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Motivation

Random variable Q = #comparisons made by randomized
QuickSort on an array of n elements.

We proved that E[Q] ≤ 2n ln n.

But we want to know more because expectation is only one
basic piece of information. For instance what is
Pr[Q ≥ 10n ln n]? What is Var [Q]?

Of course we would like to know the full distribution of Q but it
is not feasible in many cases because Q is the outcome of a
non-trivial algorithm.

Even when we know the full distribution we don’t want complex
formulas but nice simple closed forms that help us understand
the behaviour of a random variable in intuitive ways.
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Binomial distribution

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Let X be the random variable that counts
the number of 1s.

X has the well known Binomial distribution with p = 1/2:
Pr[X = k] =

(n
k

)
1/2n.

E[X ] = n/2

Var [X ] = n/4

Despite knowing the exact distribution it is hard to grasp how X
behaves without some analysis of binomial coefficients etc. Let’s
plot.
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p.

(n
k

)
1/2n.
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Massive randomness.. Is not that random.

This is known as concentration of measure.
This is a related to the law of large numbers and Chernoff bounds
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Side note...
Law of large numbers (weakest form)...

Informal statement of law of large numbers

For n large enough, the middle portion of the binomial distribution
looks like (converges to) the normal/Gaussian distribution.
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Part I

Inequalities
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Randomized QuickSort

Random variable Q = #comparisons made by randomized
QuickSort on an array of n elements.

We proved that E[Q] ≤ 2n ln n.

What is Pr[Q ≥ 10n ln n]?

Question: Can we say anything interesting knowing just the
expectation?
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Markov’s Inequality

Markov’s inequality

Let X be a non-negative random variable over a probability space
(Ω, Pr) and let µ = E[X ]. For any t > 0, Pr[X ≥ tµ] ≤ 1/t.
Equivalently, for any a > 0, Pr[X ≥ a] ≤ µ

a .

Meaningful only when t > 1. Example: Pr[X ≥ 3µ] ≤ 1/3. Proof?
Simple averaging argument.
Split range of X into two disjoint intervals I1 = [0, tµ) and
I2 = [tµ,∞). This is because X is non-negative.

If Pr[X ∈ I2] > 1/t then E[X ] > (1/t)(tµ) > µ a contradiction!

Chandra (UIUC) CS498ABD 10 Fall 2022 10 / 45



Markov’s Inequality

Markov’s inequality

Let X be a non-negative random variable over a probability space
(Ω, Pr) and let µ = E[X ]. For any t > 0, Pr[X ≥ tµ] ≤ 1/t.
Equivalently, for any a > 0, Pr[X ≥ a] ≤ µ

a .

Meaningful only when t > 1. Example: Pr[X ≥ 3µ] ≤ 1/3.

Proof?
Simple averaging argument.
Split range of X into two disjoint intervals I1 = [0, tµ) and
I2 = [tµ,∞). This is because X is non-negative.

If Pr[X ∈ I2] > 1/t then E[X ] > (1/t)(tµ) > µ a contradiction!

Chandra (UIUC) CS498ABD 10 Fall 2022 10 / 45



Markov’s Inequality

Markov’s inequality

Let X be a non-negative random variable over a probability space
(Ω, Pr) and let µ = E[X ]. For any t > 0, Pr[X ≥ tµ] ≤ 1/t.
Equivalently, for any a > 0, Pr[X ≥ a] ≤ µ

a .

Meaningful only when t > 1. Example: Pr[X ≥ 3µ] ≤ 1/3. Proof?

Simple averaging argument.
Split range of X into two disjoint intervals I1 = [0, tµ) and
I2 = [tµ,∞). This is because X is non-negative.

If Pr[X ∈ I2] > 1/t then E[X ] > (1/t)(tµ) > µ a contradiction!

Chandra (UIUC) CS498ABD 10 Fall 2022 10 / 45



Markov’s Inequality

Markov’s inequality

Let X be a non-negative random variable over a probability space
(Ω, Pr) and let µ = E[X ]. For any t > 0, Pr[X ≥ tµ] ≤ 1/t.
Equivalently, for any a > 0, Pr[X ≥ a] ≤ µ

a .

