CS 498ABD: Algorithms for Big Data

SVD and Low-rank Approximation

Lecture 23
Nov 17, 2020

Singular Value Decomposition (SVD)

Let \boldsymbol{A} be a $\boldsymbol{m} \times \boldsymbol{n}$ real-valued matrix

- $\boldsymbol{a}_{\boldsymbol{i}}$ denotes vector corresponding to row \boldsymbol{i}
- \boldsymbol{m} rows. think of each row as a data point in $\mathbb{R}^{\boldsymbol{n}}$
- Data applications: $\boldsymbol{m} \gg \boldsymbol{n}$
- Other notation: \boldsymbol{A} is a $\boldsymbol{n} \times \boldsymbol{d}$ matrix.

$$
n
$$

Singular Value Decomposition (SVD)

Let \boldsymbol{A} be a $\boldsymbol{m} \times \boldsymbol{n}$ real-valued matrix

- $\boldsymbol{a}_{\boldsymbol{i}}$ denotes vector corresponding to row \boldsymbol{i}
- \boldsymbol{m} rows. think of each row as a data point in $\mathbb{R}^{\boldsymbol{n}}$
- Data applications: $\boldsymbol{m} \gg n$
- Other notation: \boldsymbol{A} is a $\boldsymbol{n} \times \boldsymbol{d}$ matrix.

SVD theorem: \boldsymbol{A} can be written as $U D V^{\boldsymbol{T}}$ where

- \boldsymbol{V} is a $\boldsymbol{n} \times \boldsymbol{n}$ orthonormal matrix
- D is a $\boldsymbol{m} \times \boldsymbol{n}$ diagonal matrix with $\leq \boldsymbol{\operatorname { m i n }}\{\boldsymbol{m}, \boldsymbol{n}\}$ non-zeroes called the singular values of \boldsymbol{A}
- U is a $\boldsymbol{m} \times \boldsymbol{m}$ orthonormal matrix

$$
\begin{aligned}
& \text { righl } \sin \rightarrow v_{1}, v_{v}, \ldots, v_{n} \in \mathbb{R}^{n} \\
& \text { lefe. sig. } \quad u_{1}, u_{2}, \ldots, u_{m} \in R^{m}
\end{aligned}
$$

SVD

Let $\boldsymbol{d}=\min \{\boldsymbol{m}, \boldsymbol{n}\}$.

- $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{\boldsymbol{m}}$ columns of \boldsymbol{U}, left singular vectors of \boldsymbol{A}
- $v_{1}, v_{2}, \ldots, v_{n}$ columns of V (rows of $V^{\boldsymbol{T}}$) right singular vectors of \boldsymbol{A}
- $\sigma_{1} \geq \sigma_{2} \geq \ldots, \geq \sigma_{\boldsymbol{d}}$ are singular values where $d=\min \{m, n\}$. And $\sigma_{i}=D_{i, i}$

$$
\begin{aligned}
& A=\sum_{i=1}^{d}= \\
&== \\
&\left.\begin{array}{c}
u_{i} u_{i} v_{i}^{T} \\
{\left[\begin{array}{c}
u_{i}(h) \\
u_{c}(\omega) \\
\vdots
\end{array}\right][\quad}
\end{array}\right]
\end{aligned}
$$

SVD

Let $\boldsymbol{d}=\min \{\boldsymbol{m}, \boldsymbol{n}\}$.

- $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{\boldsymbol{m}}$ columns of \boldsymbol{U}, left singular vectors of \boldsymbol{A}
- $v_{1}, v_{2}, \ldots, v_{n}$ columns of V (rows of $V^{\boldsymbol{T}}$) right singular vectors of \boldsymbol{A}
- $\sigma_{1} \geq \sigma_{2} \geq \ldots, \geq \sigma_{\boldsymbol{d}}$ are singular values where $d=\min \{m, n\}$. And $\sigma_{i}=D_{i, i}$

$$
A=\sum_{i=1}^{d} \sigma_{i} u_{i} v_{i}^{T}
$$

We can in fact restrict attention to \boldsymbol{r} the rank of \boldsymbol{A}.

