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Some topics today

We have seen fast “approximation” algorithms for matrix
multiplication

random sampling

Using JL

Today:

Subspace embeddings for faster linear least squares and low-rank
approximation

Frequent directions algorithms for one/two pass approximate
SVD

Compressed Sensing
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Subspace Embedding

Question: Suppose we have linear subspace E of Rn of dimension
d . Can we find a projection Π : Rd → Rk such that for every
x ∈ E , ‖Πx‖2 = (1± ε)‖x‖2?

Not possible if k < d .

Possible if k = `. Pick Π to be an orthonormal basis for E .
Disadvantage: This requires knowing E and computing
orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based
on random projections
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Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of Rn of dimension d . Let Π be a
DJL matrix Π ∈ Rk×d with k = O( d

ε2 log(1/δ)) rows. Then with
probability (1− δ) for every x ∈ E ,

‖
1
√

k
Πx‖2 = (1± ε)‖x‖2.

In other words JL Lemma extends from one dimension to arbitrary
number of dimensions in a graceful way.
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Part I

Faster algorithms via subspace
embeddings
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Linear least squares/Regression

Linear least squares: Given A ∈ Rn×d and b ∈ Rd find x to
minimize ‖Ax − b‖2.

Interesting when n � d the over constrained case when there is no
solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is
closest to vector b in `2 norm.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. How do we find it?

Find an
orthonormal basis z1, z2, . . . , zr for the columns of A. Compute
projection c as c =

∑r
j=1〈b, zj〉zj and output answer as ‖b − c‖2.
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Linear least squares via Subspace
embeddings

Let a1, a2, . . . , ad be the columns of A and let E be the subspace
spanned by {a1, a2, . . . , ad , b}

E has dimension at most d + 1.

Use subspace embedding on E . Applying JL matrix Π with
k = O( d

ε2 ) rows we reduce a1, a2, . . . , ad , b to a′1, a
′
2, . . . , a

′
d , b

′

which are vectors in Rk .

Solve minx′∈Rd‖A′x ′ − b′‖2
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Low-rank approximation

Recall: Given A ∈ Rn×d and integer k want to find best rank
matrix B to minimize ‖A− B‖F

SVD gives optimum for all k . If A = UDV T =
∑d

i=1 σiuivT
i

then Ak =
∑k

i=1 σiuivT
i is optimum for every k .

‖A− Ak‖2
F =

∑
i>k σ

2
i .

v1, v2, . . . , vk are k orthogonal unit vectors from Rd and
maximize the sum of squares of the projection of the rows of A
onto the space spanned by them

u1, u2, . . . , uk are k orthogonal unit vectors from Rn that
maximize the sum of squares of the projections of the columns
of A onto the space spanned
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Low-rank approximation via subspace
embeddings

Column view of SVD: u1, u2, . . . , uk are k orthogonal unit
vectors from Rn that maximize the sum of squares of the projections
of the columns of A onto the space spanned

Let a1, a2, . . . , ad be the columns of A and let E be subspace
spanned by them. dim(E) ≤ d obviously.

Wlog u1, u2, . . . , uk ∈ E . Why?

If u1, u2, . . . , uk fixed then v1, v2, . . . , vk are determined. Why?
Let Π be an ε-approximate subspace preserving embedding for E

Claim: ‖(ΠA)− (ΠA)k‖F ≤ (1 + ε)‖A− Ak‖F
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Analysis

Claim: ‖(ΠA)− (ΠA)k‖F ≤ (1 + ε)‖A− Ak‖F

Proof sketch: Let a′1, . . . , a
′
d be columns of ΠA and let

u′1, . . . , u
′
k be Πu1, . . . ,Πuk .

‖A− Ak‖2
F =

∑d
i=1‖ai −

∑k
j=1 vj(i)uj‖2

2

From subspace embedding property of Π,
‖Π(ai −

∑k
j=1 vj(i)uj)‖2 ≤ (1 + ε)‖ai −

∑k
j=1 vj(i)uj‖2

Since u′1, u
′
2, . . . , u

′
k is a feasible solution for k-rank approximation

to ΠA.