Meaningful only when t > 1. Example: Pr[X ≥ 3µ] ≤ 1/3. Proof?
Simple averaging argument.
Split range of X into two disjoint intervals I1 = [0, tµ) and
I2 = [tµ,∞). This is because X is non-negative.

If Pr[X ∈ I2] > 1/t then E[X ] > (1/t)(tµ) > µ a contradiction!

Chandra (UIUC) CS498ABD 10 Fall 2022 10 / 45



Markov’s Inequality

Markov’s inequality

Let X be a non-negative random variable over a probability space
(Ω, Pr) and let µ = E[X ]. For any t > 0, Pr[X ≥ tµ] ≤ 1/t.
Equivalently, for any a > 0, Pr[X ≥ a] ≤ µ

a .

Proof:

E[X ] =
∑
ω∈Ω X (ω) Pr[ω]

=
∑
ω, 0≤X (ω)<a X (ω) Pr[ω] +

∑
ω, X (ω)≥a X (ω) Pr[ω]

≥
∑
ω∈Ω, X (ω)≥a X (ω) Pr[ω]

≥ a
∑
ω∈Ω, X (ω)≥a Pr[ω]

= a Pr[X ≥ a]

Chandra (UIUC) CS498ABD 11 Fall 2022 11 / 45



Markov’s Inequality

Markov’s inequality

Let X be a non-negative random variable over a probability space
(Ω, Pr) and let µ = E[X ]. For any a > 0, Pr[X ≥ a] ≤ µ

a .
Equivalently, for any t > 0, Pr[X ≥ tµ] ≤ 1/t.

Proof:

E[X ] =
∫∞

0
zfX (z)dz

≥
∫∞
a zfX (z)dz

≥ a
∫∞
a fX (z)dz

= a Pr[X ≥ a]

Chandra (UIUC) CS498ABD 12 Fall 2022 12 / 45



Randomized QuickSort

Random variable Q = #comparisons made by randomized
QuickSort on an array of n elements.

We proved that E[Q] ≤ 2n ln n.

Question: What is Pr[Q ≥ 10n ln n]?

By Markov’s inequality at most 1/5.
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Chebyshev’s Inequality: Variance

Variance

Given a random variable X over probability space (Ω, Pr), variance of
X is the measure of how much does it deviate from its mean value.
Formally, Var(X ) = E[(X − E[X ])2] = E[X 2]− (E[X ])2

Derivation

Define Y = (X − E[X ])2 = X 2 − 2X E[X ] + E[X ]2.

Var(X ) = E[Y ]

= E[X 2]− 2 E[X ] E[X ] + E[X ]2

= E[X 2]− E[X ]2
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Tightness of Markov’s Inequality

Exercise: Prove that Markov’s inequality is tight.

More formally: for any given t > 1 describe a simple probability
space and a non-negative random variable X with µ = E[X ] finite
such that Pr[X ≥ tµ] = 1/t.

Thus, improving on Markov’s inequality requires additional
knowledge/assumption on distribution of X .
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Chebyshev’s Inequality: Variance

Independence

Random variables X and Y are called mutually independent if
∀x, y ∈ R, Pr[X = x ∧ Y = y ] = Pr[X = x ] Pr[Y = y ]

Lemma

If X and Y are independent random variables then
Var(X + Y ) = Var(X ) + Var(Y ).

Lemma

If X and Y are mutually independent, then E[XY ] = E[X ] E[Y ].
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Chebyshev’s Inequality

Chebyshev’s Inequality

If VarX <∞, for any a ≥ 0, Pr[|X − E[X ] | ≥ a] ≤ Var(X )

a2

Proof.

Y = (X − E[X ])2 is a non-negative random variable. Apply
Markov’s Inequality to Y for a2.