$$
A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}
$$

SVD

Interpreting \boldsymbol{A} as a linear operator $\boldsymbol{A}: \mathbb{R}^{\boldsymbol{n}} \rightarrow \mathbb{R}^{\boldsymbol{m}}$

- Columns of \boldsymbol{V} is an orthonormal basis and hence $\boldsymbol{V}^{T} \boldsymbol{x}$ for $x \in \mathbb{R}^{\boldsymbol{n}}$ expresses \boldsymbol{x} in the \boldsymbol{V} basis. Note that $\boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{x}$ is a rigid transformation (does not change length of x).
- Let $\boldsymbol{y}=\boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{z}$. \boldsymbol{D} is a diagonal matrix which only stretches \boldsymbol{y} along the coordinate axes. Also adjusts dimension to go from n to \boldsymbol{m} with right number of zeroes.
- Let $z=D y$. Then $U z$ is a rigid transformation that expresses z in the basis corresponding to rows of \boldsymbol{U}.

Thus any linear operator can be broken up into a sequence of three simpler/basic type of transformations
A is a matiux $m \times n \quad x \in R^{n}$

$$
\begin{aligned}
& A_{x} \in R^{m} \\
& A_{x}=U D \underbrace{V^{\top} x}_{y_{0}} \quad\left[\frac{\frac{v_{1}^{\top}}{v J}}{\frac{\vdots}{v_{n}^{\top}}}\right]\left[\begin{array}{l}
x \\
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
\end{aligned}
$$

$$
D y=z
$$

$$
z \in R^{n}
$$

Low rank approximation property of SVD

Question: Given $\boldsymbol{A} \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}$ and integer k find a matrix B of rank at most k such that $\|A-B\|$ is minimized

Low rank approximation property of SVD

Question: Given $\boldsymbol{A} \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}$ and integer k find a matrix B of rank at most k such that $\|A-B\|$ is minimized

Fact: For Frobenius norm optimum for all \boldsymbol{k} is captured by SVD.
That is, $A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}{ }^{T}$ is the best rank k approximation to A

$$
\begin{array}{ll}
& \left\|A-A_{k}\right\|_{F}=\min _{B=\operatorname{rank}(B) \leq k}\|A-B\|_{F} \\
A= & \sum_{i=1}^{d} \sigma_{i} u_{i} v_{i}^{\top}
\end{array}
$$

Low rank approximation property of SVD

Question: Given $A \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}$ and integer k find a matrix B of rank at most k such that $\|A-B\|$ is minimized

Fact: For Frobenius norm optimum for all \boldsymbol{k} is captured by SVD.
That is, $A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}{ }^{T}$ is the best rank k approximation to A

$$
\left\|A-A_{k}\right\|_{F}=\min _{B: \operatorname{rank}(B) \leq k}\|A-B\|_{F}
$$

Why this magic? Frobenius norm and basic properties of vector projections

Geometric meaning
Consider $k=1$. What is the best rank $\mathbf{1}$ matrix B that minimizes $\|A-B\|_{F}$

Since \boldsymbol{B} is rank $\mathbf{1 , B} \boldsymbol{B}=\boldsymbol{u} \boldsymbol{v}^{\boldsymbol{T}}$ where $\boldsymbol{v} \in \mathbb{R}^{\boldsymbol{n}}$ and $\boldsymbol{u} \in \mathbb{R}^{\boldsymbol{m}}$ W log v is a unit vector
A is $m \times n \quad B$ is also $m \times n$.