Claim: ‖(ΠA)− (ΠA)k‖F ≥ (1− ε)‖A− Ak‖F . Prove it!
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Running Time

A has d columns in Rn and ΠA has d columns in Rk where
k = O( d

ε2 ln(1/δ)). Hence dimensionality reduction from n to
k and one can run SVD on ΠA.

ΠA can be computed fast in time roughly proportional to
nnz(A) (number of non-zeroes of A).
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Part II

Frequent Directions Algorithm
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Low-rank approximation

Faster low-rank approximation algorithms based on randomized
algorithm: sampling and subspace embeddings

Can we find a deterministic algorithm?

Streaming algorithm?
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Low-rank approximation and SVD

Given matrix A ∈ Rn×d and (small) integer k

Row view of SVD: v1, v2, . . . , vk are k orthogonal unit vectors
from Rd that maximize the sum of squares of the projections of the
rows A onto the space spanned

Let a1, a2, . . . , an be the rows of A (treated as vectors in Rd )

σ2
j =

∑n
i=1〈ai , vj〉2 and ‖A− Ak‖2

F =
∑

j>k σ
2
j

Consider matrix DkV T
k whose rows are σ1v1, σ2v2, . . . , σkvk .

‖DkV T
k ‖2

F =
∑k

j=1 σ
2
j = ‖Ak‖2

F
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Frequent Directions Algorithm

[Liberty] and analyzed for relative error guarantee by
[Ghashami-Phillips]
Liberty inspired by Misra-Greis frequent items algorithm.

Rows of A come one by one

Algorithm maintains a matrix Q ∈ R`×d where ` = k(1 + 1/ε).
Hence memory is O(kd/ε)

At end of algorithm let Qk be best rank k-approximation for Q.
Then ‖A− ProjQk

(A)‖F ≤ (1 + ε)‖A− Ak‖F .

Thus a (1 + ε)-approximate k-dimensional subspace for rows of A
be identified by storing O(k/ε) rows.
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FD Algorithm

Frequent-Directions
Initialize Q0 as an all zeroes `× d matrix

For each row ai ∈ A do

Set Q+ ← Q i−1 with last row replaced by ai
Compute SVD of Q+ as UDV T

C i = DV T (for analysis)

δi = σ2
` (for analysis)

D′ = diag(
√
σ2

1 − δi ,
√
σ2

2 − δi , . . . ,
√
σ2
`−1 − δi , 0)

Q i = D′V T

EndFor

Return Q = Qn

If ` = dk(1 + 1/ε)e and Qk is the rank k approximation to output
Q then

‖A− ProjQk
(A)‖F ≤ (1 + ε)‖A− Ak‖F
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Running time

One pass algorithm but requires second pass to compute actual
singular values etc

Space O(kd/ε)
Run time: n computations of SVD on k/ε× d matrix. Can be
improved (see home work problem).

Interesting even when k = 1. Alternative to power method to find
top singular value/vector. Deterministic.
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Part III

Compressed Sensing
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Sparse recovery

Recall:

Vector x ∈ Rn and integer k
x updated in streaming setting one coordinate at a time (can be
positive or negative changes)

Want to find best k-sparse vector x̃ that approximates x .
miny ,‖y‖0≤k‖y − x‖2. Optimum solution is clear: take y to be
the largest k coordinates of x in absolute value.

Using Count-Sketch: O( k
ε2 polylog(n)) space one can find

k-sparse z such that ‖z − x‖2 ≤ (1 + ε)‖y∗ − x‖2 with high
probability.

Count-Sketch can be seen as Πx for some Π ∈ Rm×n where
m = O( k

ε2 polylog(n)).
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Compressed Sensing

Compressed sensing: we want to create projection matrix Π such
that for any x we can create from Πx a good k-sparse approximation
to x

Doable! With Π that has O(k log(n/k)) rows. Creating Π requires
randomization but once found it can be used. Called RIP matrices.
First due to Candes, Romberg, Tao and Donoho. Lot of work in
signal processing and algorithms.
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Compressed Sensing

Theorem (Candes-Romberg-Tao, Donoho)

For every n, k there is a matrix Π ∈ Rm×n with
m = O(k log(n/k)) and a polytime algorithm such that for any
x ∈ Rn, the algorithm given Πx outputs a k-sparse vector x̃ such
that ‖x̃ − x‖2 ≤ O( 1√

k
)‖xtail(k)‖1. In particular it recovers x

exactly if it is k-sparse.