Pr[Y ≥ a2] ≤ E[Y ]/a2 ⇔ Pr[(X − E[X ])2 ≥ a2] ≤ Var(X )/a2

⇔ Pr[|X − E[X ] | ≥ a] ≤ Var(X )/a2

Pr[X ≤ E[X ]− a] ≤ Var(X )/a2 AND
Pr[X ≥ E[X ] + a] ≤ Var(X )/a2
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Chebyshev’s Inequality

Chebyshev’s Inequality

Given a ≥ 0, Pr[|X − E[X ] | ≥ a] ≤ Var(X )

a2 equivalently for any

t > 0, Pr[|X − E[X ] | ≥ tσX ] ≤ 1
t2 where σX =

√
Var(X ) is the

standard deviation of X .
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Example: Random walk on the line

Start at origin 0. At each step move left one unit with
probability 1/2 and move right with probability 1/2.

After n steps how far from the origin?

At time i let Xi be −1 if move to left and 1 if move to right.
Yn position at time n
Yn =

∑n
i=1 Xi

E[Yn] = 0 and Var(Yn) =
∑n

i=1 Var(Xi ) = n

By Chebyshev: Pr
[
|Yn| ≥ t

√
n
]
≤ 1/t2
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Chernoff Bound: Motivation

In many applications we are interested in X which is sum of
independent and bounded random variables.

X =
∑k

i=1 Xi where Xi ∈ [0, 1] or [−1, 1] (normalizing)

Chebyshev not strong enough. For random walk on line one can prove

Pr
[
|Yn| ≥ t

√
n
]
≤ 2exp(−t2/2)

Chandra (UIUC) CS498ABD 20 Fall 2022 20 / 45



Chernoff Bound: Non-negative case

Lemma

Let X1, . . . ,Xk be k independent binary random variables such that,
for each i ∈ [k], E[Xi ] = Pr[Xi = 1] = pi . Let X =

∑k
i=1 Xi . Then

E[X ] =
∑

i pi .

Upper tail bound: For any µ ≥ E[X ] and any δ > 0,

Pr[X ≥ (1 + δ)µ] ≤ (
eδ

(1 + δ)(1+δ)
)µ

Lower tail bound: For any 0 < µ < E[X ] and any 0 < δ < 1,

Pr[X ≤ (1− δ)µ] ≤ (
e−δ

(1− δ)(1−δ)
)µ
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Chernoff Bound: Non-negative case,
simplifying

When 0 < δ < 1 an important regime of interest we can simplify.

Lemma

Let X1, . . . ,Xk be k independent random variables such that, for
each i ∈ [1, k], Xi equals 1 with probability pi , and 0 with

probability (1− pi ). Let X =
∑k

i=1 Xi and µ = E[X ] =
∑

i pi . For
any 0 < δ < 1, it holds that:

Pr[X ≥ (1 + δ)µ] ≤ e
−δ2µ

3

Pr[X ≤ (1− δ)µ] ≤ e
−δ2µ

2

Hence by union bound: Pr[|X − µ| ≥ δµ] ≤ 2e
−δ2µ

3
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Chernoff Bound: Non-negative case

Important: non-negative case bound depends only on µ, not on k .

Regimes of interest for δ for upper tail.

0 ≤ δ < 1: Pr[X ≥ (1 + δ)µ] ≤ e−
δ2

3
·µ

δ ≥ 1: Pr[X ≥ (1 + δ)µ] ≤ e−
δ
3
·µ

(useful when δ is close to a small constant)

δ ≥ 1: Pr[X ≥ (1 + δ)µ] ≤ e−
(1+δ) ln(1+δ)

4
·µ.

(useful when δ is large)
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Chernoff Bound: general

Lemma

Let X1, . . . ,Xk be k independent random variables such that, for
each i ∈ [1, k], Xi ∈ [−1, 1].

Let X =
∑k

i=1 Xi . For any a > 0,

Pr[|X − E[X ] | ≥ a] ≤ 2exp(
−a2

2n
).

When variables are not positive the bound depends on n while in the
non-negative case there is no dependence on n (dimension-free)
Applying to random walk:

Pr
[
|Yn| ≥ t

√
n
]
≤ 2exp(−t2/2).
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Extensions and variations

Hoeffding extension: Theorems hold as long as Xi is bounded —
variables do not have to be {0, 1}.

For non-negative Xi ∈ [0, 1]

For general Xi ∈ [−1, 1]

Averaging version: Bound X = 1
k (
∑k

i=1 Xi ) instead of the sum.
Use variable Y = kX and bound on Y .

