol{n} / \ln \ln \boldsymbol{n}]$
- $\boldsymbol{\mu}=\mathrm{E}[\boldsymbol{X}]=1$
- $(1+\boldsymbol{\delta})=12 \ln \boldsymbol{n} / \ln \ln \boldsymbol{n}$. We are in large $\boldsymbol{\delta}$ setting
- Apply the Chernoff upper tail bound (with simplification) :

$$
\operatorname{Pr}[X \geq(1+\delta) \mu] \leq e^{-\frac{(1+\delta) \ln (1+\delta)}{4} \cdot \mu}
$$

- Calculate/simplify and see that $\operatorname{Pr}[X \geq 12 \ln n / \ln \ln n] \leq 1 / \boldsymbol{n}^{3}$

Maximum load

- For each bin $j, \operatorname{Pr}\left[X_{j} \geq 12 \ln n / \ln \ln n\right] \leq 1 / n^{3}$
- Let $\boldsymbol{A}_{\boldsymbol{j}}$ be event that $\boldsymbol{X}_{\boldsymbol{j}} \geq 12 \ln \boldsymbol{n} / \ln \ln \boldsymbol{n}$
- By union bound

$$
\operatorname{Pr}\left[\cup_{j} \boldsymbol{A}_{j}\right] \leq \sum_{j} \operatorname{Pr}\left[\boldsymbol{A}_{j}\right] \leq \boldsymbol{n} \cdot 1 / \boldsymbol{n}^{3} \leq 1 / \boldsymbol{n}^{2}
$$

- Hence, with probability at least $\left(1-1 / \boldsymbol{n}^{2}\right)$ no bin has load more than $12 \ln \boldsymbol{n} / \ln \ln \boldsymbol{n}$.

Maximum load

- For each bin $j, \operatorname{Pr}\left[X_{j} \geq 12 \ln n / \ln \ln n\right] \leq 1 / n^{3}$
- Let $\boldsymbol{A}_{\boldsymbol{j}}$ be event that $\boldsymbol{X}_{\boldsymbol{j}} \geq 12 \ln \boldsymbol{n} / \ln \ln \boldsymbol{n}$
- By union bound

$$
\operatorname{Pr}\left[\cup_{j} \boldsymbol{A}_{j}\right] \leq \sum_{j} \operatorname{Pr}\left[\boldsymbol{A}_{j}\right] \leq n \cdot 1 / n^{3} \leq 1 / n^{2}
$$

- Hence, with probability at least $\left(1-1 / \boldsymbol{n}^{2}\right)$ no bin has load more than $12 \ln \boldsymbol{n} / \ln \ln \boldsymbol{n}$.
- Let $Y=\max _{j} X_{j} . Y \leq n$. Hence

$$
\mathrm{E}[\boldsymbol{Y}] \leq\left(1-1 / \boldsymbol{n}^{2}\right)(12 \ln \boldsymbol{n} / \ln \ln \boldsymbol{n})+\left(1 / \boldsymbol{n}^{2}\right) \boldsymbol{n} .
$$

From a ball's perspective

Consider a ball \boldsymbol{i}. How many other balls fall into the same bin as \boldsymbol{i} ?

From a ball's perspective

Consider a ball \boldsymbol{i}. How many other balls fall into the same bin as \boldsymbol{i} ?

- Ball \boldsymbol{i} is thrown first wlog. And lands in some bin \boldsymbol{j}.
- Then the other $n-1$ balls are thrown.
- Now bin \boldsymbol{j} is fixed. Hence expected load on bin \boldsymbol{j} is $(1-1 / \boldsymbol{n})$.
- What is variance? What is a high probability bound?

