CS 498ABD: Algorithms for Big Data

Coresets

Lecture 25 Dec 3, 2020

Dealing with Big Data

Compute a smaller summary quickly, and use summary instead of original data

- Sampling
- Sketching
- Dimensionality reduction (JL, Subspacee embeddings)
- Streaming summaries
- • •

Dealing with Big Data

Compute a smaller summary quickly, and use summary instead of original data

- Sampling
- Sketching
- Dimensionality reduction (JL, Subspacee embeddings)
- Streaming summaries
- • •

Today: Coresets a technique from computational geometry

Coresets

 \mathcal{P} : a collection of n points in \mathbb{R}^d

Want to compute some function $f(\mathcal{P})$

- k-cluster P according to some objective (k-means, k-median, k-center etc)
- find smallest radius ball that encloses P

Chandra (UIUC) CS498ABD 3 Fall 2020 3 / 19

Coresets

 \mathcal{P} : a collection of n points in \mathbb{R}^d

Want to compute some function $f(\mathcal{P})$

- k-cluster P according to some objective (k-means, k-median, k-center etc)
- ullet find smallest radius ball that encloses ${\cal P}$

Coreset: $\mathcal Q$ s.t. $|\mathcal Q|$ small and $f(\mathcal Q) \simeq f(\mathcal P)$

- Depends on f
- Ideally, Q should be computable quickly

Coresets

 \mathcal{P} : a collection of n points in \mathbb{R}^d

Want to compute some function $f(\mathcal{P})$

- k-cluster P according to some objective (k-means, k-median, k-center etc)
- ullet find smallest radius ball that encloses ${\cal P}$

Coreset: $\mathcal Q$ s.t. $|\mathcal Q|$ small and $f(\mathcal Q) \simeq f(\mathcal P)$

- Depends on f
- Ideally, Q should be computable quickly

Originally $\mathcal{Q} \subset \mathcal{P}$ (or a weighted subset) and hence name coreset

Chandra (UIUC)

Part I

Minimum Enclosing Ball

Chandra (UIUC) CS498ABD 4 Fall 2020 4 / 19

Given n points $\mathcal{P} \in \mathbb{R}^d$ find smallest radius ball B(x,r) that $\mathcal{P} \subseteq B(x,r)$

Given n points $\mathcal{P} \in \mathbb{R}^d$ find smallest radius ball B(x,r) that $\mathcal{P} \subseteq B(x,r)$

Exact computation is difficult especially when d is large. Can reduce to convex quadratic optimization leading to arbitrarily good approximation.

Chandra (UIUC) CS498ABD 5 Fall 2020 5 / 19

Given n points $\mathcal{P} \in \mathbb{R}^d$ find smallest radius ball B(x,r) that $\mathcal{P} \subseteq B(x,r)$

Exact computation is difficult especially when d is large. Can reduce to convex quadratic optimization leading to arbitrarily good approximation.

Theorem

For any $\mathcal{P} \in \mathbb{R}^d$ there is a set $\mathcal{Q} \subseteq \mathcal{P}$ such that $|\mathcal{Q}| \leq 2/\epsilon$ and MEB of \mathcal{Q} is a $\frac{1}{1+\epsilon}$ approximation to MEB of \mathcal{P} .

 \mathcal{Q} is an ϵ -coreset for \mathcal{P} .

Chandra (UIUC) CS498ABD 5 Fall 2020 5 / 19

Given n points $\mathcal{P} \in \mathbb{R}^d$ find smallest radius ball B(x,r) that $\mathcal{P} \subseteq B(x,r)$

Exact computation is difficult especially when d is large. Can reduce to convex quadratic optimization leading to arbitrarily good approximation.

Theorem

For any $\mathcal{P} \in \mathbb{R}^d$ there is a set $\mathcal{Q} \subseteq \mathcal{P}$ such that $|\mathcal{Q}| \leq 2/\epsilon$ and MEB of \mathcal{Q} is a $\frac{1}{1+\epsilon}$ approximation to MEB of \mathcal{P} .

 \mathcal{Q} is an ϵ -coreset for \mathcal{P} .

No dependence on n or d! Differs from sampling/sketching approaches

Chandra (UIUC)

MEB Algorithm

 $c_i \leftarrow$ MEB center of S_{i-1} $p_i \leftarrow rg \max_{p \in \mathcal{P}} d(p, c_i)$ $S_i = S_{i-1} \cup \{p\}$ end for

Output S_T

MEB Algorithm

```
\begin{aligned} \mathsf{MEB\text{-}Coreset:} \\ S_1 &\leftarrow \{ \mathsf{arbitrary} \ p \in \mathcal{P} \} \\ \mathsf{for} \ i = 2 \ \mathsf{to} \ T \ \mathsf{do} \\ c_i &\leftarrow \mathsf{MEB} \ \mathsf{center} \ \mathsf{of} \ S_{i-1} \\ p_i &\leftarrow \mathsf{arg} \max_{p \in \mathcal{P}} d(p, c_i) \\ S_i &= S_{i-1} \cup \{ p \} \\ \mathsf{end} \ \mathsf{for} \\ \mathsf{Output} \ S_T \end{aligned}
```

Claim: If $T = 2/\epsilon$ then S_T is an ϵ -coreset for \mathcal{P} .