Scaling variables: If Xi is in [0,B] use Yi = Xi/B.

Shifting variables: If Xi ∈ [ai , bi ] where bi − ai is small consider
Yi = Xi − ai .

Many variations and generalization. See pointers on course webpage.
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Part II

Balls and Bins
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Balls and Bins

m balls and n bins

Each ball thrown independently and uniformly in a bin

Want to understand properties of bin loads

Fundamental problem with many applications

Zij indicator for ball i falling into bin j
Xj =

∑m
i=1 Zij is number of balls in bin j∑n

j=1 Zij = 1 deterministically

E[Zij ] = 1/n for all i , j , and hence E[Xj ] = m/n for each bin j
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Maximum load

Question: Suppose we throw n balls into n bins. What is the
expectation of the maximum load?

Theorem

Let Y = maxn
j=1 Xj be the maximum load. Then

Pr[Y > 10 ln n/ ln ln n] < 1/n2 (high probability) and hence

E[Y ] = O(ln n/ ln ln n).

One can also show that E[Y ] = Θ(ln n/ ln ln n).
Proof technique: combine Chernoff bound and union bound which is
powerful and general template
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Maximum load

Focus on bin 1 without loss of generality since bins are symmetric.
Simplifying notation X =

∑
i Zi where X is load of bin 1 and Zi is

indicator of ball i falling in bin.

Want to know Pr[X ≥ 12 ln n/ ln ln n]

µ = E[X ] = 1

(1 + δ) = 12 ln n/ ln ln n. We are in large δ setting

Apply the Chernoff upper tail bound (with simplification) :

Pr[X ≥ (1 + δ)µ] ≤ e−
(1+δ) ln(1+δ)

4
·µ

Calculate/simplify and see that Pr[X ≥ 12 ln n/ ln ln n] ≤ 1/n3
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Maximum load

For each bin j , Pr[Xj ≥ 12 ln n/ ln ln n] ≤ 1/n3

Let Aj be event that Xj ≥ 12 ln n/ ln ln n
By union bound

Pr[∪jAj ] ≤
∑

j

Pr[Aj ] ≤ n · 1/n3 ≤ 1/n2.

Hence, with probability at least (1− 1/n2) no bin has load
more than 12 ln n/ ln ln n.

Let Y = maxj Xj . Y ≤ n. Hence

E[Y ] ≤ (1− 1/n2)(12 ln n/ ln ln n) + (1/n2)n.
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From a ball’s perspective

Consider a ball i . How many other balls fall into the same bin as i?

Ball i is thrown first wlog. And lands in some bin j .

Then the other n − 1 balls are thrown.

Now bin j is fixed. Hence expected load on bin j is (1− 1/n).

What is variance? What is a high probability bound?
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Part III

Approximate Median

Chandra (UIUC) CS498ABD 32 Fall 2022 32 / 45



Approximate median

Input: n distinct numbers a1, a2, . . . , an and 0 < ε < 1/2

Output: A number x from input such that
(1− ε)n/2 ≤ rank(x) ≤ (1 + ε)n/2

Algorithm:

Sample with replacement k numbers from a1, a2, . . . , an

Output median of the sampled numbers

Theorem

For any 0 < ε < 1/2 and 0 < δ < 1, if k = Ω( 1
ε2 log(1/δ)), the

algorithm outputs an ε-approximate median with probability at least
(1− δ).
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Approximate median

Let S be random sample chosen by algorithm

Imagine sorting the numbers

Split numbers into L (left), M (middle), and R (right)

M = {y | (1− ε)n/2 ≤ rank(y) ≤ (1 + ε)n/2}
Algorithm makes a mistake only if |S ∩ L| ≥ k/2 or
|S ∩ R| ≥ k/2. Otherwise it will output a number from M .

Lemma

Pr[|S ∩ L| ≥ k/2] ≤ δ/2 if k ≥ 10
ε2 log(1/δ).
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Analysis

Let Y = |S ∩ L|? What is E[Y ]?

Y =
∑k

i=1 Xi where Xi is indicator of sample i falling in L.
Hence E[Y ] = k(1− ε)/2

Use Chernoff bound: Pr[Y ≥ k/2] ≤ δ/2 if k ≥ 10
ε2 log(1/δ).
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Analysis continued

Pr[|S ∩ L| ≥ k/2] ≤ δ/2 if k ≥ 10
ε2 log(1/δ).