Part III

Approximate Median

Approximate median

- Input: \boldsymbol{n} distinct numbers $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{\boldsymbol{n}}$ and $0<\boldsymbol{\epsilon}<1 / 2$
- Output: A number x from input such that

$$
(1-\epsilon) n / 2 \leq \operatorname{rank}(x) \leq(1+\epsilon) n / 2
$$

Approximate median

- Input: \boldsymbol{n} distinct numbers $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{\boldsymbol{n}}$ and $0<\boldsymbol{\epsilon}<1 / 2$
- Output: A number x from input such that

$$
(1-\epsilon) n / 2 \leq \operatorname{rank}(x) \leq(1+\epsilon) n / 2
$$

Algorithm:

- Sample with replacement k numbers from $a_{1}, a_{2}, \ldots, a_{n}$
- Output median of the sampled numbers

Approximate median

- Input: \boldsymbol{n} distinct numbers $a_{1}, a_{2}, \ldots, a_{n}$ and $0<\epsilon<1 / 2$
- Output: A number x from input such that

$$
(1-\epsilon) \boldsymbol{n} / 2 \leq \operatorname{rank}(x) \leq(1+\epsilon) \boldsymbol{n} / 2
$$

Algorithm:

- Sample with replacement k numbers from $a_{1}, a_{2}, \ldots, a_{n}$
- Output median of the sampled numbers

Theorem

For any $0<\epsilon<1 / 2$ and $0<\delta<1$, if $k=\Omega\left(\frac{1}{\epsilon^{2}} \log (1 / \delta)\right)$, the algorithm outputs an ϵ-approximate median with probability at least $(1-\delta)$.

Approximate median

- Let S be random sample chosen by algorithm
- Imagine sorting the numbers
- Split numbers into L (left), M (middle), and R (right)
- $M=\{y \mid(1-\epsilon) n / 2 \leq \operatorname{rank}(y) \leq(1+\epsilon) n / 2\}$
- Algorithm makes a mistake only if $|S \cap L| \geq k / 2$ or $|S \cap R| \geq k / 2$. Otherwise it will output a number from M.

Approximate median

- Let S be random sample chosen by algorithm
- Imagine sorting the numbers
- Split numbers into L (left), M (middle), and R (right)
- $M=\{y \mid(1-\epsilon) n / 2 \leq \operatorname{rank}(y) \leq(1+\epsilon) n / 2\}$
- Algorithm makes a mistake only if $|S \cap L| \geq k / 2$ or $|S \cap R| \geq k / 2$. Otherwise it will output a number from M.

Lemma

$\operatorname{Pr}[|S \cap L| \geq k / 2] \leq \delta / 2$ if $k \geq \frac{10}{\epsilon^{2}} \log (1 / \delta)$.

Analysis

- Let $Y=|S \cap L|$? What is $\mathrm{E}[Y]$?
- $\boldsymbol{Y}=\sum_{i=1}^{k} X_{i}$ where $\boldsymbol{X}_{\boldsymbol{i}}$ is indicator of sample \boldsymbol{i} falling in L. Hence $\mathrm{E}[\boldsymbol{Y}]=\boldsymbol{k}(1-\boldsymbol{\epsilon}) / 2$
- Use Chernoff bound: $\operatorname{Pr}[Y \geq k / 2] \leq \delta / 2$ if $k \geq \frac{10}{\epsilon^{2}} \log (1 / \delta)$.

Analysis continued

- $\operatorname{Pr}[|S \cap L| \geq k / 2] \leq \delta / 2$ if $k \geq \frac{10}{\epsilon^{2}} \log (1 / \delta)$.
- By symmetry: $\operatorname{Pr}[|S \cap R| \geq k / 2] \leq \boldsymbol{\delta} / 2$ if $k \geq \frac{10}{\epsilon^{2}} \log (1 / \boldsymbol{\delta})$.
- By union bound at most δ probability that $|S \cap L| \geq k / 2$ or $|S \cap R| \geq k / 2$.
- Hence with $(1-\boldsymbol{\delta})$ probability median of \boldsymbol{S} is an $\boldsymbol{\epsilon}$-approximate median

Part IV

Randomized QuickSort (Contd.)

