
CS 498ABD: Algorithms for Big Data

Fast and Space Efficient
NLA, Compressed Sensing
Lecture 24
Dec 1, 2020

Chandra (UIUC) CS498ABD 1 Fall 2020 1 / 28

Some topics today

We have seen fast “approximation” algorithms for matrix
multiplication

random sampling

Using JL

Today:

Subspace embeddings for faster linear least squares and low-rank
approximation

Frequent directions algorithms for one/two pass approximate
SVD

Compressed Sensing

Chandra (UIUC) CS498ABD 2 Fall 2020 2 / 28

Subspace Embedding

Question: Suppose we have linear subspace E of Rn of dimension
d . Can we find a projection Π : Rd → Rk such that for every
x ∈ E , ‖Πx‖2 = (1± ε)‖x‖2?

Not possible if k < d .

Possible if k = `. Pick Π to be an orthonormal basis for E .
Disadvantage: This requires knowing E and computing
orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based
on random projections

Chandra (UIUC) CS498ABD 3 Fall 2020 3 / 28

Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of Rn of dimension d . Let Π be a
DJL matrix Π ∈ Rk×d with k = O(d

ε2 log(1/δ)) rows. Then with
probability (1− δ) for every x ∈ E ,

‖
1
√

k
Πx‖2 = (1± ε)‖x‖2.

In other words JL Lemma extends from one dimension to arbitrary
number of dimensions in a graceful way.

Chandra (UIUC) CS498ABD 4 Fall 2020 4 / 28

Part I

Faster algorithms via subspace
embeddings

Chandra (UIUC) CS498ABD 5 Fall 2020 5 / 28

Linear least squares/Regression

Linear least squares: Given A ∈ Rn×d and b ∈ Rd find x to
minimize ‖Ax − b‖2.

Interesting when n � d the over constrained case when there is no
solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is
closest to vector b in `2 norm.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. How do we find it?

Find an
orthonormal basis z1, z2, . . . , zr for the columns of A. Compute
projection c as c =

∑r
j=1〈b, zj〉zj and output answer as ‖b − c‖2.

Chandra (UIUC) CS498ABD 6 Fall 2020 6 / 28

Linear least squares/Regression

Linear least squares: Given A ∈ Rn×d and b ∈ Rd find x to
minimize ‖Ax − b‖2.

Interesting when n � d the over constrained case when there is no
solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is
closest to vector b in `2 norm.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. How do we find it? Find an
orthonormal basis z1, z2, . . . , zr for the columns of A. Compute
projection c as c =

∑r
j=1〈b, zj〉zj and output answer as ‖b − c‖2.

Chandra (UIUC) CS498ABD 6 Fall 2020 6 / 28

Linear least squares via Subspace
embeddings

Let a1, a2, . . . , ad be the columns of A and let E be the subspace
spanned by {a1, a2, . . . , ad , b}

E has dimension at most d + 1.

Use subspace embedding on E . Applying JL matrix Π with
k = O(d

ε2) rows we reduce a1, a2, . . . , ad , b to a′1, a
′
2, . . . , a

′
d , b

′

which are vectors in Rk .

Solve minx′∈Rd‖A′x ′ − b′‖2

Chandra (UIUC) CS498ABD 7 Fall 2020 7 / 28

Low-rank approximation

Recall: Given A ∈ Rn×d and integer k want to find best rank
matrix B to minimize ‖A− B‖F

SVD gives optimum for all k . If A = UDV T =
∑d

i=1 σiuivT
i

then Ak =
∑k

i=1 σiuivT
i is optimum for every k .

‖A− Ak‖2
F =

∑
i>k σ

2
i .

v1, v2, . . . , vk are k orthogonal unit vectors from Rd and
maximize the sum of squares of the projection of the rows of A
onto the space spanned by them

u1, u2, . . . , uk are k orthogonal unit vectors from Rn that
maximize the sum of squares of the projections of the columns
of A onto the space spanned

Chandra (UIUC) CS498ABD 8 Fall 2020 8 / 28

Low-rank approximation via subspace
embeddings

Column view of SVD: u1, u2, . . . , uk are k orthogonal unit
vectors from Rn that maximize the sum of squares of the projections
of the columns of A onto the space spanned

Let a1, a2, . . . , ad be the columns of A and let E be subspace
spanned by them. dim(E) ≤ d obviously.