Geometric meaning

Consider $k=1$. What is the best rank 1 matrix B that minimizes $\|A-B\|_{F}$

Since B is rank $\mathbf{1 , B}=\boldsymbol{u} \boldsymbol{v}^{\boldsymbol{T}}$ where $\boldsymbol{v} \in \mathbb{R}^{\boldsymbol{n}}$ and $\boldsymbol{u} \in \mathbb{R}^{\boldsymbol{m}}$ Wlog v is a unit vector

$$
\left\|A-u v^{T}\right\|_{F}^{2}=\sum_{i=1}^{m}\left\|a_{i}-u(i) v\right\|_{2}^{2}
$$

Geometric meaning

Consider $k=1$. What is the best rank 1 matrix B that minimizes $\|A-B\|_{F}$

Since B is rank $\mathbf{1}, \boldsymbol{B}=\boldsymbol{u} \boldsymbol{v}^{\boldsymbol{T}}$ where $\boldsymbol{v} \in \mathbb{R}^{\boldsymbol{n}}$ and $\boldsymbol{u} \in \mathbb{R}^{\boldsymbol{m}}$ Wlog v is a unit vector

$$
\left\|A-u v^{T}\right\|_{F}^{2}=\sum_{i=1}^{m}\left\|a_{i}-u(i) v\right\|^{2}
$$

If we know \boldsymbol{v} then best \boldsymbol{u} to minimize above is determined. Why?

Geometric meaning

Consider $k=1$. What is the best rank 1 matrix B that minimizes $\|A-B\|_{F}$

Since B is rank $\mathbf{1}, \boldsymbol{B}=\boldsymbol{u} \boldsymbol{v}^{\boldsymbol{T}}$ where $\boldsymbol{v} \in \mathbb{R}^{\boldsymbol{n}}$ and $\boldsymbol{u} \in \mathbb{R}^{\boldsymbol{m}}$ Wlog v is a unit vector

$$
\left\|A-u v^{T}\right\|_{F}^{2}=\sum_{i=1}^{m}\left\|a_{i}-u(i) v\right\|^{2}
$$

If we know \boldsymbol{v} then best \boldsymbol{u} to minimize above is determined. Why? For fixed $v, u(i)=\left\langle a_{i}, v\right\rangle$

Geometric meaning

Consider $k=1$. What is the best rank 1 matrix B that minimizes $\|A-B\|_{F}$

Since B is rank $\mathbf{1 , B}=\boldsymbol{u} \boldsymbol{v}^{\boldsymbol{T}}$ where $\boldsymbol{v} \in \mathbb{R}^{\boldsymbol{n}}$ and $\boldsymbol{u} \in \mathbb{R}^{\boldsymbol{m}}$ Wlog v is a unit vector

$$
\left\|A-u v^{T}\right\|_{F}^{2}=\sum_{i=1}^{m}\left\|a_{i}-u(i) v\right\|^{2}
$$

If we know \boldsymbol{v} then best \boldsymbol{u} to minimize above is determined. Why? For fixed $v, u(i)=\left\langle a_{i}, v\right\rangle$ $\left\|a_{i}-\left\langle a_{i}, v\right\rangle v\right\|_{2}$ is distance of a_{i} from line described by v.

Geometric meaning

What is the best rank 1 matrix B that minimizes $\|A-B\|_{F}$
It is to find unit vector/direction v to minimize

$$
\underbrace{\sum_{i=1}^{m}\left\|a_{i}-\left\langle a_{i}, v\right\rangle v\right\|^{2}}_{i=1}\left\|a_{i}\right\|^{2}-\left\langle a_{i}, v\right\rangle \|^{2}
$$

which is same as finding unit vector v t maximize

Geometric meaning

What is the best rank 1 matrix B that minimizes $\|A-B\|_{F}$
It is to find unit vector/direction v to minimize

$$
\sum_{i=1}^{m}\left\|a_{i}-\left\langle a_{i}, v\right\rangle v\right\|^{2}
$$

which is same as finding unit vector v to maximize

$$
\sum_{i=1}^{m}\left\langle a_{i}, v\right\rangle^{2}
$$

How to find best \boldsymbol{v} ? Not obvious: we will come to it a bit later

Best rank two approximation

Consider $k=2$. What is the best rank 2 matrix B that minimizes $\|A-B\|_{F}$

Since B has rank 2 we can assume without loss of generality that $B=u_{1} v_{1}^{\boldsymbol{T}}+u_{2} v_{2}^{\boldsymbol{T}}$ where v_{1}, v_{2} are orthogonal unit vectors (span a space of dimension 2)