Analysis: basic lemma about MEB

Lemma

Suppose MEB of \mathcal{P} is defined by center \mathbf{c} and radius \mathbf{R} . Then for every closed half space \mathbf{H} containing \mathbf{c} there is a point $\mathbf{p} \in \mathcal{P} \cap \mathbf{H}$ such that $\mathbf{d}(\mathbf{p}, \mathbf{c}) = \mathbf{R}$.

Analysis: basic lemma about MEB

Lemma

Suppose MEB of \mathcal{P} is defined by center c and radius R. Then for every closed half space H containing c there is a point $p \in \mathcal{P} \cap H$ such that d(p,c) = R.

Proof by contradiction: if not true, for some $\delta>0$, $d(p,c)\leq R-\delta$ for all $p\in\mathcal{P}\cap H$ (using closedness here). Consider ball of radius R around c. Shifting ball by $\delta/2$ orthogonal to H will create new ball with all points in \mathcal{P} strictly contained inside it. Implies we can shrink ball contradicting the optimality of R.

Chandra (UIUC) CS498ABD 7 Fall 2020 7 / 19

 c_i MEB center of S_i and r_i radius for S_i .

Let R be optimum radius for \mathcal{P} . We have $r_i \leq R$ for all i since $S_i \subseteq \mathcal{P}$. Also $r_{i+1} \geq r_i$ for all i since $S_i \subseteq S_{i+1}$.

Chandra (UIUC) CS498ABD 8 Fall 2020 8 / 19

 c_i MEB center of S_i and r_i radius for S_i .

Let R be optimum radius for \mathcal{P} . We have $r_i \leq R$ for all i since $S_i \subseteq \mathcal{P}$. Also $r_{i+1} \geq r_i$ for all i since $S_i \subseteq S_{i+1}$.

Observation: Let $q \in \mathcal{P} \setminus S_i$ be farthest point from c_i . If $d(c_i, q) = r_i$ then $R \leq r_i$ which implies $r_i = R$.

 c_i MEB center of S_i and r_i radius for S_i .

Let R be optimum radius for \mathcal{P} . We have $r_i \leq R$ for all i since $S_i \subseteq \mathcal{P}$. Also $r_{i+1} \geq r_i$ for all i since $S_i \subseteq S_{i+1}$.

Observation: Let $q \in \mathcal{P} \setminus S_i$ be farthest point from c_i . If $d(c_i, q) = r_i$ then $R \leq r_i$ which implies $r_i = R$.

Hence interesting case is when $d(c_i, q) > r_i$. Which implies $r_{i+1} > r_i$. How much bigger does r_{i+1} get?

Define $\lambda_i = \frac{r_i}{R}$.

Lemma

Either
$$r_i = R$$
 or $\lambda_{i+1} \geq \frac{1+\lambda_i^2}{2}$.

Assuming lemma and solving recurrence, $\lambda_i \geq (1 - \frac{1}{1 + \frac{i}{2}})$. Thus, if $T = 2/\epsilon$, $\lambda_T \geq \frac{1}{1 + \epsilon}$.

 Chandra (UIUC)
 CS498ABD
 9
 Fall 2020
 9 / 19

Exists $q \in \mathcal{P} \setminus S_i$ such that $d(c_i, q) > R$. Let $\delta_i = d(c_{i+1}, c_i)$ be amount that center moves. $\delta_i > 0$ since $d(c_i, q) > R$.

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 19

Exists $q \in \mathcal{P} \setminus S_i$ such that $d(c_i, q) > R$. Let $\delta_i = d(c_{i+1}, c_i)$ be amount that center moves. $\delta_i > 0$ since $d(c_i, q) > R$.

Two lower bounds on r_{i+1}

• By triangle inequality between c_i , c_{i+1} , q we have $d(c_i, c_{i+1}) + d(c_{i+1}, q) \ge d(c_i, q)$ which implies that $\delta_i + r_{i+1} \ge R$ and hence $r_{i+1} \ge R - \delta_i$.

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 19

Exists $q \in \mathcal{P} \setminus S_i$ such that $d(c_i, q) > R$. Let $\delta_i = d(c_{i+1}, c_i)$ be amount that center moves. $\delta_i > 0$ since $d(c_i, q) > R$.

