
CS 498ABD: Algorithms for Big Data

Graph Streaming and
Sketching
Lecture 19
Nov 5, 2020

Chandra (UIUC) CS498ABD 1 Fall 2020 1 / 23

Graphs

G = (V ,E) is an undirected graph

n = |V | and m = |E |
Edges e1, e2, . . . , em seen as a stream, n known

Questions:

What graph problems can be solve with small space?

Can we handle edge deletions?

Chandra (UIUC) CS498ABD 2 Fall 2020 2 / 23

Graphs

G = (V ,E) is an undirected graph

n = |V | and m = |E |
Edges e1, e2, . . . , em seen as a stream, n known

Questions:

What graph problems can be solve with small space?

Can we handle edge deletions?

Chandra (UIUC) CS498ABD 2 Fall 2020 2 / 23

Semi-streaming Model

Lower bounds show that we require Ω(n) memory

Assume we have Θ(npolylog(n) memory. About polylog per vertex
of the graph

Can solve several interesting problems. Essentially reduce dense
graphs to sparse graphs.

Chandra (UIUC) CS498ABD 3 Fall 2020 3 / 23

Connectivity

Is G connected? Output a spanning tree if it is.

Output an MST of G in the weighted case.

Is G k-edge connected?

Chandra (UIUC) CS498ABD 4 Fall 2020 4 / 23

Basic Connectivity

Maintain spanning forest: need only O(n) edges

When edge ei = (u, v) arrives. If u and v are in different
components add ei to spanning forest. Otherwise discard ei .

Chandra (UIUC) CS498ABD 5 Fall 2020 5 / 23

MST

Maintain spanning forest: need only O(n) edges

When edge ei = (u, v) arrives. If u and v are in different
components add ei to spanning forest.

What if u and v are in same connected component?

Check
cycle formed by adding ei and discard heaviest edge in cycle.

Exercise: Prove that algorithm outputs an MST if G is connected.

Note: we did not focus on time to process each edge in stream. Can
use data structures to implement in O(log n) time per operation.

Chandra (UIUC) CS498ABD 6 Fall 2020 6 / 23

MST

Maintain spanning forest: need only O(n) edges

When edge ei = (u, v) arrives. If u and v are in different
components add ei to spanning forest.

What if u and v are in same connected component? Check
cycle formed by adding ei and discard heaviest edge in cycle.

Exercise: Prove that algorithm outputs an MST if G is connected.

Note: we did not focus on time to process each edge in stream. Can
use data structures to implement in O(log n) time per operation.

Chandra (UIUC) CS498ABD 6 Fall 2020 6 / 23

MST

Maintain spanning forest: need only O(n) edges

When edge ei = (u, v) arrives. If u and v are in different
components add ei to spanning forest.

What if u and v are in same connected component? Check
cycle formed by adding ei and discard heaviest edge in cycle.

Exercise: Prove that algorithm outputs an MST if G is connected.

Note: we did not focus on time to process each edge in stream. Can
use data structures to implement in O(log n) time per operation.

Chandra (UIUC) CS498ABD 6 Fall 2020 6 / 23

MST

Maintain spanning forest: need only O(n) edges

When edge ei = (u, v) arrives. If u and v are in different
components add ei to spanning forest.

What if u and v are in same connected component? Check
cycle formed by adding ei and discard heaviest edge in cycle.

Exercise: Prove that algorithm outputs an MST if G is connected.

Note: we did not focus on time to process each edge in stream. Can
use data structures to implement in O(log n) time per operation.

Chandra (UIUC) CS498ABD 6 Fall 2020 6 / 23

k-edge-connectivity

Definition

A graph G = (V ,E) is k-edge-connected if deleting any k − 1
edges still leaves a connected graph.

Definition

Given a graph G = (V ,E) and S ⊂ V , δ(S) is the set of edges
with exactly one end point in S .

Lemma

A graph G is k-edge connected iff |δ(S)| ≥ k for all S ⊂ V .

Chandra (UIUC) CS498ABD 7 Fall 2020 7 / 23

k-edge-connectivity

Definition

A graph G = (V ,E) is k-edge-connected if deleting any k − 1
edges still leaves a connected graph.