Best rank two approximation

Consider $k=2$. What is the best rank 2 matrix B that minimizes $\|A-B\|_{F}$

Since B has rank 2 we can assume without loss of generality that $B=u_{1} v_{1}^{\top}+u_{2} v_{2}^{\boldsymbol{T}}$ where v_{1}, v_{2} are orthogonal unit vectors (span a space of dimension 2)

Minimizing $\|A-B\|_{F}^{2}$ is same as finding orthogonal vectors v_{1}, v_{2} to maximize

$$
\sum_{i=1}^{m}\left(\left\langle a_{i}, \underline{\left.v_{1}\right\rangle^{2}+\left\langle a_{i}, v_{2}\right\rangle^{2}}\right)\right.
$$

in other words the best fit 2-dimensional space

$$
\begin{aligned}
& {\left[\frac{a_{1}}{\frac{a_{2}}{\vdots}}\right]-\left[\begin{array}{l}
b_{1}=u_{1}(1) \overline{v_{1}}+u_{2}\left(l_{1}\right) \overline{v_{2}} \\
\end{array}\right]} \\
& \|A-B\|_{p}^{2}=\quad \sum_{i=1}^{n}\left\|\bar{a}_{1}-u_{1}(1) \bar{v}_{1}-u_{2}(1) \bar{v}_{2}\right\|_{2}^{2} \\
& \bar{v}_{2} \uparrow \sim \bar{v}_{1}
\end{aligned}
$$

Greedy algorithm

- Find v_{1} as the best rank $\mathbf{1}$ approximation. That is $v_{1}=\arg \max _{v,\|v\|_{2}=1} \sum_{i=1}^{m}\left\langle a_{i}, v\right\rangle^{2}$
- For v_{2} solve $\arg \overline{\max }_{v \perp v_{1},\|v\|_{2}=1} \sum_{i=1}^{m}\left\langle a_{i}, v\right\rangle^{2}$.

Alternatively: let $\underset{\boldsymbol{a}}{a_{i}^{\prime}}=a_{i}-\left\langle a_{i}, v_{1}\right\rangle \boldsymbol{v}_{1}$. Let $v_{2}=\arg \max _{v,\|v\|_{2}=1}^{\vec{\prime}} \sum_{i=1}^{m}\left\langle a_{i}^{\prime}, v\right\rangle^{2}$

Greedy algorithm

- Find v_{1} as the best rank 1 approximation. That is $v_{1}=\arg \max _{v,\|v\|_{2}=1} \sum_{i=1}^{m}\left\langle a_{i}, v\right\rangle^{2}$
- For v_{2} solve $\arg \max _{v \perp v_{1},\|v\|_{2}=1} \sum_{i=1}^{m}\left\langle a_{i}, v\right\rangle^{2}$.

Alternatively: let $a_{i}^{\prime}=a_{i}-\left\langle a_{i}, v_{1}\right\rangle \boldsymbol{v}_{\mathbf{1}}$. Let $v_{2}=\arg \max _{v,\|v\|_{2}=1} \sum_{i=1}^{m}\left\langle a_{i}^{\prime}, v\right\rangle^{2}$

Greedy algorithm works!

Greedy algorithm correctness

Proof that Greedy works for $k=2$.
Suppose w_{1}, w_{2} are orthogonal unit vectors that form the best fit 2-d space. Let H be the space spanned by w_{1}, w_{2}.

Suffices to prove that

$$
\sum_{i=1}^{m}\left(\left\langle a_{i}, v_{1}\right\rangle^{2}+\left\langle a_{i}, v_{2}\right\rangle^{2}\right) \geq \sum_{i=1}^{m}\left(\left\langle a_{i}, w_{1}\right\rangle^{2}+\left\langle a_{i}, w_{2}\right\rangle^{2}\right)
$$

Greedy algorithm correctness

Proof that Greedy works for $\boldsymbol{k}=\mathbf{2}$.
Suppose w_{1}, w_{2} are orthogonal unit vectors that form the best fit 2-d space. Let H be the space spanned by w_{1}, w_{2}.