Two lower bounds on r_{i+1}

- By triangle inequality between c_i , c_{i+1} , q we have $d(c_i, c_{i+1}) + d(c_{i+1}, q) \ge d(c_i, q)$ which implies that $\delta_i + r_{i+1} \ge R$ and hence $r_{i+1} \ge R \delta_i$.
- Consider closed half space H containing c_i orthogonal to line segement connecting c_i and c_{i+1} (and not containing c_{i+1}). By basic lemma there exists $p \in S_i$ such that $d(c_i, p) = r_i$. Implies $r_{i+1} \ge d(c_{i+1}, p) \ge \sqrt{r_i^2 + \delta_i^2}$.

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 19

Exists $q \in \mathcal{P} \setminus S_i$ such that $d(c_i, q) > R$. Let $\delta_i = d(c_{i+1}, c_i)$ be amount that center moves. $\delta_i > 0$ since $d(c_i, q) > R$.

Two lower bounds on r_{i+1}

- By triangle inequality between c_i , c_{i+1} , q we have $d(c_i, c_{i+1}) + d(c_{i+1}, q) \ge d(c_i, q)$ which implies that $\delta_i + r_{i+1} \ge R$ and hence $r_{i+1} \ge R \delta_i$.
- Consider closed half space H containing c_i orthogonal to line segement connecting c_i and c_{i+1} (and not containing c_{i+1}). By basic lemma there exists $p \in S_i$ such that $d(c_i, p) = r_i$. Implies $r_{i+1} \ge d(c_{i+1}, p) \ge \sqrt{r_i^2 + \delta_i^2}$.

Therefore $\lambda_{i+1} = \frac{r_{i+1}}{R} \geq \frac{1}{R} \max(R - \delta_i, \sqrt{r_i^2 + \delta_i^2})$.

$$\lambda_{i+1} = \frac{r_{i+1}}{R} \ge \frac{1}{R} \max \left\{ R - \delta_i, \sqrt{r_i^2 + \delta_i^2} \right\}$$

Minimized when $R - \delta_i = \sqrt{r_i^2 + \delta_i^2} = \sqrt{\lambda_i^2 R^2 + \delta_i^2}$ which is when $\delta_i = \frac{(1-\lambda_i^2)R}{2}$.

Chandra (UIUC) CS498ABD 11 Fall 2020 11 / 19

$$\lambda_{i+1} = \frac{r_{i+1}}{R} \ge \frac{1}{R} \max \left\{ R - \delta_i, \sqrt{r_i^2 + \delta_i^2} \right\}$$

Minimized when $R - \delta_i = \sqrt{r_i^2 + \delta_i^2} = \sqrt{\lambda_i^2 R^2 + \delta_i^2}$ which is when $\delta_i = \frac{(1-\lambda_i^2)R}{2}$.

Thus

$$\lambda_{i+1} = \frac{r_{i+1}}{R} \ge \frac{R - \frac{(1-\lambda_i^*)R}{2}}{R} \ge \frac{1 + \lambda_i^2}{2}$$

which finishes the proof.

Streaming Coresets

Suppose p_1, p_2, \dots, p_n come in a stream. Can we compute a small coreset for \mathcal{P} ?

Streaming Coresets

Suppose p_1, p_2, \dots, p_n come in a stream. Can we compute a small coreset for \mathcal{P} ?

Can use Merge and Reduce approach for MEB to maintain an ϵ -coreset storing $O(\frac{\log^2 n}{\epsilon})$ points

Chandra (UIUC) CS498ABD 12 Fall 2020 12 / 19

Part II

Clustering

 Chandra (UIUC)
 CS498ABD
 13
 Fall 2020
 13 / 19

Clustering

Given n objects/items \mathcal{P} and integer k find partition of \mathcal{P} into k clusters C_1, \ldots, C_k of similar items

Huge topic with many approaches based on domain/application

Center based metric-space clustering:

- ullet (\mathcal{P},d) is metric space. d(p,q) is distance between p and q
- find centers $S = \{c_1, c_2, \dots, c_k\}$ such that $C_i = \{p \in \mathcal{P} : c_i \text{ is closest center to } p\}$.
- different objectives define different optimization problems:
 k-median, k-means, k-center etc
- choice of centers: $S \subset \mathcal{P}$ or S can be in ambient space if $\mathcal{P} \in \mathbb{R}^d$. Typically within factor of S in objective but clustering quality and algorithmic difficulty can be different.

k-median, k-means, k-center

Given \mathcal{P} and k find k centers S such that

- k-median: minimize $\sum_{p \in \mathcal{P}} d(p, S)$
- k-means: minimize $\sum_{p \in \mathcal{P}} (d(p, S))^2$
- k-center: minimize $\max_{p \in \mathcal{P}} d(p, S)$
- spacial cases of ℓ_p clustering: minimze $\sum_{p\in\mathcal{P}} (d(p,S))^p$ for some p>1.