By symmetry: Pr[|S ∩ R| ≥ k/2] ≤ δ/2 if k ≥ 10
ε2 log(1/δ).

By union bound at most δ probability that |S ∩ L| ≥ k/2 or
|S ∩ R| ≥ k/2.

Hence with (1− δ) probability median of S is an ε-approximate
median
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Part IV

Randomized QuickSort (Contd.)
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Randomized QuickSort: Recall

Input: Array A of n numbers. Output: Numbers in sorted order.

Randomized QuickSort
1 Pick a pivot element uniformly at random from A.

2 Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them.

Note: On every input randomized QuickSort takes O(n log n) time
in expectation. On every input it may take Ω(n2) time with some
small probability.
Question: With what probability it takes O(n log n) time?
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Randomized QuickSort: High Probability
Analysis

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that Pr[Q(A) ≤ 32n ln n] ≥ 1− 1/n3.

If n = 100 then this gives Pr[Q(A) ≤ 32n ln n] ≥ 0.99999.
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Randomized QuickSort: High Probability
Analysis

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that Pr[Q(A) ≤ 32n ln n] ≥ 1− 1/n3.

Outline of the proof

If depth of recursion is k then Q(A) ≤ kn.

Prove that depth of recursion ≤ 32 ln n with high probability.
Which will imply the result.

1 Focus on a fixed element. Prove that it “participates” in
> 32 ln n levels with probability at most 1/n4.

2 By union bound, any of the n elements participates in > 32 ln n
levels with probability at most 1/n3.

3 Therefore, all elements participate in ≤ 32 ln n w.p. (1− 1/n3).
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Useful lemma

Lemma

Consider h = 32 ln n for n sufficiently large integer. Consider h
independent unbiased coin tosses X1,X2, . . . ,Xh and let A be the
event that there are less than 4 ln n heads. Then Pr[A] ≤ 1/n4.

Apply Chernoff bound (lower tail).

Xi = 1 if i is head, 0 otherwise. Let Y =
∑h

i=1 Xi is number of
heads.

µ = E[Y ] = h/2 = 16 ln n.

Pr[A] = Pr[Y < 4 ln n] = Pr[Y < µ/4].

By Chernoff bound: Pr[Y ≤ (1− δ)µ] ≤ exp(−δ2µ/2).
Using δ = 3/4 we have Pr[A] ≤ exp(−4.5 ln n) ≤ 1/n4.5.
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Randomized QuickSort: High Probability
Analysis

Fix an element s ∈ A. We will track it at each level.
Let Si be the partition containing s at i th level.
S1 = A and Sk = {s} where k is the last level for s (note k is
a random variable). Define S` = {s} for all k ≤ ` ≤ n for
technical convenience

We call s lucky in i th iteration, if balanced split:
|Si+1| ≤ (3/4)|Si | and |Si \ Si+1| ≤ (3/4)|Si |.
If ρ =#lucky rounds in first h rounds, then
|Sh| ≤ (3/4)ρn.
If h ≥ ρ = 4 ln n then Sh ≤ 1 implies s done.

Lemma

Fix h = 32 ln n. |Sh| > 1 only if less then 4 ln n lucky rounds for s
in the first h rounds.
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How may rounds before 4 ln n lucky rounds?

Fix element s and h = 32 ln n.

Xi = 1 if s is lucky in iteration i

Observation: X1, . . . ,Xh are independent variables.

Pr[Xi = 1] = 1
2

Why?

Thus s not done after h iterations only if less than 4 ln n lucky
rounds in h rounds. Use Lemma to see probability less than
1/n4.
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Randomized QuickSort w.h.p. Analysis

n input elements. Probability that depth of recursion in
QuickSort > 32 ln n is at most 1

n4 ∗ n = 1
n3 .

Theorem

With high probability (i.e., 1− 1
n3 ) the depth of the recursion of

QuickSort is ≤ 32 ln n. Due to n comparisons in each level, with
high probability, the running time of QuickSort is O(n ln n).
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