Suffices to prove that

$$
\sum_{i=1}^{m}\left(\left\langle a_{i}, v_{1}\right\rangle^{2}+\left\langle a_{i}, v_{2}\right\rangle^{2}\right) \geq \sum_{i=1}^{m}\left(\left\langle a_{i}, w_{1}\right\rangle^{2}+\left\langle a_{i}, w_{2}\right\rangle^{2}\right)
$$

If $\boldsymbol{v}_{1} \subset H$ then done because we can assume wlog that $w_{1}=v_{1}$ and v_{2} is at least as good as w_{2}.
\bar{v}_{1}, \bar{v}_{2}
$\frac{\text { Cax } 1}{\overline{\sqrt{1} \in}}$

H
$\max \sum_{i=1}^{n}\left\langle a_{i}, \bar{v}_{2}\right\rangle^{2} \geqslant \sum_{i=1}^{m}\left\langle a_{i}, \bar{w}_{i}^{\prime}\right\rangle^{2}$
Cax 2: $\quad \bar{v}_{1} \notin H$.
(2a) V_{1} is oithrgonal to H.

$$
\begin{aligned}
& \Rightarrow \quad \sum_{i=1}^{m}\left\langle a_{i}, v_{1}\right\rangle^{2} \geqslant \sum_{i=1}^{m}\left\langle a_{i}, w_{1}\right\rangle^{2} . \quad \bar{o}_{1} \\
& \sum_{i=1}^{m}\left\langle\bar{a}_{(}, v_{2}\right\rangle^{2} \geqslant \sum_{i=1}^{m}\left\langle a_{i}, w_{2}\right\rangle^{2} .
\end{aligned}
$$

$\operatorname{Case}_{2}(b)$

$$
\begin{gathered}
\sum_{i=1}^{m}\left\langle a_{i}, v_{l}\right\rangle^{2} \geqslant \sum_{i=1}^{m}\left\langle a_{i}, \omega_{1}\right\rangle^{2} \\
\sum_{i=1}^{m}\left\langle a_{i}, v_{2}\right\rangle^{2} \geqslant \sum_{i=1}^{m}\left\langle a_{i}, \omega_{2}\right\rangle^{2} \\
=
\end{gathered}
$$

Greedy algorithm correctness

Suppose $\boldsymbol{v}_{1} \notin \boldsymbol{H}$. Let $\boldsymbol{v}_{1}^{\prime}$ be projection of \boldsymbol{v}_{1} onto \boldsymbol{H} and $v_{1}^{\prime \prime}=v_{1}-v_{1}^{\prime}$ be the component of \boldsymbol{v}_{1} orthogonal to \boldsymbol{H}.

Greedy algorithm correctness

Suppose $\boldsymbol{v}_{1} \notin \boldsymbol{H}$. Let $\boldsymbol{v}_{1}^{\prime}$ be projection of \boldsymbol{v}_{1} onto \boldsymbol{H} and $v_{1}^{\prime \prime}=v_{1}-v_{1}^{\prime}$ be the component of v_{1} orthogonal to H. Note that $\left\|v_{1}^{\prime}\right\|^{2}+\left\|v_{1}^{\prime \prime}\right\|_{2}^{2}=\left\|v_{1}\right\|_{2}^{2}=1$.

Wlog we can assume by rotation that $w_{1}=\frac{1}{\left\|v_{1}^{\prime}\right\|_{2}} v_{1}^{\prime}$ and w_{2} is orthogonal to v_{1}^{\prime}. Hence w_{2} is orthogonal to v_{1}.

