CS 498ABD: Algorithms for Big Data

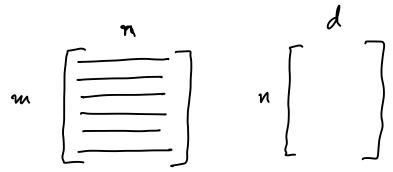
SVD and Low-rank **Approximation**

Lecture 23 Nov 17, 2020

Singular Value Decomposition (SVD)

Let **A** be a $m \times n$ real-valued matrix

- a_i denotes vector corresponding to row i
- m rows. think of each row as a data point in \mathbb{R}^n
- Data applications: $m \gg n$
- Other notation: **A** is a $n \times d$ matrix.



Singular Value Decomposition (SVD)

Let **A** be a $m \times n$ real-valued matrix

- a_i denotes vector corresponding to row i
- ullet m rows. think of each row as a data point in \mathbb{R}^n
- Data applications: $m \gg n$
- Other notation: **A** is a $n \times d$ matrix.

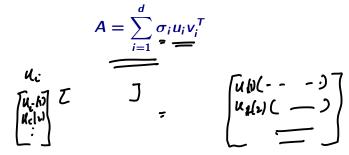
SVD theorem: \mathbf{A} can be written as \mathbf{UDV}^{T} where

- V is a $n \times n$ orthonormal matrix
- D is a $m \times n$ diagonal matrix with $\leq \min\{m, n\}$ non-zeroes called the singular values of A
- U is a $m \times m$ orthonormal matrix

SVD

Let $d = \min\{m, n\}$.

- u_1, u_2, \ldots, u_m columns of U, left singular vectors of A
- v_1, v_2, \ldots, v_n columns of V (rows of V^T) right singular vectors of A
- $\sigma_1 \geq \sigma_2 \geq \ldots, \geq \sigma_d$ are singular values where $d = \min\{m, n\}$. And $\sigma_i = D_{i,i}$



SVD

Let $d = \min\{m, n\}$.

- u_1, u_2, \ldots, u_m columns of U, left singular vectors of A
- v_1, v_2, \ldots, v_n columns of V (rows of V^T) right singular vectors of A
- $\sigma_1 \ge \sigma_2 \ge \dots, \ge \sigma_d$ are singular values where $d = \min\{m, n\}$. And $\sigma_i = D_{i,i}$

$$A = \sum_{i=1}^{d} \sigma_i u_i v_i^T$$

We can in fact restrict attention to r the rank of A.

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^T$$

SVD

Interpreting A as a linear operator $A: \mathbb{R}^n \to \mathbb{R}^m$

- Columns of V is an orthonormal basis and hence $V^T x$ for $x \in \mathbb{R}^n$ expresses x in the V basis. Note that $V^T x$ is a rigid transformation (does not change length of x).
- Let $y = V^T z$. D is a diagonal matrix which only stretches y along the coordinate axes. Also adjusts dimension to go from n to m with right number of zeroes.
- Let z = Dy. Then Uz is a rigid transformation that expresses z in the basis corresponding to rows of U.

Thus any linear operator can be broken up into a sequence of three simpler/basic type of transformations

A is a mater mxn

Dy = **Z**

ZERM

x eRn.

Ax $\in R^{m}$ $A_{x} = UDU^{T}_{x}$ $Y_{i} = \langle V_{i}, x \rangle$ $Y_{i} = \langle V_{i}, x \rangle$

Low rank approximation property of SVD

Question: Given $A \in \mathbb{R}^{m \times n}$ and integer k find a matrix B of rank at most k such that ||A - B|| is minimized

Chandra (UIUC) CS498ABD 5 Fall 2020 5 / 18

Low rank approximation property of SVD

Question: Given $A \in \mathbb{R}^{m \times n}$ and integer k find a matrix B of rank at most k such that ||A - B|| is minimized

Fact: For Frobenius norm optimum for all k is captured by SVD.

Chandra (UIUC) CS498ABD 5 Fall 2020 5 / 18

Low rank approximation property of SVD

Question: Given $A \in \mathbb{R}^{m \times n}$ and integer k find a matrix B of rank at most k such that ||A - B|| is minimized

Fact: For Frobenius norm optimum for all k is captured by SVD.