Randomized QuickSort: Recall

Input: Array \boldsymbol{A} of \boldsymbol{n} numbers. Output: Numbers in sorted order.

Randomized QuickSort

(1) Pick a pivot element uniformly at random from \boldsymbol{A}.
(2) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
(3) Recursively sort the subarrays, and concatenate them.

Randomized QuickSort: Recall

Input: Array \boldsymbol{A} of \boldsymbol{n} numbers. Output: Numbers in sorted order.

Randomized QuickSort

(1) Pick a pivot element uniformly at random from \boldsymbol{A}.
(2) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
(3) Recursively sort the subarrays, and concatenate them.

Note: On every input randomized QuickSort takes $O(n \log n)$ time in expectation. On every input it may take $\Omega\left(\boldsymbol{n}^{2}\right)$ time with some small probability.

Randomized QuickSort: Recall

Input: Array \boldsymbol{A} of \boldsymbol{n} numbers. Output: Numbers in sorted order.

Randomized QuickSort

(1) Pick a pivot element uniformly at random from \boldsymbol{A}.
(2) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
(3) Recursively sort the subarrays, and concatenate them.

Note: On every input randomized QuickSort takes $O(n \log n)$ time in expectation. On every input it may take $\Omega\left(\boldsymbol{n}^{2}\right)$ time with some small probability.
Question: With what probability it takes $O(n \log n)$ time?

Randomized QuickSort: High Probability Analysis

Informal Statement

Random variable $Q(A)=\#$ comparisons done by the algorithm. We will show that $\operatorname{Pr}[\boldsymbol{Q}(\boldsymbol{A}) \leq 32 \boldsymbol{n} \ln \boldsymbol{n}] \geq 1-1 / \boldsymbol{n}^{3}$.

Randomized QuickSort: High Probability Analysis

Informal Statement

Random variable $Q(A)=\#$ comparisons done by the algorithm. We will show that $\operatorname{Pr}[\boldsymbol{Q}(\boldsymbol{A}) \leq 32 \boldsymbol{n} \ln \boldsymbol{n}] \geq 1-1 / \boldsymbol{n}^{3}$.

If $\boldsymbol{n}=100$ then this gives $\operatorname{Pr}[\boldsymbol{Q}(\boldsymbol{A}) \leq 32 \boldsymbol{n} \ln n] \geq 0.99999$.

Randomized QuickSort: High Probability Analysis

Informal Statement

Random variable $Q(A)=\#$ comparisons done by the algorithm. We will show that $\operatorname{Pr}[Q(\boldsymbol{A}) \leq 32 \boldsymbol{n} \ln n] \geq 1-1 / \boldsymbol{n}^{3}$.

Outline of the proof

- If depth of recursion is k then $Q(A) \leq k n$.
- Prove that depth of recursion $\leq 32 \ln n$ with high probability. Which will imply the result.

Randomized QuickSort: High Probability Analysis

Informal Statement

Random variable $Q(A)=\#$ comparisons done by the algorithm. We will show that $\operatorname{Pr}[Q(\boldsymbol{A}) \leq 32 \boldsymbol{n} \ln n] \geq 1-1 / \boldsymbol{n}^{3}$.

Outline of the proof

- If depth of recursion is k then $Q(A) \leq k n$.
- Prove that depth of recursion $\leq 32 \ln n$ with high probability. Which will imply the result.
(1) Focus on a fixed element. Prove that it "participates" in $>32 \ln \boldsymbol{n}$ levels with probability at most $1 / \boldsymbol{n}^{4}$.
(2) By union bound, any of the \boldsymbol{n} elements participates in $>32 \ln \boldsymbol{n}$ levels with probability at most

Randomized QuickSort: High Probability Analysis

Informal Statement

Random variable $Q(A)=\#$ comparisons done by the algorithm. We will show that $\operatorname{Pr}[Q(\boldsymbol{A}) \leq 32 \boldsymbol{n} \ln n] \geq 1-1 / \boldsymbol{n}^{3}$.