Matrix that satisfies above property are called RIP matrices
(restricted isometry property)

Closely connected to JL matrices

Chandra (UIUC) CS498ABD 21 Fall 2020 21 / 28



Understanding RIP matrices

Suppose x, x ′ are two distinct k-sparse vectors in Rn

Basic requirement: Πx 6= Πx ′ otherwise cannot recover exactly

Let S, S ′ ⊂ [n] be the indices in the support of x, x ′ respectively.
Πx is in the span of columns of ΠS and Πx ′ is in the span of
columns of ΠS′

Thus we need columns of ΠS∪S′ to be linearly independent for any
S, S ′ with S 6= S ′ and |S| ≤ k and |S ′| ≤ k . Any 2k columns of
Π should be linearly independent.

Sufficient information theoretically. Computationally?
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Recovery

Suppose we have Π such that any 2k columns are linearly
independent.

Suppose x is k-sparse and we have Πx . How do we recover x?

Solve the following:

min‖z‖0 such that Πz = Πx

Guaranteed to recover x by uniqueness but NP-Hard!

Chandra (UIUC) CS498ABD 23 Fall 2020 23 / 28



Recovery

Suppose we have Π such that any 2k columns are linearly
independent.

Suppose x is k-sparse and we have Πx . How do we recover x?

Solve the following:

min‖z‖0 such that Πz = Πx

Guaranteed to recover x by uniqueness but NP-Hard!

Chandra (UIUC) CS498ABD 23 Fall 2020 23 / 28



Recovery

Instead of solving

min‖z‖0 such that Πz = Πx

solve

min‖z‖1 such that Πz = Πx

which is a linear/convex programming problem and hence can be
solved in polynomial-time.

If Π satisfies additional properties then one can show that above
recovers x .
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RIP Property

Definition

A m × n matrix Π has the (ε, k)-RIP property if for every k-sparse
x ∈ Rn,

(1− ε)‖x‖2
2 ≤ ‖Πx‖2

2 ≤ (1 + ε)‖x‖2
2

.

Equivalent, whenever |S| ≤ k we have

‖ΠT
S ΠS − Ik‖2 ≤ ε

which is equivalent to saying that if σ1 and σk are the largest and

smallest singular value of ΠS then
σ2

1

σ2
k
≤ (1 + ε)

Every k columns of Π are approximately orthonormal.
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Recovery theorem

Suppose Π is (ε, 2k)-RIP with ε <
√

2− 1 and let x̃ be optimum
solution to the following LP

min‖z‖1 such that Πz = Πx

Then ‖x̃ − x‖2 ≤ O( 1√
k

)‖xtail(k)‖1.

Called `2/`1 guarantee. Proof is somewhat similar to the one for
sparse recovery with Count-Sketch.

More efficient “combinatorial” algorithms that avoid solving LP.
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RIP matrices and subspace embeddings

Definition

A m × n matrix Π has the (ε, k)-RIP property if for every k-sparse
x ∈ Rn,

(1− ε)‖x‖2
2 ≤ ‖Πx‖2

2 ≤ (1 + ε)‖x‖2
2

.

Fix S ⊂ [n] with |S| = k . S defines a subspace of k-sparse vectors.

Total of
(n
k

)
different subspaces. Want to preserve the length of

vectors in all of these subspaces.
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Fix S ⊂ [n] with |S| = k . S defines a subspace of k-sparse vectors.
Total of

(n
k

)
different subspaces. Want to preserve the length of

vectors in all of these subspaces.

Given a subspace W of dimension d we saw that if Π is JL matrix
with m = O(d/ε2) rows we have the property that for every
x ∈ W : ‖Πx‖2

2 ' (1± ε)‖x‖2
2. Via a net argument where net

size is eO(k).

If we want to preserve
(n
k

)
different subspaces need to preserve nets

of all subspaces

Hence via union bound we get m = O( 1
ε2 log(eO(k)

(n
k

)
)) which is

O( k
ε2 log n).

Other techniques give m = O(k2/ε2).
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