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Singular Value Decomposition (SVD)

Let A be a m × n real-valued matrix

ai denotes vector corresponding to row i
m rows. think of each row as a data point in Rn

Data applications: m � n
Other notation: A is a n × d matrix.

SVD theorem: A can be written as UDV T where

V is a n × n orthonormal matrix

D is a m × n diagonal matrix with ≤ min{m, n} non-zeroes
called the singular values of A
U is a m ×m orthonormal matrix
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SVD

Let d = min{m, n}.
u1, u2, . . . , um columns of U , left singular vectors of A
v1, v2, . . . , vn columns of V (rows of V T ) right singular
vectors of A
σ1 ≥ σ2 ≥ . . . ,≥ σd are singular values where
d = min{m, n}. And σi = Di ,i

A =
d∑

i=1

σiuivT
i

We can in fact restrict attention to r the rank of A.

A =
r∑

i=1

σiuivT
i
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SVD

Interpreting A as a linear operator A : Rn → Rm

Columns of V is an orthonormal basis and hence V Tx for
x ∈ Rn expresses x in the V basis. Note that V Tx is a rigid
transformation (does not change length of x).

Let y = V Tz . D is a diagonal matrix which only stretches y
along the coordinate axes. Also adjusts dimension to go from n
to m with right number of zeroes.

Let z = Dy . Then Uz is a rigid transformation that expresses
z in the basis corresponding to rows of U .

Thus any linear operator can be broken up into a sequence of three
simpler/basic type of transformations
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Low rank approximation property of SVD

Question: Given A ∈ Rm×n and integer k find a matrix B of rank
at most k such that ‖A− B‖ is minimized

Fact: For Frobenius norm optimum for all k is captured by SVD.

That is, Ak =
∑k

i=1 σiuivT
i is the best rank k approximation to A

‖A− Ak‖F = min
B:rank(B)≤k

‖A− B‖F

Why this magic? Frobenius norm and basic properties of vector
projections
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Geometric meaning

Consider k = 1. What is the best rank 1 matrix B that minimizes
‖A− B‖F

Since B is rank 1, B = uvT where v ∈ Rn and u ∈ Rm

Wlog v is a unit vector

‖A− uvT‖2F =
m∑

i=1

||ai − u(i)v ||2

If we know v then best u to minimize above is determined. Why?
For fixed v , u(i) = 〈ai , v〉
‖ai − 〈ai , v〉v‖2 is distance of ai from line described by v .
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Geometric meaning

What is the best rank 1 matrix B that minimizes ‖A− B‖F

It is to find unit vector/direction v to minimize

m∑
i=1

||ai − 〈ai , v〉v ||2

which is same as finding unit vector v to maximize

m∑
i=1

〈ai , v〉2

How to find best v? Not obvious: we will come to it a bit later
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Best rank two approximation

Consider k = 2. What is the best rank 2 matrix B that minimizes
‖A− B‖F

Since B has rank 2 we can assume without loss of generality that
B = u1vT

1 + u2vT
2 where v1, v2 are orthogonal unit vectors (span a

space of dimension 2)

Minimizing ‖A− B‖2F is same as finding orthogonal vectors v1, v2

to maximize

m∑
i=1

(〈ai , v1〉2 + 〈ai , v2〉2)

in other words the best fit 2-dimensional space

Chandra (UIUC) CS498ABD 8 Fall 2020 8 / 18



Best rank two approximation

Consider k = 2. What is the best rank 2 matrix B that minimizes
‖A− B‖F

Since B has rank 2 we can assume without loss of generality that
B = u1vT

1 + u2vT
2 where v1, v2 are orthogonal unit vectors (span a

space of dimension 2)

Minimizing ‖A− B‖2F is same as finding orthogonal vectors v1, v2

to maximize

m∑
i=1

(〈ai , v1〉2 + 〈ai , v2〉2)

in other words the best fit 2-dimensional space

Chandra (UIUC) CS498ABD 8 Fall 2020 8 / 18



Greedy algorithm

Find v1 as the best rank 1 approximation. That is
v1 = argmaxv ,‖v‖2=1

∑m
i=1〈ai , v〉2

For v2 solve arg maxv⊥v1,‖v‖2=1

∑m
i=1〈ai , v〉2.

Alternatively: let a′i = ai − 〈ai , v1〉v1. Let
v2 = argmaxv ,‖v‖2=1

∑m
i=1〈a′i , v〉2

Greedy algorithm works!
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Greedy algorithm correctness

Proof that Greedy works for k = 2.

Suppose w1,w2 are orthogonal unit vectors that form the best fit 2-d
space. Let H be the space spanned by w1,w2.