Outline of the proof

- If depth of recursion is k then $Q(A) \leq k n$.
- Prove that depth of recursion $\leq 32 \ln n$ with high probability. Which will imply the result.
(1) Focus on a fixed element. Prove that it "participates" in $>32 \ln \boldsymbol{n}$ levels with probability at most $1 / \boldsymbol{n}^{4}$.
(2) By union bound, any of the \boldsymbol{n} elements participates in $>32 \ln \boldsymbol{n}$ levels with probability at most $1 / n^{3}$.

Randomized QuickSort: High Probability Analysis

Informal Statement

Random variable $Q(A)=\#$ comparisons done by the algorithm. We will show that $\operatorname{Pr}[Q(\boldsymbol{A}) \leq 32 \boldsymbol{n} \ln n] \geq 1-1 / \boldsymbol{n}^{3}$.

Outline of the proof

- If depth of recursion is k then $Q(A) \leq k n$.
- Prove that depth of recursion $\leq 32 \ln n$ with high probability. Which will imply the result.
(1) Focus on a fixed element. Prove that it "participates" in $>32 \ln \boldsymbol{n}$ levels with probability at most $1 / \boldsymbol{n}^{4}$.
(2) By union bound, any of the \boldsymbol{n} elements participates in $>32 \ln \boldsymbol{n}$ levels with probability at most $1 / n^{3}$.

Useful lemma

Lemma

Consider $\boldsymbol{h}=32 \ln \boldsymbol{n}$ for \boldsymbol{n} sufficiently large integer. Consider \boldsymbol{h} independent unbiased coin tosses $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\boldsymbol{h}}$ and let \boldsymbol{A} be the event that there are less than $4 \ln n$ heads. Then $\operatorname{Pr}[\boldsymbol{A}] \leq 1 / \boldsymbol{n}^{4}$.

Useful lemma

Lemma

Consider $\boldsymbol{h}=32 \ln \boldsymbol{n}$ for \boldsymbol{n} sufficiently large integer. Consider \boldsymbol{h} independent unbiased coin tosses $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\boldsymbol{h}}$ and let \boldsymbol{A} be the event that there are less than $4 \ln n$ heads. Then $\operatorname{Pr}[\boldsymbol{A}] \leq 1 / \boldsymbol{n}^{4}$.

Apply Chernoff bound (lower tail).

Useful lemma

Lemma

Consider $\boldsymbol{h}=32 \ln \boldsymbol{n}$ for \boldsymbol{n} sufficiently large integer. Consider \boldsymbol{h} independent unbiased coin tosses $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\boldsymbol{h}}$ and let \boldsymbol{A} be the event that there are less than $4 \ln n$ heads. Then $\operatorname{Pr}[\boldsymbol{A}] \leq 1 / \boldsymbol{n}^{4}$.

Apply Chernoff bound (lower tail).

- $\boldsymbol{X}_{\boldsymbol{i}}=1$ if \boldsymbol{i} is head, 0 otherwise. Let $\boldsymbol{Y}=\sum_{\boldsymbol{i}=1}^{\boldsymbol{h}} \boldsymbol{X}_{\boldsymbol{i}}$ is number of heads.
- $\boldsymbol{\mu}=\mathrm{E}[\boldsymbol{Y}]=\boldsymbol{h} / 2=16 \ln \boldsymbol{n}$.
- $\operatorname{Pr}[\boldsymbol{A}]=\operatorname{Pr}[\boldsymbol{Y}<4 \ln \boldsymbol{n}]=\operatorname{Pr}[\boldsymbol{Y}<\boldsymbol{\mu} / 4]$.
- By Chernoff bound: $\operatorname{Pr}[\boldsymbol{Y} \leq(1-\boldsymbol{\delta}) \boldsymbol{\mu}] \leq \exp \left(-\boldsymbol{\delta}^{2} \boldsymbol{\mu} / 2\right)$. Using $\boldsymbol{\delta}=3 / 4$ we have $\operatorname{Pr}[\boldsymbol{A}] \leq \exp (-4.5 \ln n) \leq 1 / \boldsymbol{n}^{4.5}$.