Greedy algorithm correctness

Suppose $\boldsymbol{v}_{1} \notin \boldsymbol{H}$. Let $\boldsymbol{v}_{1}^{\prime}$ be projection of \boldsymbol{v}_{1} onto \boldsymbol{H} and $v_{1}^{\prime \prime}=v_{1}-v_{1}^{\prime}$ be the component of v_{1} orthogonal to H. Note that $\left\|v_{1}^{\prime}\right\|^{2}+\left\|v_{1}^{\prime \prime}\right\|_{2}^{2}=\left\|v_{1}\right\|_{2}^{2}=1$.

Wlog we can assume by rotation that $w_{1}=\frac{1}{\left\|\boldsymbol{v}_{1}^{\prime}\right\|_{2}} \boldsymbol{v}_{1}^{\prime}$ and w_{2} is orthogonal to v_{1}^{\prime}. Hence w_{2} is orthogonal to \boldsymbol{v}_{1}.

Therefore \boldsymbol{v}_{2} is at least as good as w_{2}, and \boldsymbol{v}_{1} is at least as good as w_{1} which implies the desired claim.

Greedy algorithm for general k

- Find v_{1} as the best rank $\mathbf{1}$ approximation. That is $v_{1}=\arg \max _{v,\|v\|_{2}=1} \sum_{i=1}^{m}\left\langle a_{i}, v\right\rangle^{2}$
- For v_{k} solve $\arg \max _{v \perp v_{1}, v_{2}, \ldots, v_{k-1},\|v\|_{2}=1} \sum_{i=1}^{k}\left\langle a_{i}, v\right\rangle^{2}$ which is same as solving $k=\mathbf{1}$ with vectors $a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{m}^{\prime}$ that are residuals. That is $a_{i}^{\prime}=a_{i}-\sum_{j=1}^{k-1}\left\langle a_{i}, v_{j}\right\rangle v_{j}$
Proof of correctness is via induction and is a straight forward generalization of the proof for $k=2$

Summarizing

$$
\underset{=}{\sigma_{j}^{2}}=\sum_{i=1}^{m}\left\langle a_{i}, v_{j}\right\rangle^{2}
$$

$$
\begin{aligned}
& \sigma_{1}^{2}=\sum_{i=1}^{m}\left\langle a_{i}, v_{1}\right\rangle^{2} \\
& \sigma_{v}
\end{aligned}
$$

By greedy contruction $\sigma_{1} \geq \sigma_{2} \ldots$,

$$
=-
$$

Let r be the (row) rank of $\boldsymbol{A} . \boldsymbol{v}_{1}, v_{2}, \ldots, v_{r}$ span the row space of \boldsymbol{A} and $\sigma_{j}=\mathbf{0}$ for $\boldsymbol{j}>r$
\boldsymbol{u}_{1} determined by \boldsymbol{v}_{1} and \boldsymbol{u}_{2} determined by $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ and so on. Can show that they are orthogonal.

$$
A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{\top}
$$

Power method

Thus SVD relies on being able to solve $k=1$ case

Given m vectors $a_{1}, a_{2}, \ldots, a_{m} \in \mathbb{R}^{\boldsymbol{n}}$ solve

$$
\max _{v \in \mathbb{R}^{n},\|v\|_{2}=1}\left\langle a_{i}, v\right\rangle^{2}
$$

How do we solve the above problem?
Let $B=A^{T} A$ Then

$$
\begin{aligned}
B & =\left(\sum_{i=1}^{m} \sigma_{i} v_{i} u_{i}^{T}\right)\left(\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}\right) \\
& =\sum_{i=1}^{r} \sigma_{i}^{2} v_{i} v_{i}^{T}
\end{aligned}
$$

Find diucction
$\bar{v} \quad\|v\|_{2}=1$
$\max \sum_{i=1}^{m}\left\langle a_{i}, v\right\rangle^{2}$

Power method continued

Let $B=A^{T} A$ Then

$$
\begin{aligned}
\underline{B}^{2} & =\left(\sum_{i=1}^{r} \sigma_{i}^{2} v_{i} v_{i}^{T}\right)\left(\sum_{i=1}^{r} \sigma_{i}^{2} v_{i} v_{i}^{T}\right) \\
& =\sum_{i=1}^{r} \sigma_{i}^{4} v_{i} v_{i}^{T}
\end{aligned}
$$