That is, $A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$ is the best rank k approximation to A

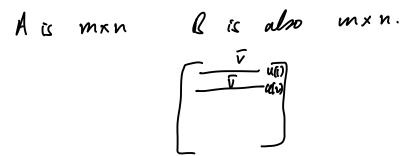
$$||A - A_k||_F = \min_{B: \operatorname{rank}(B) < k} ||A - B||_F$$

Why this magic? Frobenius norm and basic properties of vector projections

Chandra (UIUC) CS498ABD 5 Fall 2020 5 / 18

Consider k = 1. What is the best rank 1 matrix B that minimizes $\|A - B\|_F$

Since B is rank 1, $B = uv^T$ where $v \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$ Wlog v is a unit vector



Chandra (UIUC)

CS498ABD

Consider k = 1. What is the best rank 1 matrix B that minimizes $\|A - B\|_F$

Since B is rank 1, $B = uv^T$ where $v \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$ Wlog v is a unit vector

$$||A - uv^{T}||_{F}^{2} = \sum_{i=1}^{m} ||a_{i} - u(i)v||_{2}^{2}$$

$$\left[\begin{array}{c} \overline{a}_{1} \\ \overline{a}_{2} \\ \end{array}\right] - \left[\begin{array}{c} u(i) & \overline{v} \\ u(v) & \overline{v} \\ \vdots \\ u(m) & \overline{v} \end{array}\right]$$

Chandra (UIUC) CS498ABD 6 Fall 2020 6 / 18

Consider k = 1. What is the best rank 1 matrix B that minimizes $\|A-B\|_F$

Since B is rank 1, $B = uv^T$ where $v \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$ Wlog \mathbf{v} is a unit vector

$$||A - uv^T||_F^2 = \sum_{i=1}^m ||a_i - u(i)v||^2$$

If we know v then best u to minimize above is determined. Why?

Chandra (UIUC) CS498ABD 6 / 18

want to run $||\bar{a}_i - u(i)\bar{v}||_2^2$ $||u(i)\bar{v}||_2^2$ $||u(i)\bar{v}||_2^2$

Consider k = 1. What is the best rank 1 matrix B that minimizes $\|A - B\|_F$

Since B is rank 1, $B = uv^T$ where $v \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$ Wlog v is a unit vector

$$||A - uv^T||_F^2 = \sum_{i=1}^m ||a_i - u(i)v||^2$$

If we know v then best u to minimize above is determined. Why? For fixed v, $u(i) = \langle a_i, v \rangle$

Chandra (UIUC) CS

Consider k = 1. What is the best rank 1 matrix B that minimizes $\|A - B\|_F$

Since B is rank 1, $B = uv^T$ where $v \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$ Wlog v is a unit vector

$$||A - uv^T||_F^2 = \sum_{i=1}^m ||a_i - u(i)v||^2$$

If we know v then best u to minimize above is determined. Why? For fixed v, $u(i) = \langle a_i, v \rangle$

 $||a_i - \langle a_i, v \rangle v||_2$ is distance of a_i from line described by v.

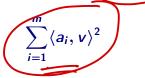
What is the best rank 1 matrix B that minimizes $\|A - B\|_F$

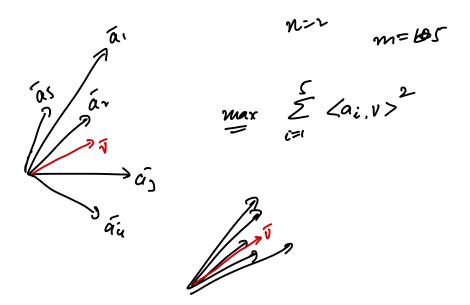
It is to find unit vector/direction v to minimize

$$\sum_{i=1}^{m} ||a_i - \langle a_i, v \rangle v||^2$$

$$= ||a_i||^2 - \langle a_i, v \rangle ||a_i||^2$$

which is same as finding unit vector \mathbf{v} to maximize





What is the best rank 1 matrix B that minimizes $\|A - B\|_F$

It is to find unit vector/direction \mathbf{v} to minimize

$$\sum_{i=1}^{m} ||a_i - \langle a_i, v \rangle v||^2$$

which is same as finding unit vector \mathbf{v} to maximize

$$\sum_{i=1}^{m} \langle a_i, v \rangle^2$$

How to find best \mathbf{v} ? Not obvious: we will come to it a bit later

Best rank two approximation

Consider k = 2. What is the best rank 2 matrix B that minimizes $||A - B||_F$

Since B has rank $\mathbf{2}$ we can assume without loss of generality that $B = u_1 v_1^T + u_2 v_2^T$ where v_1, v_2 are orthogonal unit vectors (span a space of dimension $\mathbf{2}$)