Randomized QuickSort: High Probability
 Analysis

- Fix an element $s \in A$. We will track it at each level.
- Let S_{i} be the partition containing s at $i^{\text {th }}$ level.
- $S_{1}=\boldsymbol{A}$ and $S_{k}=\{s\}$ where k is the last level for s (note k is a random variable). Define $S_{\ell}=\{s\}$ for all $k \leq \ell \leq \boldsymbol{n}$ for technical convenience

Randomized QuickSort: High Probability
 Analysis

- Fix an element $s \in A$. We will track it at each level.
- Let S_{i} be the partition containing s at $i^{\text {th }}$ level.
- $S_{1}=\boldsymbol{A}$ and $S_{k}=\{s\}$ where k is the last level for s (note \boldsymbol{k} is a random variable). Define $S_{\ell}=\{s\}$ for all $k \leq \ell \leq \boldsymbol{n}$ for technical convenience
- We call s lucky in $\boldsymbol{i}^{\text {th }}$ iteration, if balanced split:

$$
\left|S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right| \text { and }\left|S_{i} \backslash S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|
$$

Randomized QuickSort: High Probability
 Analysis

- Fix an element $s \in \boldsymbol{A}$. We will track it at each level.
- Let S_{i} be the partition containing s at $i^{\text {th }}$ level.
- $S_{1}=\boldsymbol{A}$ and $S_{k}=\{s\}$ where k is the last level for s (note \boldsymbol{k} is a random variable). Define $S_{\ell}=\{s\}$ for all $k \leq \ell \leq \boldsymbol{n}$ for technical convenience
- We call s lucky in $\boldsymbol{i}^{\text {th }}$ iteration, if balanced split:
$\left|S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|$ and $\left|S_{i} \backslash S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|$.
- If $\boldsymbol{\rho}=\#$ lucky rounds in first \boldsymbol{h} rounds, then
$\left|S_{\boldsymbol{h}}\right| \leq(3 / 4)^{\rho} \boldsymbol{n}$.

Randomized QuickSort: High Probability
 Analysis

- Fix an element $s \in \boldsymbol{A}$. We will track it at each level.
- Let S_{i} be the partition containing s at $i^{\text {th }}$ level.
- $S_{1}=\boldsymbol{A}$ and $S_{k}=\{s\}$ where k is the last level for s (note \boldsymbol{k} is a random variable). Define $\boldsymbol{S}_{\ell}=\{\boldsymbol{s}\}$ for all $k \leq \boldsymbol{\ell} \leq \boldsymbol{n}$ for technical convenience
- We call s lucky in $\boldsymbol{i}^{\text {th }}$ iteration, if balanced split:
$\left|S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|$ and $\left|S_{i} \backslash S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|$.
- If $\boldsymbol{\rho}=$ \#lucky rounds in first \boldsymbol{h} rounds, then
$\left|S_{\boldsymbol{h}}\right| \leq(3 / 4)^{\rho} \boldsymbol{n}$.
- If $\boldsymbol{h} \geq \rho=4 \ln \boldsymbol{n}$ then $S_{\boldsymbol{h}} \leq 1$ implies s done.