More generally

$$
B^{k}=\sum_{i=1}^{r} \sigma_{i}^{k} v_{i} v_{i}^{T}
$$

Power method continued

Let $B=A^{T} A$ Then

$$
\begin{aligned}
B^{2} & =\left(\sum_{i=1}^{r} \sigma_{i}^{2} v_{i} v_{i}^{T}\right)\left(\sum_{i=1}^{r} \sigma_{i}^{2} v_{i} v_{i}^{T}\right) \\
& =\sum_{i=1}^{r} \sigma_{i}^{4} v_{i} v_{i}^{T}
\end{aligned}
$$

$$
\sigma_{1} \geqslant \sigma_{2} \cdots \geqslant \sigma_{2}
$$

More generally

$$
\begin{array}{rlrl}
B^{k}=\sum_{i=1}^{r} \sigma_{i}^{2 k} v_{i} v_{i}^{T} & v_{1} \\
& \sigma_{1} & >\sigma_{2} \geqslant \sigma_{3} \\
& \sigma_{1}^{k} & >\sigma_{2}^{k}
\end{array}
$$

If $\sigma_{1}>\sigma_{2}$ then B^{k} converges to $\sigma_{1}^{\boldsymbol{2}} v_{1} v_{1}^{\boldsymbol{T}}$ and we can identify v_{1} from B^{k}. But expensive to compute B^{k}

Power method continued

Pick a random (unit) vector $x \in \mathbb{R}^{n}$. Then $x=\sum_{i=1}^{n} \lambda_{i} v_{i}$ since $v_{1}, v_{2}, \ldots, v_{n}$ is a basis for \mathbb{R}^{n}. $=$

$$
B^{k} x=\left(\sum_{i=1}^{r} \sigma_{i}^{2 k} v_{i} v_{i}^{T}\right)\left(\sum_{i=1}^{d} \lambda_{i} v_{i}\right) \rightarrow \underset{\sigma_{1}^{2 k} \lambda_{1} v_{1}}{\stackrel{\downarrow}{L}}
$$

Can obtain v_{1} by normalizing $B^{k} x$ to a unit vector.
Computing $B^{k} x$ is easier via a series of matrix vector multiplications

$$
B^{k} x=B\left(B^{k-1} x\right)
$$

Power method continued

Pick a random (unit) vector $x \in \mathbb{R}^{n}$. Then $x=\sum_{i=1}^{n} \lambda_{i} v_{i}$ since $v_{1}, v_{2}, \ldots, v_{n}$ is a basis for \mathbb{R}^{n}.

$$
B^{k} x=\left(\sum_{i=1}^{r} \sigma_{i}^{k} v_{i} v_{i}^{T}\right)\left(\sum_{i=1}^{d} \lambda_{i} v_{i}\right) \rightarrow \underset{\sigma_{1}^{2 k}}{\stackrel{d}{\lambda_{1} v_{1}}} \stackrel{\frac{d}{=}}{=}
$$

Can obtain v_{1} by normalizing $B^{k} x$ to a unit vector.
Computing $B^{k} x$ is easier via a series of matrix vector multiplications
Why random x ?

What if $\sigma_{1} \simeq \sigma_{2}$? Power method still works. See references.

Linear least square/Regression and SVD

Linear least squares: Given $A \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}$ and $b \in \mathbb{R}^{\boldsymbol{m}}$ find x to minimize $\|A x-b\|_{2}$.

Interesting when $\boldsymbol{m}>\boldsymbol{n}$ the over constrained case when there is no solution to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ and want to find best fit.

Linear least square/Regression and SVD

Linear least squares: Given $A \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}$ and $b \in \mathbb{R}^{\boldsymbol{m}}$ find x to minimize $\|A x-b\|_{2}$.

Interesting when $\boldsymbol{m}>\boldsymbol{n}$ the over constrained case when there is no solution to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ and want to find best fit.