Best rank two approximation

Consider k = 2. What is the best rank 2 matrix B that minimizes $||A - B||_F$

Since B has rank $\mathbf{2}$ we can assume without loss of generality that $B = u_1 v_1^T + u_2 v_2^T$ where v_1, v_2 are orthogonal unit vectors (span a space of dimension $\mathbf{2}$)

Minimizing $||A - B||_F^2$ is same as finding orthogonal vectors v_1, v_2 to maximize

$$\sum_{i=1}^{m} (\langle a_i, v_1 \rangle^2 + \langle a_i, v_2 \rangle^2)$$

in other words the best fit 2-dimensional space

$$\begin{bmatrix} \frac{\alpha_{1}}{\alpha_{2}} \\ \frac{\alpha_{2}}{\alpha_{3}} \end{bmatrix} - \begin{bmatrix} \frac{\beta_{1}}{\beta_{1}} + u_{1}(1) \overline{v_{1}} + u_{2}(1) \overline{v_{2}} \\ \frac{\beta_{2}}{\beta_{3}} + u_{1}(1) \overline{v_{1}} - u_{2}(1) \overline{v_{2}} \end{bmatrix}^{2}$$

$$\begin{bmatrix} \frac{\alpha_{1}}{\alpha_{2}} \\ \frac{\beta_{2}}{\beta_{3}} \end{bmatrix} = \begin{bmatrix} \frac{\beta_{1}}{\beta_{2}} + u_{2}(1) \overline{v_{1}} + u_{2}(1) \overline{v_{2}} \\ \frac{\beta_{2}}{\beta_{3}} \end{bmatrix} - \begin{bmatrix} \frac{\beta_{1}}{\beta_{2}} + u_{2}(1) \overline{v_{1}} + u_{2}(1) \overline{v_{2}} \\ \frac{\beta_{2}}{\beta_{3}} \end{bmatrix}^{2}$$

$$\begin{bmatrix} \frac{\beta_{1}}{\beta_{2}} + u_{2}(1) \overline{v_{1}} + u_{2}(1) \overline{v_{2}} \\ \frac{\beta_{2}}{\beta_{3}} \end{bmatrix} - \begin{bmatrix} \frac{\beta_{1}}{\beta_{2}} + u_{2}(1) \overline{v_{2}} \\ \frac{\beta_{2}}{\beta_{3}} \end{bmatrix}^{2}$$

$$\begin{bmatrix} \frac{\beta_{1}}{\beta_{2}} + u_{2}(1) \overline{v_{1}} + u_{2}(1) \overline{v_{2}} \\ \frac{\beta_{2}}{\beta_{3}} \end{bmatrix} - \begin{bmatrix} \frac{\beta_{1}}{\beta_{2}} + u_{2}(1) \overline{v_{2}} \\ \frac{\beta_{2}}{\beta_{3}} \end{bmatrix}^{2}$$

$$\begin{bmatrix} \frac{\beta_{1}}{\beta_{2}} + u_{2}(1) \overline{v_{1}} + u_{2}(1) \overline{v_{2}} \\ \frac{\beta_{2}}{\beta_{3}} \end{bmatrix}^{2}$$

$$\begin{bmatrix} \frac{\beta_{1}}{\beta_{2}} + u_{2}(1) \overline{v_{1}} + u_{2}(1) \overline{v_{2}} \\ \frac{\beta_{2}}{\beta_{3}} \end{bmatrix}^{2}$$

$$\begin{bmatrix} \frac{\beta_{1}}{\beta_{2}} + u_{2}(1) \overline{v_{2}} \\ \frac{\beta_{2}}{\beta_{3}} \end{bmatrix}^{2}$$

Greedy algorithm

- Find v_1 as the best rank 1 approximation. That is $v_1 = \arg\max_{v, \|v\|_2 = 1} \sum_{i=1}^m \langle a_i, v \rangle^2$
- For v_2 solve $\arg \max_{v \perp v_1, ||v||_2 = 1} \sum_{i=1}^m \langle a_i, v \rangle^2$.

Alternatively: let $\mathbf{a}_i' = \mathbf{a}_i - \langle \mathbf{a}_i, \mathbf{v}_1 \rangle \mathbf{v}_1$. Let $\mathbf{v}_2 = \arg\max_{\mathbf{v}, \|\mathbf{v}\|_2 = 1} \sum_{i=1}^m \langle \mathbf{a}_i', \mathbf{v} \rangle^2$

Greedy algorithm

- Find v_1 as the best rank 1 approximation. That is $v_1 = \arg\max_{v, ||v||_2=1} \sum_{i=1}^m \langle a_i, v \rangle^2$
- For v_2 solve $\arg\max_{v \perp v_1, ||v||_2 = 1} \sum_{i=1}^m \langle a_i, v \rangle^2$.