Definition

Given a graph G = (V ,E) and S ⊂ V , δ(S) is the set of edges
with exactly one end point in S .

Lemma

A graph G is k-edge connected iff |δ(S)| ≥ k for all S ⊂ V .

Chandra (UIUC) CS498ABD 7 Fall 2020 7 / 23

k-edge-connectivity

Definition

A graph G = (V ,E) is k-edge-connected if deleting any k − 1
edges still leaves a connected graph.

Definition

Given a graph G = (V ,E) and S ⊂ V , δ(S) is the set of edges
with exactly one end point in S .

Lemma

A graph G is k-edge connected iff |δ(S)| ≥ k for all S ⊂ V .

Chandra (UIUC) CS498ABD 7 Fall 2020 7 / 23

Sparse certificates for k-edge connectivity

Observation: If G is k-edge-connected than m ≥ kn/2. Why?

Question: Suppose G is edge-minimal k-edge-connected graph on n
nodes. What is an upper bound on the number of edges?

Theorem

An edge-minimal k-edge-connected graph on n nodes has at most
k(n − 1) edges.

Theorem

Given a graph G finding the smallest 2-edge-connected subgraph is
NP-Hard.

Chandra (UIUC) CS498ABD 8 Fall 2020 8 / 23

Sparse certificates for k-edge connectivity

Observation: If G is k-edge-connected than m ≥ kn/2. Why?

Question: Suppose G is edge-minimal k-edge-connected graph on n
nodes. What is an upper bound on the number of edges?

Theorem

An edge-minimal k-edge-connected graph on n nodes has at most
k(n − 1) edges.

Theorem

Given a graph G finding the smallest 2-edge-connected subgraph is
NP-Hard.

Chandra (UIUC) CS498ABD 8 Fall 2020 8 / 23

Sparse certificates for k-edge connectivity

Observation: If G is k-edge-connected than m ≥ kn/2. Why?

Question: Suppose G is edge-minimal k-edge-connected graph on n
nodes. What is an upper bound on the number of edges?

Theorem

An edge-minimal k-edge-connected graph on n nodes has at most
k(n − 1) edges.

Theorem

Given a graph G finding the smallest 2-edge-connected subgraph is
NP-Hard.

Chandra (UIUC) CS498ABD 8 Fall 2020 8 / 23

Sparse certificates for k-edge connectivity

Observation: If G is k-edge-connected than m ≥ kn/2. Why?

Question: Suppose G is edge-minimal k-edge-connected graph on n
nodes. What is an upper bound on the number of edges?

Theorem

An edge-minimal k-edge-connected graph on n nodes has at most
k(n − 1) edges.

Theorem

Given a graph G finding the smallest 2-edge-connected subgraph is
NP-Hard.

Chandra (UIUC) CS498ABD 8 Fall 2020 8 / 23

Sparse certificates for k-edge connectivity

Theorem

An edge-minimal k-edge-connected graph on n nodes has at most
k(n − 1) edges.

Constructive proof via algorithm.

For i = 1 to k do

Let Fi be a spanning forest in (V ,E \ ∪i−1
j=1 Fj)

Output H = (V , F1 ∪ F2 . . . ∪ Fk)

Easy to see that H as at most k(n − 1) edges.

Lemma

H is k-edge-connected if G is.

Chandra (UIUC) CS498ABD 9 Fall 2020 9 / 23

Sparse certificates for k-edge connectivity

Theorem

An edge-minimal k-edge-connected graph on n nodes has at most
k(n − 1) edges.

Constructive proof via algorithm.

For i = 1 to k do

Let Fi be a spanning forest in (V ,E \ ∪i−1
j=1 Fj)

Output H = (V , F1 ∪ F2 . . . ∪ Fk)

Easy to see that H as at most k(n − 1) edges.

Lemma

H is k-edge-connected if G is.

Chandra (UIUC) CS498ABD 9 Fall 2020 9 / 23

Streaming setting

For i = 1 to k do

Let Fi be a spanning forest in (V ,E \ ∪i−1
j=1 Fj)

Output H = (V , F1 ∪ F2 . . . ∪ Fk)

Algorithm can be implemented in streaming setting. How?