Wlog u1, u2, . . . , uk ∈ E . Why?

If u1, u2, . . . , uk fixed then v1, v2, . . . , vk are determined. Why?
Let Π be an ε-approximate subspace preserving embedding for E

Claim: ‖(ΠA)− (ΠA)k‖F ≤ (1 + ε)‖A− Ak‖F

Chandra (UIUC) CS498ABD 9 Fall 2020 9 / 28

Low-rank approximation via subspace
embeddings

Column view of SVD: u1, u2, . . . , uk are k orthogonal unit
vectors from Rn that maximize the sum of squares of the projections
of the columns of A onto the space spanned

Let a1, a2, . . . , ad be the columns of A and let E be subspace
spanned by them. dim(E) ≤ d obviously.

Wlog u1, u2, . . . , uk ∈ E . Why?
If u1, u2, . . . , uk fixed then v1, v2, . . . , vk are determined. Why?

Let Π be an ε-approximate subspace preserving embedding for E

Claim: ‖(ΠA)− (ΠA)k‖F ≤ (1 + ε)‖A− Ak‖F

Chandra (UIUC) CS498ABD 9 Fall 2020 9 / 28

Low-rank approximation via subspace
embeddings

Column view of SVD: u1, u2, . . . , uk are k orthogonal unit
vectors from Rn that maximize the sum of squares of the projections
of the columns of A onto the space spanned

Let a1, a2, . . . , ad be the columns of A and let E be subspace
spanned by them. dim(E) ≤ d obviously.

Wlog u1, u2, . . . , uk ∈ E . Why?
If u1, u2, . . . , uk fixed then v1, v2, . . . , vk are determined. Why?

Let Π be an ε-approximate subspace preserving embedding for E

Claim: ‖(ΠA)− (ΠA)k‖F ≤ (1 + ε)‖A− Ak‖F

Chandra (UIUC) CS498ABD 9 Fall 2020 9 / 28

Low-rank approximation via subspace
embeddings

Column view of SVD: u1, u2, . . . , uk are k orthogonal unit
vectors from Rn that maximize the sum of squares of the projections
of the columns of A onto the space spanned

Let a1, a2, . . . , ad be the columns of A and let E be subspace
spanned by them. dim(E) ≤ d obviously.

Wlog u1, u2, . . . , uk ∈ E . Why?
If u1, u2, . . . , uk fixed then v1, v2, . . . , vk are determined. Why?
Let Π be an ε-approximate subspace preserving embedding for E

Claim: ‖(ΠA)− (ΠA)k‖F ≤ (1 + ε)‖A− Ak‖F

Chandra (UIUC) CS498ABD 9 Fall 2020 9 / 28

Analysis

Claim: ‖(ΠA)− (ΠA)k‖F ≤ (1 + ε)‖A− Ak‖F

Proof sketch: Let a′1, . . . , a
′
d be columns of ΠA and let

u′1, . . . , u
′
k be Πu1, . . . ,Πuk .

‖A− Ak‖2
F =

∑d
i=1‖ai −

∑k
j=1 vj(i)uj‖2

2

From subspace embedding property of Π,
‖Π(ai −

∑k
j=1 vj(i)uj)‖2 ≤ (1 + ε)‖ai −

∑k
j=1 vj(i)uj‖2

Since u′1, u
′
2, . . . , u

′
k is a feasible solution for k-rank approximation

to ΠA.

Claim: ‖(ΠA)− (ΠA)k‖F ≥ (1− ε)‖A− Ak‖F . Prove it!

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 28

Analysis

Claim: ‖(ΠA)− (ΠA)k‖F ≤ (1 + ε)‖A− Ak‖F

Proof sketch: Let a′1, . . . , a
′
d be columns of ΠA and let

u′1, . . . , u
′
k be Πu1, . . . ,Πuk .