Geometrically $\boldsymbol{A x}$ is a linear combination of columns of \boldsymbol{A}. Hence we are asking what is the vector \boldsymbol{z} in the column space of \boldsymbol{A} that is closest to vector \boldsymbol{b} in ℓ_{2} norm.

Linear least square/Regression and SVD

Linear least squares: Given $\boldsymbol{A} \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}$ and $\boldsymbol{b} \in \mathbb{R}^{\boldsymbol{m}}$ find x to minimize $\|A x-b\|_{2}$.

Interesting when $\boldsymbol{m}>\boldsymbol{n}$ the over constrained case when there is no solution to $\boldsymbol{A x}=\boldsymbol{b}$ and want to find best fit.

Geometrically $\boldsymbol{A x}$ is a linear combination of columns of \boldsymbol{A}. Hence we are asking what is the vector \boldsymbol{z} in the column space of \boldsymbol{A} that is closest to vector \boldsymbol{b} in ℓ_{2} norm.

Closest vector to \boldsymbol{b} is the projection of \boldsymbol{b} into the column space of \boldsymbol{A} so it is "obvious" geometrically. How do we find it?

Linear least square/Regression and SVD

Linear least squares: Given $\boldsymbol{A} \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}$ and $\boldsymbol{b} \in \mathbb{R}^{\boldsymbol{m}}$ find x to minimize $\|A x-b\|_{2}$.

Interesting when $\boldsymbol{m}>\boldsymbol{n}$ the over constrained case when there is no solution to $\boldsymbol{A x}=\boldsymbol{b}$ and want to find best fit.

Geometrically $\boldsymbol{A x}$ is a linear combination of columns of \boldsymbol{A}. Hence we are asking what is the vector \boldsymbol{z} in the column space of \boldsymbol{A} that is closest to vector \boldsymbol{b} in ℓ_{2} norm.

Closest vector to \boldsymbol{b} is the projection of \boldsymbol{b} into the column space of \boldsymbol{A} so it is "obvious" geometrically. How do we find it? Find an orthonormal basis $z_{1}, z_{2}, \ldots, z_{r}$ for the columns of \boldsymbol{A}. Compute projection \boldsymbol{b}^{\prime} as $\boldsymbol{b}^{\prime}=\sum_{\boldsymbol{j}=\mathbf{1}}^{r}\left\langle\boldsymbol{b}, z_{j}\right\rangle z_{j}$ and output answer as $\left\|\boldsymbol{b}-\boldsymbol{b}^{\prime}\right\|_{2}$.

Linear least square/Regression and SVD

Linear least squares: Given $\boldsymbol{A} \in \mathbb{R}^{\boldsymbol{m} \times \boldsymbol{n}}$ and $\boldsymbol{b} \in \mathbb{R}^{\boldsymbol{m}}$ find x to minimize $\|A x-b\|_{2}$.

Closest vector to \boldsymbol{b} is the projection of \boldsymbol{b} into the column space of \boldsymbol{A} so it is "obvious" geometrically. Find an orthonormal basis $z_{1}, z_{2}, \ldots, z_{r}$ for the columns of \boldsymbol{A}. Compute projection \boldsymbol{b}^{\prime} as $\boldsymbol{b}^{\prime}=\sum_{j=1}^{r}\left\langle\boldsymbol{b}, z_{j}\right\rangle z_{j}$ and output answer as $\left\|\boldsymbol{b}-\boldsymbol{b}^{\prime}\right\|_{2}$.

Finding the basis is the expensive part. Recall SVD gives $v_{1}, v_{2}, \ldots, v_{r}$ which form a basis for the row space of \boldsymbol{A} but then $u_{1}^{T}, u_{2}^{T}, \ldots, \boldsymbol{u}_{m}^{T}$ form a basis for the column space of \boldsymbol{A}. Hence SVD gives us all the information to find \boldsymbol{b}^{\prime}. In fact we have

$$
\min _{x}\|A x-b\|_{2}^{2}=\sum_{i=r+1}^{m}\left\langle u_{i}^{T}, b\right\rangle^{2}
$$