Randomized QuickSort: High Probability Analysis

- Fix an element $s \in \boldsymbol{A}$. We will track it at each level.
- Let S_{i} be the partition containing s at $i^{\text {th }}$ level.
- $S_{1}=\boldsymbol{A}$ and $S_{k}=\{s\}$ where \boldsymbol{k} is the last level for \boldsymbol{s} (note \boldsymbol{k} is a random variable). Define $S_{\ell}=\{s\}$ for all $k \leq \ell \leq \boldsymbol{n}$ for technical convenience
- We call \boldsymbol{s} lucky in $\boldsymbol{i}^{\boldsymbol{t h}}$ iteration, if balanced split:
$\left|S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|$ and $\left|S_{i} \backslash S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|$.
- If $\rho=\#$ lucky rounds in first \boldsymbol{h} rounds, then
$\left|S_{\boldsymbol{h}}\right| \leq(3 / 4)^{\rho} \boldsymbol{n}$.
- If $\boldsymbol{h} \geq \boldsymbol{\rho}=4 \ln \boldsymbol{n}$ then $S_{\boldsymbol{h}} \leq 1$ implies s done.

Lemma

Fix $\boldsymbol{h}=32 \ln \boldsymbol{n} .\left|\boldsymbol{S}_{\boldsymbol{h}}\right|>1$ only if less then $4 \ln \boldsymbol{n}$ lucky rounds for \boldsymbol{s} in the first \boldsymbol{h} rounds.

How may rounds before $4 \ln n$ lucky rounds?

- Fix element \boldsymbol{s} and $\boldsymbol{h}=32 \ln \boldsymbol{n}$.
- $\boldsymbol{X}_{\boldsymbol{i}}=1$ if \boldsymbol{s} is lucky in iteration \boldsymbol{i}

How may rounds before $4 \ln n$ lucky rounds?

- Fix element \boldsymbol{s} and $\boldsymbol{h}=32 \ln \boldsymbol{n}$.
- $\boldsymbol{X}_{\boldsymbol{i}}=1$ if s is lucky in iteration \boldsymbol{i}
- Observation: $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{h}}$ are independent variables.
- $\operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{2} \quad$ Why?

How may rounds before $4 \ln n$ lucky rounds?

- Fix element s and $\boldsymbol{h}=32 \ln \boldsymbol{n}$.
- $\boldsymbol{X}_{\boldsymbol{i}}=1$ if s is lucky in iteration \boldsymbol{i}
- Observation: $X_{1}, \ldots, X_{\boldsymbol{h}}$ are independent variables.
- $\operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{2} \quad$ Why?
- Thus \boldsymbol{s} not done after \boldsymbol{h} iterations only if less than $4 \ln \boldsymbol{n}$ lucky rounds in h rounds. Use Lemma to see probability less than $1 / n^{4}$.

Randomized QuickSort w.h.p. Analysis

- n input elements. Probability that depth of recursion in QuickSort $>32 \ln \boldsymbol{n}$ is at most $\frac{1}{\boldsymbol{n}^{4}} * \boldsymbol{n}=\frac{1}{\boldsymbol{n}^{3}}$.

Randomized QuickSort w.h.p. Analysis

- n input elements. Probability that depth of recursion in QuickSort $>32 \ln \boldsymbol{n}$ is at most $\frac{1}{\boldsymbol{n}^{4}} * \boldsymbol{n}=\frac{1}{\boldsymbol{n}^{3}}$.

Theorem

With high probability (i.e., $1-\frac{1}{n^{3}}$) the depth of the recursion of QuickSort is $\leq 32 \ln \boldsymbol{n}$. Due to \boldsymbol{n} comparisons in each level, with high probability, the running time of QuickSort is $\mathbf{O}(n \ln n)$.

Randomized QuickSort w.h.p. Analysis

- n input elements. Probability that depth of recursion in QuickSort $>32 \ln \boldsymbol{n}$ is at most $\frac{1}{\boldsymbol{n}^{4}} * \boldsymbol{n}=\frac{1}{\boldsymbol{n}^{3}}$.

Theorem

With high probability (i.e., $1-\frac{1}{n^{3}}$) the depth of the recursion of QuickSort is $\leq 32 \ln \boldsymbol{n}$. Due to \boldsymbol{n} comparisons in each level, with high probability, the running time of QuickSort is $\mathbf{O}(n \ln n)$.

