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Logistics

Website has most of the relevant information. Ask if you are
unsure.

All announcements on Ed. Check regularly (once a day). Use
private posts on Ed to communicate with course staff for
non-urgent matters. Use email to instructor/TA if matter is
time-sensitive or confidential.

All homeworks and project to be submitted via Gradescope

Exam logistics not finalized yet. Will be announced soon.
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Covid-19

Situation has improved but still need to take precautions

We will follow university guidelines.

Important: If you have symptoms, test. If positive need to
isolate, see univ policies.

Informal advice/recommendation: when in doubt please
mask even if you test negative

Seek help promptly and early if you have any health issues or
concerns. Do not be shy about contacting course staff for any
accommodations that you may need.

No online lectures but past videos have most of the content.
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Homework, Exams and Grading Policies

Grade based on:

4-5 homeworks for 40% (to be submitted on Gradescope)

No late submissions by default
Will drop few problems to compensate

2 midterms for total 40%

project for 20%

Homework is biweekly but one problem due first week to strongly
encourage work each week.
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Other important issues

Academic integrity: be aware of the rules as well as your
conscience

Disability resources: If you have/need DRES accommodations
please contact instructor as soon as possible.

Mental health

Anti-racism, inclusivity, bias, sexual harassment and reporting,
religious observances, FERPA rights. CS code of conduct and
CS CARES. See webpage with links to CS department, College
of Engineering and Campus resources and information.

Do not hesitate to approach the course staff.
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Course Topics

This is a theory course focused on rigorous guarantees and formal
analysis of algorithms. Practical applications will be discussed but
not the main focus.

Background in probability/randomized algorithms and some
technical tools
Streaming model and algorithms in the model

Sampling
Frequency moments
Sketching
Quantiles and selection
Graph streams and sketches

Dimensionality reduction and related topics

Similarity estimation, locality sesitivity hashing

Coresets and clustering

Fast numerical linear algebra
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Applications of course material

Mining Massive Data Sets by Leskovic, Rajaraman, Ullman.
Book, MOOC and Slides at www.mmds.org.

Apache DataSketches: a software library for stochastic
streaming algorithms. datasketches.apache.org
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Part I

Streaming Model
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Streaming model

The input consists of m objects/items/tokens e1, e2, . . . , em
that are seen one by one by the algorithm.

The algorithm has “limited” memory say for B tokens where
B < m (often B � m) and hence cannot store all the input

Want to compute interesting functions over input

Some examples:

Each token in a number from [n]

High-speed network switch: tokens are packets with source,
destination IP addresses and message contents.

Each token is an edge in graph (graph streams)

Each token in a point in some feature space

Each token is a row/column of a matrix

Question: What are the tradeoffs between memory size, accuracy,
randomness and other resources?
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Streaming model: motivation/connections

Very large but slow storage (tape, slow disk) that is suited for
sequential access and fast main memory. Read data in one (or
more) passes from slow medium.

Scenarios such as network switches, sensors etc where huge
amount of data is flying by and cannot be stored (due to cost or
privacy/legal reasons) but one wants only high-level statistics.

Distributed computing. Data stored in multiple machines.
Cannot send all data to central location. Streaming algorithms
can simulate a class of algorithms that exchange small amount
of data. Leads to sketching.
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Streaming model: some early papers

Munro, J. Ian; Paterson, Mike (1978). ”Selection and Sorting
with Limited Storage”. 19th Annual Symposium on Foundations
of Computer Science, 1978.

Morris, Robert (1978), ”Counting large numbers of events in
small registers”, Communications of the ACM.

Misra, J.; Gries, David (1982). ”Finding repeated elements”.
Science of Computer Programming.

Flajolet, Philippe; Martin, G. Nigel (1985). ”Probabilistic
counting algorithms for data base applications”. JCSS.

Alon, Noga; Matias, Yossi; Szegedy, Mario (1996), ”The space
complexity of approximating the frequency moments”,
Proceedings of 28th STOC. Winner of the Goedal Prize in TCS.
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Streaming: Approximation and
Randomization

Question: What are the tradeoffs between memory size, accuracy,
randomness and other resources?