‖A− Ak‖2
F =

∑d
i=1‖ai −

∑k
j=1 vj(i)uj‖2

2

From subspace embedding property of Π,
‖Π(ai −

∑k
j=1 vj(i)uj)‖2 ≤ (1 + ε)‖ai −

∑k
j=1 vj(i)uj‖2

Since u′1, u
′
2, . . . , u

′
k is a feasible solution for k-rank approximation

to ΠA.

Claim: ‖(ΠA)− (ΠA)k‖F ≥ (1− ε)‖A− Ak‖F . Prove it!

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 28

Analysis

Claim: ‖(ΠA)− (ΠA)k‖F ≤ (1 + ε)‖A− Ak‖F

Proof sketch: Let a′1, . . . , a
′
d be columns of ΠA and let

u′1, . . . , u
′
k be Πu1, . . . ,Πuk .

‖A− Ak‖2
F =

∑d
i=1‖ai −

∑k
j=1 vj(i)uj‖2

2

From subspace embedding property of Π,
‖Π(ai −

∑k
j=1 vj(i)uj)‖2 ≤ (1 + ε)‖ai −

∑k
j=1 vj(i)uj‖2

Since u′1, u
′
2, . . . , u

′
k is a feasible solution for k-rank approximation

to ΠA.

Claim: ‖(ΠA)− (ΠA)k‖F ≥ (1− ε)‖A− Ak‖F . Prove it!

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 28

Analysis

Claim: ‖(ΠA)− (ΠA)k‖F ≤ (1 + ε)‖A− Ak‖F

Proof sketch: Let a′1, . . . , a
′
d be columns of ΠA and let

u′1, . . . , u
′
k be Πu1, . . . ,Πuk .

‖A− Ak‖2
F =

∑d
i=1‖ai −

∑k
j=1 vj(i)uj‖2

2

From subspace embedding property of Π,
‖Π(ai −

∑k
j=1 vj(i)uj)‖2 ≤ (1 + ε)‖ai −

∑k
j=1 vj(i)uj‖2

Since u′1, u
′
2, . . . , u

′
k is a feasible solution for k-rank approximation

to ΠA.

Claim: ‖(ΠA)− (ΠA)k‖F ≥ (1− ε)‖A− Ak‖F . Prove it!

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 28

Analysis

Claim: ‖(ΠA)− (ΠA)k‖F ≤ (1 + ε)‖A− Ak‖F

Proof sketch: Let a′1, . . . , a
′
d be columns of ΠA and let

u′1, . . . , u
′
k be Πu1, . . . ,Πuk .

‖A− Ak‖2
F =

∑d
i=1‖ai −

∑k
j=1 vj(i)uj‖2

2

From subspace embedding property of Π,
‖Π(ai −

∑k
j=1 vj(i)uj)‖2 ≤ (1 + ε)‖ai −

∑k
j=1 vj(i)uj‖2

Since u′1, u
′
2, . . . , u

′
k is a feasible solution for k-rank approximation

to ΠA.

Claim: ‖(ΠA)− (ΠA)k‖F ≥ (1− ε)‖A− Ak‖F .

Prove it!

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 28

Analysis

Claim: ‖(ΠA)− (ΠA)k‖F ≤ (1 + ε)‖A− Ak‖F

Proof sketch: Let a′1, . . . , a
′
d be columns of ΠA and let

u′1, . . . , u
′
k be Πu1, . . . ,Πuk .

‖A− Ak‖2
F =

∑d
i=1‖ai −

∑k
j=1 vj(i)uj‖2

2

From subspace embedding property of Π,
‖Π(ai −

∑k
j=1 vj(i)uj)‖2 ≤ (1 + ε)‖ai −

∑k
j=1 vj(i)uj‖2

Since u′1, u
′
2, . . . , u

′
k is a feasible solution for k-rank approximation

to ΠA.