Alternatively: let
$$a_i' = a_i - \langle a_i, v_1 \rangle v_1$$
. Let $v_2 = \arg\max_{v, ||v||_2 = 1} \sum_{i=1}^m \langle a_i', v \rangle^2$

Greedy algorithm works!

Proof that Greedy works for k = 2.

Suppose w_1 , w_2 are orthogonal unit vectors that form the best fit 2-d space. Let H be the space spanned by w_1 , w_2 .

Suffices to prove that

$$\sum_{i=1}^{m} (\langle a_i, v_1 \rangle^2 + \langle a_i, v_2 \rangle^2) \geq \sum_{i=1}^{m} (\langle a_i, w_1 \rangle^2 + \langle a_i, w_2 \rangle^2)$$

Proof that Greedy works for k = 2.

Suppose w_1 , w_2 are orthogonal unit vectors that form the best fit 2-d space. Let H be the space spanned by w_1 , w_2 .

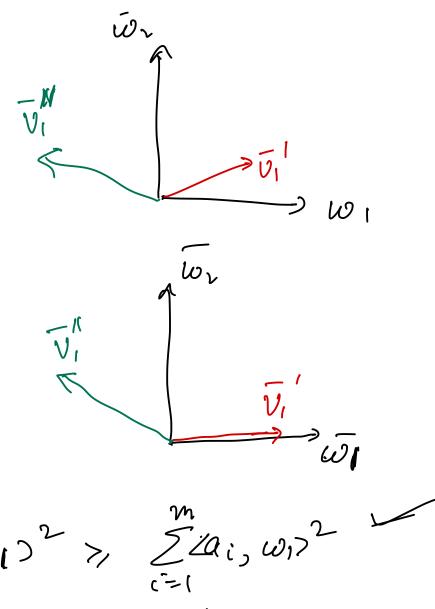
Suffices to prove that

$$\sum_{i=1}^{m}(\langle a_i, v_1 \rangle^2 + \langle a_i, v_2 \rangle^2) \geq \sum_{i=1}^{m}(\langle a_i, w_1 \rangle^2 + \langle a_i, w_2 \rangle^2)$$

If $v_1 \subset H$ then done because we can assume wlog that $w_1 = v_1$ and v_2 is at least as good as w_2 .

 $\overline{V_1}, \overline{V_2}$ \overline{w}_{1} \overline{w}_{1} \overline{w}_{1} \overline{w}_{1} \overline{w}_{1} \overline{w}_{1} \overline{w}_{1} $\max \sum_{i=1}^{n} \langle a_i, \overline{v_2} \rangle^2 \approx \sum_{i=1}^{m} \langle a_i, \overline{w_i'} \rangle^2$ VI & H. (2a) Vi is ofthogonal to H. $24 \frac{5(a_{i}, b_{i})^{2}}{5(a_{i}, b_{i})^{2}} = \frac{5(a_{i}, b_{i})$

Care 2(6)



$$\sum_{i=1}^{m} \langle a_i, v_i \rangle^2 > \sum_{i=1}^{m} \langle a_i, w_i \rangle^2$$

$$\sum_{i=1}^{m} \langle a_i, v_i \rangle^2 > \sum_{i=1}^{m} \langle a_i, w_i \rangle^2$$

$$= \sum_{i=1}^{m} \langle a_i, v_i \rangle^2 > \sum_{i=1}^{m} \langle a_i, w_i \rangle^2$$

$$= \sum_{i=1}^{m} \langle a_i, v_i \rangle^2 > \sum_{i=1}^{m} \langle a_i, w_i \rangle^2$$

Suppose $v_1 \not\in H$. Let v_1' be projection of v_1 onto H and $v_1'' = v_1 - v_1'$ be the component of v_1 orthogonal to H.

Chandra (UIUC) CS498ABD 11 Fall 2020 11 / 18

Suppose $v_1 \not\in H$. Let v_1' be projection of v_1 onto H and $v_1'' = v_1 - v_1'$ be the component of v_1 orthogonal to H. Note that $\|v_1'\|^2 + \|v_1''\|_2^2 = \|v_1\|_2^2 = 1$.