Ideal scenario: compute some quantity of interest in very little
space compared to input stream length and deterministically.

Sub-linear: say
√

m tokens where m is length of stream

Near-optimal: O(poly(log m))

Bad news: For even very simple problems strong lower bounds
(essentially linear sapce) if one wants exact answers

Good news: Several interesting and useful results if one allows
randomization and approximation
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Part II

Sampling
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Sampling

Random sampling is a powerful and general tool in data analysis. We
will see several variants and applications.

Pick a small random set S from a large set

Estimate quantity of interest on S instead of entire data set

Analysis relies on sampling strategy, sample size, and estimation
algorithm

Basic sampling strategy: uniform sample of size k from set of size m
with replacement: pick a uniformly random number i ∈ [m] and
repeat independently k times. same element can be picked
multiple times

without replacement: pick a single set uniformly from all sets of
size k (of cardinality

(m
k

)
).
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Reservoir Sampling

Question: How do we pick a single uniform sample without knowing
length of stream in advance?

How do we pick if we knew the length of stream in advance?

Say length is m
Pick a random integer r in {1, 2, . . . ,m}
Store r ’th element of stream as sample

Assumption: Algorithm has access to random numbers/bits.

Digression: Suppose algorithm has access only to random bits. How
can one choose a random integer r in {1, 2, . . . ,m}?
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Digression: Rejection Sampling

Suppose algorithm has access only to random bits. How can one
choose a random integer r in {1, 2, . . . ,m}?

Let k = dlog me
Use k random bits to generate an integer r uniformly in
{1, 2, . . . , 2k}
If r ∈ {1, 2, . . . ,m} output r Else reject r and repeat

Question: What is expected number of iterations to generate a
“good sample”? At most 2. Why?
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Reservoir Sampling

Question: How do we pick a single uniform sample without knowing
length of stream in advance?

UniformSample:
s ← null
m ← 0
While (stream is not done)

m ← m + 1
em is current item
Toss a biased coin that is heads with probability 1/m
If (coin turns up heads)

s ← em
endWhile
Output s as the sample
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Reservoir Sampling: Claim

Lemma

Let m be the length of the stream. The output of the algorithm s is
uniform. That is, for any 1 ≤ j ≤ m, Pr[s = ej ] = 1/m.

Proof.

We observe that s = ej if ej is chosen when it is considered by the
algorithm (which happens with probability 1

j ), and none of
ej+1, . . . , em are chosen to replace ej . All the relevant events are
independent and we can compute:
Pr[s = ej ] = 1

j ×
∏

i>j (1− 1/i) = 1/m.

Can also prove by induction on m.
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Reservoir Sampling: k samples

Want to pick k samples for k > 1. How?

With replacement. Easy, simply run single sample algorithm
independently in parallel and store the k samples.

Without replacement?
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k samples without replacement

Sample-without-Replacement(k):
S[1..k]← null
m ← 0
While (stream is not done)

m ← m + 1
em is current item
If (m ≤ k) S[m]← em
Else

r ← uniform random number in range [1..m]
If (r ≤ k) S[r ]← em

endWhile
Output S

Exercise: Prove correctness of algorithm.
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k samples without replacement: alternative

Sample-without-Replacement(k):
S[1..k]← null
m ← 0
While (stream is not done)

m ← m + 1, em is current item
Pick random real number θm ∈ (0, 1)
Store in S the min{k,m} items with largest θ values

endWhile
Output S

Exercise: How will you implement in streaming setting with O(k)
space? Prove correctness of algorithm.
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Weighted Sampling

Stream has m items e1, . . . , em. Each item has weight wi > 0.
Want to pick item i in proportion to weight (useful in various
settings). Formally Pr[ei is chosen] = wi/W where W =

∑m
i=1 wi .

Single Weighted Sample:
s ← null, m ← 0, W = 0
While (stream is not done)

m ← m + 1, W ← W + wm
em is current item
Toss a biased coin that is heads with probability wm/W
If (coin turns up heads)

s ← em
endWhile
Output s as the sample
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Weighted Sampling: k samples

With replacement is easy. Without replacement? What does
sampling without replacement mean?