Claim: ‖(ΠA)− (ΠA)k‖F ≥ (1− ε)‖A− Ak‖F . Prove it!

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 28

Running Time

A has d columns in Rn and ΠA has d columns in Rk where
k = O(d

ε2 ln(1/δ)). Hence dimensionality reduction from n to
k and one can run SVD on ΠA.

ΠA can be computed fast in time roughly proportional to
nnz(A) (number of non-zeroes of A).

Chandra (UIUC) CS498ABD 11 Fall 2020 11 / 28

Part II

Frequent Directions Algorithm

Chandra (UIUC) CS498ABD 12 Fall 2020 12 / 28

Low-rank approximation

Faster low-rank approximation algorithms based on randomized
algorithm: sampling and subspace embeddings

Can we find a deterministic algorithm?

Streaming algorithm?

Chandra (UIUC) CS498ABD 13 Fall 2020 13 / 28

Low-rank approximation and SVD

Given matrix A ∈ Rn×d and (small) integer k

Row view of SVD: v1, v2, . . . , vk are k orthogonal unit vectors
from Rd that maximize the sum of squares of the projections of the
rows A onto the space spanned

Let a1, a2, . . . , an be the rows of A (treated as vectors in Rd)

σ2
j =

∑n
i=1〈ai , vj〉2 and ‖A− Ak‖2

F =
∑

j>k σ
2
j

Consider matrix DkV T
k whose rows are σ1v1, σ2v2, . . . , σkvk .

‖DkV T
k ‖2

F =
∑k

j=1 σ
2
j = ‖Ak‖2

F

Chandra (UIUC) CS498ABD 14 Fall 2020 14 / 28

Low-rank approximation and SVD

Given matrix A ∈ Rn×d and (small) integer k

Row view of SVD: v1, v2, . . . , vk are k orthogonal unit vectors
from Rd that maximize the sum of squares of the projections of the
rows A onto the space spanned

Let a1, a2, . . . , an be the rows of A (treated as vectors in Rd)

σ2
j =

∑n
i=1〈ai , vj〉2 and ‖A− Ak‖2

F =
∑

j>k σ
2
j

Consider matrix DkV T
k whose rows are σ1v1, σ2v2, . . . , σkvk .

‖DkV T
k ‖2

F =
∑k

j=1 σ
2
j = ‖Ak‖2

F

Chandra (UIUC) CS498ABD 14 Fall 2020 14 / 28

Frequent Directions Algorithm

[Liberty] and analyzed for relative error guarantee by
[Ghashami-Phillips]
Liberty inspired by Misra-Greis frequent items algorithm.

Rows of A come one by one

Algorithm maintains a matrix Q ∈ R`×d where ` = k(1 + 1/ε).
Hence memory is O(kd/ε)

At end of algorithm let Qk be best rank k-approximation for Q.
Then ‖A− ProjQk

(A)‖F ≤ (1 + ε)‖A− Ak‖F .

Thus a (1 + ε)-approximate k-dimensional subspace for rows of A
be identified by storing O(k/ε) rows.

Chandra (UIUC) CS498ABD 15 Fall 2020 15 / 28

FD Algorithm

Frequent-Directions
Initialize Q0 as an all zeroes `× d matrix

For each row ai ∈ A do

Set Q+ ← Q i−1 with last row replaced by ai
Compute SVD of Q+ as UDV T

C i = DV T (for analysis)

δi = σ2
` (for analysis)

D′ = diag(
√
σ2

1 − δi ,
√
σ2

2 − δi , . . . ,
√
σ2
`−1 − δi , 0)

Q i = D′V T

EndFor

Return Q = Qn

If ` = dk(1 + 1/ε)e and Qk is the rank k approximation to output
Q then

‖A− ProjQk
(A)‖F ≤ (1 + ε)‖A− Ak‖F

Chandra (UIUC) CS498ABD 16 Fall 2020 16 / 28

Running time

One pass algorithm but requires second pass to compute actual
singular values etc

Space O(kd/ε)
Run time: n computations of SVD on k/ε× d matrix. Can be
improved (see home work problem).