Wlog we can assume by rotation that $w_1 = \frac{1}{\|v_1'\|_2} v_1'$ and w_2 is orthogonal to v_1' . Hence w_2 is orthogonal to v_1 .

Chandra (UIUC) CS498ABD 11 Fall 2020 11 / 18

Suppose $v_1 \not\in H$. Let v_1' be projection of v_1 onto H and $v_1'' = v_1 - v_1'$ be the component of v_1 orthogonal to H. Note that $\|v_1'\|^2 + \|v_1''\|_2^2 = \|v_1\|_2^2 = 1$.

Wlog we can assume by rotation that $w_1 = \frac{1}{\|v_1'\|_2} v_1'$ and w_2 is orthogonal to v_1' . Hence w_2 is orthogonal to v_1 .

Therefore v_2 is at least as good as w_2 , and v_1 is at least as good as w_1 which implies the desired claim.

Chandra (UIUC) CS498ABD 11 Fall 2020 11 / 18

Greedy algorithm for general k

- Find v_1 as the best rank 1 approximation. That is $v_1 = \arg\max_{v, ||v||_2=1} \sum_{i=1}^m \langle a_i, v \rangle^2$
- For v_k solve $\arg\max_{v\perp v_1,v_2,\dots,v_{k-1},\|v\|_2=1}\sum_{i=1}^k\langle a_i,v\rangle^2$ which is same as solving k=1 with vectors a_1',a_2',\dots,a_m' that are residuals. That is $a_i'=a_i-\sum_{i=1}^{k-1}\langle a_i,v_j\rangle v_j$

Proof of correctness is via induction and is a straight forward generalization of the proof for k=2

Summarizing

$$\sigma_{j}^{2} = \sum_{i=1}^{m} \langle a_{i}, v_{j} \rangle^{2}$$

$$= \sum_{i=1}^{m} \langle a_{i}, v_{j} \rangle^{2}$$

$$= \sum_{i=1}^{m} \langle a_{i}, v_{i} \rangle^{2}$$

By greedy contruction $\sigma_1 \geq \sigma_2 \dots$,

Let r be the (row) rank of A. v_1, v_2, \ldots, v_r span the row space of **A** and $\sigma_i = 0$ for j > r

 u_1 determined by v_1 and u_2 determined by v_1 , v_2 and so on. Can show that they are orthogonal.

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^T$$

Chandra (UIUC)

Power method

Thus SVD relies on being able to solve k = 1 case

Given m vectors $a_1, a_2, \ldots, a_m \in \mathbb{R}^n$ solve

$$\max_{\mathbf{v} \in \mathbb{R}^n, \|\mathbf{v}\|_2 = 1} \langle a_i, \mathbf{v} \rangle^2$$

How do we solve the above problem?

Let
$$B = A^T A$$
 Then
$$B = (\sum_{i=1}^m \sigma_i v_i u_i^T)(\sum_{i=1}^r \sigma_i u_i v_i^T)$$

$$= \sum_{i=1}^r \sigma_i^2 v_i v_i^T$$

Find direction

V ||v||₂=1

max \(\int \text{ \(\alpha \) \(\alph

a; <u>→.</u>,

Let
$$B = A^T A$$
 Then

$$\underline{B}^{2} = \left(\sum_{i=1}^{r} \sigma_{i}^{2} v_{i} v_{i}^{T}\right) \left(\sum_{i=1}^{r} \sigma_{i}^{2} v_{i} v_{i}^{T}\right)$$
$$= \sum_{i=1}^{r} \sigma_{i}^{4} v_{i} v_{i}^{T}.$$

More generally

$$B^{k} = \sum_{i=1}^{r} \sigma_{i}^{k} v_{i} v_{i}^{T}$$

Let $B = A^T A$ Then

$$B^{2} = \left(\sum_{i=1}^{r} \sigma_{i}^{2} v_{i} v_{i}^{T}\right) \left(\sum_{i=1}^{r} \sigma_{i}^{2} v_{i} v_{i}^{T}\right)$$

$$= \sum_{i=1}^{r} \sigma_{i}^{4} v_{i} v_{i}^{T}.$$

$$\sigma_{i} > \sigma_{i} > \sigma_{i} > \sigma_{i}$$

More generally

$$B^{k} = \sum_{i=1}^{r} \sigma_{i}^{2k} v_{i} v_{i}^{T} \qquad \begin{array}{c} V_{1} \\ \sigma_{1} > \sigma_{2} > \sigma_{3} \end{array}$$

$$\sigma_{i}^{k} > \sigma_{k}^{k}$$

If $\sigma_1 > \sigma_2$ then B^k converges to $\sigma_1^{k} v_1 v_1^T$ and we can identify v_1 from B^k . But expensive to compute B^k