If k = 0 do nothing. Else sample one item in proportion to weight,
remove from set and recurse with k − 1.

How to implement above in streaming without knowing full sequence
in advance?

Chandra (UIUC) CS498ABD 23 Fall 2022 23 / 33



Weighted Sampling: k samples

With replacement is easy. Without replacement? What does
sampling without replacement mean?

If k = 0 do nothing. Else sample one item in proportion to weight,
remove from set and recurse with k − 1.

How to implement above in streaming without knowing full sequence
in advance?

Chandra (UIUC) CS498ABD 23 Fall 2022 23 / 33



Weighted Sampling: k samples

With replacement is easy. Without replacement? What does
sampling without replacement mean?

If k = 0 do nothing. Else sample one item in proportion to weight,
remove from set and recurse with k − 1.

How to implement above in streaming without knowing full sequence
in advance?

Chandra (UIUC) CS498ABD 23 Fall 2022 23 / 33



Weighted Sampling: k samples

Offline algorithm.

Weighted-Sample-without-Replacement(k):

For i = 1 to m do
θi ← uniform random number in interval (0, 1)

w ′i = θ
1/wi
i

endFor
Sort items in decreasing order according to w ′i values
Output the first k items from the sorted order

Exercise: describe a streaming implementation with O(k) space.
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Analysis

Lemma

For 1 ≤ j ≤ m let Xj = θ
1/wj
j . Then Pr[Xi = maxj Xj ] = wi/W .

Assuming lemma: picking top k values amongst X1, . . . ,Xm is same
as picking in sequence without replacement due to independence in
the choice of θi values.

More formally

Pr[Xi ′ is second largest | Xi is largest] = wi ′/(W − wi )
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A simpler claim

Claim

Let r1, r2 be independent unformly distributed random variables over

[0, 1] and let X1 = r 1/w1

1 and X2 = r 1/w2

2 where w1,w2 ≥ 0. Then

Pr[X2 ≥ X1] =
w2

w1 + w2

.

Suppose X = r 1/w where w > 0 is fixed and r is chosen uniformly
at random from [0, 1]. What are the cumulative density function FX
and density function fX of X? Note that X ∈ [0, 1].

FX (t) = Pr[X ≤ t] = Pr[r 1/w ≤ t] = Pr[r ≤ tw ] = tw .

Hence fX (t) = d
dtFX (t) = wtw−1.
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Proof of Claim

Pr[X1 ≤ X2] =

∫ 1

0

FX1(t)fX2(t)dt

=

∫ 1

0

tw1w2tw2−1dt

=
w2

w1 + w2

.

Chandra (UIUC) CS498ABD 27 Fall 2022 27 / 33



Proof of Lemma

Pr[Xi is max] =

∫ 1

0

∏
j 6=i

FXj (t)

 fXi (t)dt

=

∫ 1

0

tW−wi wi twi−1dt

=

∫ 1

0

tW−1widt

=
wi

W
.
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Part III

Mean and Median via Sampling
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Mean and Median

Suppose we have a list of n numbers a1, a2, . . . , an

Mean: average value =
∑n

i=1 ai/n
Median: middle number after sorting

Two important statistics about numerical data. Can be computed in
O(n) time. Mean is trivial. Median is not so obvious.

Can we compute them in streaming setting? How do we estimate if
data is not easily accessible or very large?
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Median estimation via Sampling

Sample k elements from a1, a2, . . . , an. Let S be sample.

Compute median of S and output it

Will see soon proof of the following.

Theorem

If k = Ω( 1
ε2

log 1
δ

) algorithm outputs an ε-approximate median with
probability at least (1− δ).
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Mean estimation via Sampling

Assume a1, . . . , an > 0

Sample k elements from a1, a2, . . . , an. Let S be sample.

Compute mean of S and output it

Question: Can uniform sampling give a good estimate?

Mean is sensitive to outliers. How do we overcome this?

Show that estimation works when there are no outliers

Use importance sampling if/when possible
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