Interesting even when k = 1. Alternative to power method to find
top singular value/vector. Deterministic.

Chandra (UIUC) CS498ABD 17 Fall 2020 17 / 28

Part III

Compressed Sensing

Chandra (UIUC) CS498ABD 18 Fall 2020 18 / 28

Sparse recovery

Recall:

Vector x ∈ Rn and integer k
x updated in streaming setting one coordinate at a time (can be
positive or negative changes)

Want to find best k-sparse vector x̃ that approximates x .
miny ,‖y‖0≤k‖y − x‖2. Optimum solution is clear: take y to be
the largest k coordinates of x in absolute value.

Using Count-Sketch: O(k
ε2 polylog(n)) space one can find

k-sparse z such that ‖z − x‖2 ≤ (1 + ε)‖y∗ − x‖2 with high
probability.

Count-Sketch can be seen as Πx for some Π ∈ Rm×n where
m = O(k

ε2 polylog(n)).

Chandra (UIUC) CS498ABD 19 Fall 2020 19 / 28

Compressed Sensing

Compressed sensing: we want to create projection matrix Π such
that for any x we can create from Πx a good k-sparse approximation
to x

Doable! With Π that has O(k log(n/k)) rows. Creating Π requires
randomization but once found it can be used. Called RIP matrices.
First due to Candes, Romberg, Tao and Donoho. Lot of work in
signal processing and algorithms.

Chandra (UIUC) CS498ABD 20 Fall 2020 20 / 28

Compressed Sensing

Theorem (Candes-Romberg-Tao, Donoho)

For every n, k there is a matrix Π ∈ Rm×n with
m = O(k log(n/k)) and a polytime algorithm such that for any
x ∈ Rn, the algorithm given Πx outputs a k-sparse vector x̃ such
that ‖x̃ − x‖2 ≤ O(1√

k
)‖xtail(k)‖1. In particular it recovers x

exactly if it is k-sparse.

Matrix that satisfies above property are called RIP matrices
(restricted isometry property)

Closely connected to JL matrices

Chandra (UIUC) CS498ABD 21 Fall 2020 21 / 28

Understanding RIP matrices

Suppose x, x ′ are two distinct k-sparse vectors in Rn

Basic requirement: Πx 6= Πx ′ otherwise cannot recover exactly

Let S, S ′ ⊂ [n] be the indices in the support of x, x ′ respectively.
Πx is in the span of columns of ΠS and Πx ′ is in the span of
columns of ΠS′

Thus we need columns of ΠS∪S′ to be linearly independent for any
S, S ′ with S 6= S ′ and |S| ≤ k and |S ′| ≤ k . Any 2k columns of
Π should be linearly independent.

Sufficient information theoretically. Computationally?

Chandra (UIUC) CS498ABD 22 Fall 2020 22 / 28

Understanding RIP matrices

Suppose x, x ′ are two distinct k-sparse vectors in Rn

Basic requirement: Πx 6= Πx ′ otherwise cannot recover exactly

Let S, S ′ ⊂ [n] be the indices in the support of x, x ′ respectively.
Πx is in the span of columns of ΠS and Πx ′ is in the span of
columns of ΠS′

Thus we need columns of ΠS∪S′ to be linearly independent for any
S, S ′ with S 6= S ′ and |S| ≤ k and |S ′| ≤ k . Any 2k columns of
Π should be linearly independent.

Sufficient information theoretically. Computationally?

Chandra (UIUC) CS498ABD 22 Fall 2020 22 / 28

Recovery

Suppose we have Π such that any 2k columns are linearly
independent.

Suppose x is k-sparse and we have Πx . How do we recover x?

Solve the following:

min‖z‖0 such that Πz = Πx

Guaranteed to recover x by uniqueness but NP-Hard!

Chandra (UIUC) CS498ABD 23 Fall 2020 23 / 28

Recovery

Suppose we have Π such that any 2k columns are linearly
independent.

Suppose x is k-sparse and we have Πx . How do we recover x?