Pick a random (unit) vector $x \in \mathbb{R}^n$. Then $x = \sum_{i=1}^n \lambda_i v_i$ since v_1, v_2, \dots, v_n is a basis for \mathbb{R}^n .

$$\underline{\underline{B}^{k}x} = (\sum_{i=1}^{r} \sigma_{i}^{k} v_{i} v_{i}^{T})(\sum_{i=1}^{d} \lambda_{i} v_{i}) \rightarrow \underbrace{\sigma_{1}^{2k} \lambda_{1} v_{1}}_{\underline{=}}$$

Can obtain v_1 by normalizing $B^k x$ to a unit vector.

Computing $B^k x$ is easier via a series of matrix vector multiplications

$$\int_{0}^{k} x = \int_{0}^{k} \left(\int_{0}^{k-1} x \right)^{k}$$

Pick a random (unit) vector $x \in \mathbb{R}^n$. Then $x = \sum_{i=1}^n \lambda_i v_i$ since v_1, v_2, \ldots, v_n is a basis for \mathbb{R}^n .

$$B^{k}x = \left(\sum_{i=1}^{r} \sigma_{i}^{k} v_{i} v_{i}^{T}\right) \left(\sum_{i=1}^{d} \lambda_{i} v_{i}\right) \rightarrow \sigma_{1}^{2k} \lambda_{1} v_{1}$$

Can obtain v_1 by normalizing $B^k x$ to a unit vector.

Computing $B^k x$ is easier via a series of matrix vector multiplications

Why random
$$x$$
?

What if $\sigma_1 \simeq \sigma_2$? Power method still works. See references.

Linear least squares: Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ find x to minimize $||Ax - b||_2$.

Interesting when m > n the over constrained case when there is no solution to Ax = b and want to find best fit.

Chandra (UIUC) CS498ABD 17 Fall 2020 17 / 18

Linear least squares: Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ find x to minimize $||Ax - b||_2$.

Interesting when m > n the over constrained case when there is no solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we are asking what is the vector z in the column space of A that is closest to vector b in ℓ_2 norm.

Linear least squares: Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ find x to minimize $||Ax - b||_2$.

Interesting when m > n the over constrained case when there is no solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we are asking what is the vector z in the column space of A that is closest to vector b in ℓ_2 norm.

Closest vector to b is the projection of b into the column space of A so it is "obvious" geometrically. How do we find it?

Linear least squares: Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ find x to minimize $||Ax - b||_2$.

Interesting when m > n the over constrained case when there is no solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we are asking what is the vector z in the column space of A that is closest to vector b in ℓ_2 norm.

Closest vector to \boldsymbol{b} is the projection of \boldsymbol{b} into the column space of \boldsymbol{A} so it is "obvious" geometrically. How do we find it? Find an orthonormal basis z_1, z_2, \ldots, z_r for the columns of \boldsymbol{A} . Compute projection \boldsymbol{b}' as $\boldsymbol{b}' = \sum_{j=1}^r \langle \boldsymbol{b}, z_j \rangle z_j$ and output answer as $\|\boldsymbol{b} - \boldsymbol{b}'\|_2$.

Linear least squares: Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ find x to minimize $||Ax - b||_2$.

Closest vector to \boldsymbol{b} is the projection of \boldsymbol{b} into the column space of \boldsymbol{A} so it is "obvious" geometrically. Find an orthonormal basis z_1, z_2, \ldots, z_r for the columns of \boldsymbol{A} . Compute projection \boldsymbol{b}' as $\boldsymbol{b}' = \sum_{i=1}^r \langle \boldsymbol{b}, z_j \rangle z_j$ and output answer as $\|\boldsymbol{b} - \boldsymbol{b}'\|_2$.

Finding the basis is the expensive part. Recall SVD gives v_1, v_2, \ldots, v_r which form a basis for the *row* space of \boldsymbol{A} but then $\boldsymbol{u}_1^T, \boldsymbol{u}_2^T, \ldots, \boldsymbol{u}_m^T$ form a basis for the *column* space of \boldsymbol{A} . Hence SVD gives us all the information to find \boldsymbol{b}' . In fact we have

$$\min_{x} ||Ax - b||_{2}^{2} = \sum_{i=r+1}^{m} \langle u_{i}^{T}, b \rangle^{2}$$