Chandra (UIUC) CS498ABD 15 Fall 2020 15 / 19

Coresets for Clustering

Given \mathcal{P} , k and ϵ find weighted point set \mathcal{Q} such that clustering cost of \mathcal{Q} is ϵ -approximation to that of \mathcal{P} .

Two techniques:

- In geometric settings of low dimension via gridding techniques [HarPeled-Mazumdar]
- Higher dimensions and metric spaces [Chen, Feldman-Langberg] and many others using importance sampling

Many results including very recent work: size of coreset, running time to build coreset, dependence on d vs k, etc etc

Coresets for Clustering

Given \mathcal{P} , k and ϵ find weighted point set \mathcal{Q} such that clustering cost of \mathcal{Q} is ϵ -approximation to that of \mathcal{P} .

Some known results:

- $O(\text{poly}(k, \log n, 1/\epsilon))$ for a ϵ -approximate core set for k-median and k-means in general metric spaces [Chen'09]
- ullet $O(kd/\epsilon^2)$ for points in \mathbb{R}^d [Feldman-Langberg'11]
- $O(\text{poly}(k, 1/\epsilon))$ independent of dimension [Feldman-Schmidt-Sohler'13, Sohler-Woodruff'19]
- Dimension reduction to $O(k \log k/\epsilon^2)$ dimensions [Makarychev-Makarychev-Razenshteyn'19]

Importance Sampling for Coresets

High-level idea: Start with a crude approximation and use it for sampling [Chen]. Refined substantially later [Feldman-Langberg] and follow up work.

 (α, β) -bicriteria-approximation for k-clustering:

- centers S such that $|S| \leq \alpha k$
- ullet cost $(S,\mathcal{P}) \leq eta \cdot \operatorname{cost}(S^*,\mathcal{P})$ where S^* is an optimal center set

Here $\alpha, \beta \geq 1$. Both # of centers and cost approximate

Computing (α, β) -approximation fast is possible using various ideas.

Chandra (UIUC) CS498ABD 18 Fall 2020 18 / 19

Suppose S is an (α, β) -bicriteria-approximation for k-median $S = \{c_1, c_2, \ldots, c_h\}$ partitions \mathcal{P} into $\mathcal{P}_1, \ldots, \mathcal{P}_h$

$$cost(S, P) = \sum_{i=1}^{h} cost(c_i, P_i)$$

Chandra (UIUC) CS498ABD 19 Fall 2020 19 / 19

Suppose S is an (α, β) -bicriteria-approximation for k-median $S = \{c_1, c_2, \ldots, c_h\}$ partitions \mathcal{P} into $\mathcal{P}_1, \ldots, \mathcal{P}_h$

 $cost(S, P) = \sum_{i=1}^{h} cost(c_i, P_i)$ Intuitively treat as h separate 1-median problems.

Chandra (UIUC) CS498ABD 19 Fall 2020 19 / 19

Suppose S is an (α, β) -bicriteria-approximation for k-median $S = \{c_1, c_2, \ldots, c_h\}$ partitions \mathcal{P} into $\mathcal{P}_1, \ldots, \mathcal{P}_h$

 $cost(S, P) = \sum_{i=1}^{h} cost(c_i, P_i)$ Intuitively treat as h separate 1-median problems.

Consider c_1 and \mathcal{P}_1 . $cost(c_1, \mathcal{P}_1) = \sum_{p \in \mathcal{P}_1} d(p, c_1)$ Hence sample a point $p \in \mathcal{P}_i$ with probability $d(p, c_1)/cost(c_1, \mathcal{P}_1)$. Take several samples to control variance etc.

Chandra (UIUC) CS498ABD 19 Fall 2020 19 / 19

Suppose S is an (α, β) -bicriteria-approximation for k-median $S = \{c_1, c_2, \ldots, c_h\}$ partitions \mathcal{P} into $\mathcal{P}_1, \ldots, \mathcal{P}_h$

 $cost(S, P) = \sum_{i=1}^{h} cost(c_i, P_i)$ Intuitively treat as h separate 1-median problems.

Consider c_1 and \mathcal{P}_1 . $cost(c_1, \mathcal{P}_1) = \sum_{p \in \mathcal{P}_1} d(p, c_1)$ Hence sample a point $p \in \mathcal{P}_i$ with probability $d(p, c_1)/cost(c_1, \mathcal{P}_1)$. Take several samples to control variance etc.

Actual scheme and analysis more tricky. Have to argue that sampling is good for potentially $\binom{n}{k}$ clusterings; coreset size becomes poly $(k, \log n)$. Geometry/VC-Dimension analysis to avoid dependence on n and reduce to d. Can change d to k via dimensionality reduction (not easy).