Solve the following:

min‖z‖0 such that Πz = Πx

Guaranteed to recover x by uniqueness but NP-Hard!

Chandra (UIUC) CS498ABD 23 Fall 2020 23 / 28

Recovery

Instead of solving

min‖z‖0 such that Πz = Πx

solve

min‖z‖1 such that Πz = Πx

which is a linear/convex programming problem and hence can be
solved in polynomial-time.

If Π satisfies additional properties then one can show that above
recovers x .

Chandra (UIUC) CS498ABD 24 Fall 2020 24 / 28

RIP Property

Definition

A m × n matrix Π has the (ε, k)-RIP property if for every k-sparse
x ∈ Rn,

(1− ε)‖x‖2
2 ≤ ‖Πx‖2

2 ≤ (1 + ε)‖x‖2
2

.

Equivalent, whenever |S| ≤ k we have

‖ΠT
S ΠS − Ik‖2 ≤ ε

which is equivalent to saying that if σ1 and σk are the largest and

smallest singular value of ΠS then
σ2

1

σ2
k
≤ (1 + ε)

Every k columns of Π are approximately orthonormal.

Chandra (UIUC) CS498ABD 25 Fall 2020 25 / 28

Recovery theorem

Suppose Π is (ε, 2k)-RIP with ε <
√

2− 1 and let x̃ be optimum
solution to the following LP

min‖z‖1 such that Πz = Πx

Then ‖x̃ − x‖2 ≤ O(1√
k

)‖xtail(k)‖1.

Called `2/`1 guarantee. Proof is somewhat similar to the one for
sparse recovery with Count-Sketch.

More efficient “combinatorial” algorithms that avoid solving LP.

Chandra (UIUC) CS498ABD 26 Fall 2020 26 / 28

RIP matrices and subspace embeddings

Definition

A m × n matrix Π has the (ε, k)-RIP property if for every k-sparse
x ∈ Rn,

(1− ε)‖x‖2
2 ≤ ‖Πx‖2

2 ≤ (1 + ε)‖x‖2
2

.

Fix S ⊂ [n] with |S| = k . S defines a subspace of k-sparse vectors.

Total of
(n
k

)
different subspaces. Want to preserve the length of

vectors in all of these subspaces.

Chandra (UIUC) CS498ABD 27 Fall 2020 27 / 28

Fix S ⊂ [n] with |S| = k . S defines a subspace of k-sparse vectors.
Total of

(n
k

)
different subspaces. Want to preserve the length of

vectors in all of these subspaces.

Given a subspace W of dimension d we saw that if Π is JL matrix
with m = O(d/ε2) rows we have the property that for every
x ∈ W : ‖Πx‖2

2 ' (1± ε)‖x‖2
2. Via a net argument where net

size is eO(k).

If we want to preserve
(n
k

)
different subspaces need to preserve nets

of all subspaces

Hence via union bound we get m = O(1
ε2 log(eO(k)

(n
k

)
)) which is

O(k
ε2 log n).

Other techniques give m = O(k2/ε2).

Chandra (UIUC) CS498ABD 28 Fall 2020 28 / 28

Fix S ⊂ [n] with |S| = k . S defines a subspace of k-sparse vectors.
Total of

(n
k

)
different subspaces. Want to preserve the length of

vectors in all of these subspaces.

Given a subspace W of dimension d we saw that if Π is JL matrix
with m = O(d/ε2) rows we have the property that for every
x ∈ W : ‖Πx‖2

2 ' (1± ε)‖x‖2
2. Via a net argument where net

size is eO(k).

If we want to preserve
(n
k

)
different subspaces need to preserve nets

of all subspaces

Hence via union bound we get m = O(1
ε2 log(eO(k)

(n
k

)
)) which is

O(k
ε2 log n).

Other techniques give m = O(k2/ε2).

Chandra (UIUC) CS498ABD 28 Fall 2020 28 / 28

	Faster algorithms via subspace embeddings
	Frequent Directions Algorithm
	Compressed Sensing