Suffices to prove that

m∑
i=1

(〈ai , v1〉2 + 〈ai , v2〉2) ≥
m∑

i=1

(〈ai ,w1〉2 + 〈ai ,w2〉2)

If v1 ⊂ H then done because we can assume wlog that w1 = v1 and
v2 is at least as good as w2.
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Greedy algorithm correctness

Suppose v1 6∈ H . Let v ′1 be projection of v1 onto H and
v ′′1 = v1 − v ′1 be the component of v1 orthogonal to H .

Note that
‖v ′1‖2 + ‖v ′′1 ‖22 = ‖v1‖22 = 1.

Wlog we can assume by rotation that w1 = 1
‖v ′1‖2

v ′1 and w2 is

orthogonal to v ′1. Hence w2 is orthogonal to v1.

Therefore v2 is at least as good as w2, and v1 is at least as good as
w1 which implies the desired claim.
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Greedy algorithm for general k

Find v1 as the best rank 1 approximation. That is
v1 = argmaxv ,‖v‖2=1

∑m
i=1〈ai , v〉2

For vk solve arg maxv⊥v1,v2,...,vk−1,‖v‖2=1

∑k
i=1〈ai , v〉2 which is

same as solving k = 1 with vectors a′1, a
′
2, . . . , a

′
m that are

residuals. That is a′i = ai −
∑k−1

j=1 〈ai , vj〉vj

Proof of correctness is via induction and is a straight forward
generalization of the proof for k = 2
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Summarizing

σ2
j =

m∑
i=1

〈ai , vj〉2

By greedy contruction σ1 ≥ σ2 . . . ,

Let r be the (row) rank of A. v1, v2, . . . , vr span the row space of
A and σj = 0 for j > r

u1 determined by v1 and u2 determined by v1, v2 and so on. Can
show that they are orthogonal.

A =
r∑

i=1

σiuivT
i
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Power method

Thus SVD relies on being able to solve k = 1 case

Given m vectors a1, a2, . . . , am ∈ Rn solve

max
v∈Rn,‖v‖2=1

〈ai , v〉2

How do we solve the above problem?

Let B = ATA Then

B = (
m∑

i=1

σiviuT
i )(

r∑
i=1

σiuivT
i )

=
r∑

i=1

σ2
i vivT

i
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Power method continued

Let B = ATA Then

B2 = (
r∑

i=1

σ2
i vivT

i )(
r∑

i=1

σ2
i vivT

i )

=
r∑

i=1

σ4
i vivT

i .

More generally

Bk =
r∑

i=1

σk
i vivT

i

If σ1 > σ2 then Bk converges to σk
1v1vT

1 and we can identify v1

from Bk . But expensive to compute Bk

Chandra (UIUC) CS498ABD 15 Fall 2020 15 / 18



Power method continued

Let B = ATA Then

B2 = (
r∑

i=1

σ2
i vivT

i )(
r∑

i=1

σ2
i vivT

i )

=
r∑

i=1

σ4
i vivT

i .

More generally

Bk =
r∑

i=1

σk
i vivT

i

If σ1 > σ2 then Bk converges to σk
1v1vT

1 and we can identify v1

from Bk . But expensive to compute Bk

Chandra (UIUC) CS498ABD 15 Fall 2020 15 / 18



Power method continued

Pick a random (unit) vector x ∈ Rn. Then x =
∑n

i=1 λivi since
v1, v2, . . . , vn is a basis for Rn.

Bkx = (
r∑

i=1

σk
i vivT

i )(
d∑

i=1

λivi)→ σ2k
1 λ1v1

Can obtain v1 by normalizing Bkx to a unit vector.
Computing Bkx is easier via a series of matrix vector multiplications

Why random x?

What if σ1 ' σ2? Power method still works. See references.
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Linear least square/Regression and SVD

Linear least squares: Given A ∈ Rm×n and b ∈ Rm find x to
minimize ‖Ax − b‖2.

Interesting when m > n the over constrained case when there is no
solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is
closest to vector b in `2 norm.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. How do we find it? Find an
orthonormal basis z1, z2, . . . , zr for the columns of A. Compute
projection b′ as b′ =

∑r
j=1〈b, zj〉zj and output answer as

‖b − b′‖2.
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Linear least square/Regression and SVD

Linear least squares: Given A ∈ Rm×n and b ∈ Rm find x to
minimize ‖Ax − b‖2.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. Find an orthonormal basis
z1, z2, . . . , zr for the columns of A. Compute projection b′ as
b′ =

∑r
j=1〈b, zj〉zj and output answer as ‖b − b′‖2.

Finding the basis is the expensive part. Recall SVD gives
v1, v2, . . . , vr which form a basis for the row space of A but then
uT
1 , u

T
2 , . . . , u

T
m form a basis for the column space of A. Hence SVD

gives us all the information to find b′. In fact we have

min
x
‖Ax − b‖22 =

m∑
i=r+1

〈uT
i , b〉

2
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