Chandra (UIUC) CS498ABD 10 Fall 2020 10 / 23

k-node-connectivity

Definition

A graph G = (V ,E) is k-node-connected (or k-vertex-connected) if
deleting any k − 1 nodes leaves a connected graph.

Theorem

An edge-minimal k-edge-connected graph on n nodes has at most
kn edges.

Above theorem is much more tricky than for the edge case.

See [Zelke] for references and streaming algorithm.

Chandra (UIUC) CS498ABD 11 Fall 2020 11 / 23

https://arxiv.org/pdf/cs/0608066.pdf

k-node-connectivity

Definition

A graph G = (V ,E) is k-node-connected (or k-vertex-connected) if
deleting any k − 1 nodes leaves a connected graph.

Theorem

An edge-minimal k-edge-connected graph on n nodes has at most
kn edges.

Above theorem is much more tricky than for the edge case.

See [Zelke] for references and streaming algorithm.

Chandra (UIUC) CS498ABD 11 Fall 2020 11 / 23

https://arxiv.org/pdf/cs/0608066.pdf

Part I

Graph sketching for connectivity

Chandra (UIUC) CS498ABD 12 Fall 2020 12 / 23

Graph sketching

We saw previously that linear sketching on vectors x allows for
several powerful applications including ability to handle deletions

Graph streaming with deletions: each token in stream is of the form
(e,∆) where e is an edge and ∆ ∈ {−1, 1}.

Want to maintain a sketch/data structure of size O(npolylog(n))
such that one can answer basic questions. Example: connectivity
queries.

Chandra (UIUC) CS498ABD 13 Fall 2020 13 / 23

Linear sketching recap

Vector x ∈ Rn that is updated one coordinate at a time.

Pick a sketch matrix Mr ∈ Rk×n and maintain sketch Mrx of
dimension k
The sketch matrix Mr depends on a random string r and is
implicitly defined and not explicitly stored. Assumption is that
Mr1i for vector 1i (which has 1 in i ’th coordinate and 0 in all
other entries) can be computed efficiently from r .

When x is updated to x + α1i we update sketch by αMr1i .

Do postprocessing of Mrx

Chandra (UIUC) CS498ABD 14 Fall 2020 14 / 23

`0 sampling in turnstile model

‖x‖0 is number of non-zero coordinates (distinct elements)

`0-sampling: output a non-zero coordinate of x near uniformly. Can
be done with O(log2 n)-sized sketch

Note: allow positive and negative entries in x

Chandra (UIUC) CS498ABD 15 Fall 2020 15 / 23

Sketching for graphs

Consider vector f ∈ R(n
2) where fi ∈ {0, 1} indicating whether edge

i in the complete graph on n nodes is in the graph or not.

Example:

Sketching f is not adequate for most graph applications. We need
information about edges incident to each vertex.

For node v let fv ∈ R(n
2) be a vector that only considers edges

incident to v in the complete graph. Essentially the row of v in the
adjacency matrix.

Why use
(n

2

)
dimensions? To be able to use linear

operations over different nodes.

We sketch each fv using same sketch matrix M and this takes
O(npolylog(n)) space.

Chandra (UIUC) CS498ABD 16 Fall 2020 16 / 23

Sketching for graphs

Consider vector f ∈ R(n
2) where fi ∈ {0, 1} indicating whether edge

i in the complete graph on n nodes is in the graph or not.

Example:

Sketching f is not adequate for most graph applications. We need
information about edges incident to each vertex.

For node v let fv ∈ R(n
2) be a vector that only considers edges

incident to v in the complete graph. Essentially the row of v in the
adjacency matrix. Why use

(n
2

)
dimensions?

To be able to use linear
operations over different nodes.

We sketch each fv using same sketch matrix M and this takes
O(npolylog(n)) space.

Chandra (UIUC) CS498ABD 16 Fall 2020 16 / 23

Sketching for graphs

Consider vector f ∈ R(n
2) where fi ∈ {0, 1} indicating whether edge

i in the complete graph on n nodes is in the graph or not.

Example:

Sketching f is not adequate for most graph applications. We need
information about edges incident to each vertex.

For node v let fv ∈ R(n
2) be a vector that only considers edges

incident to v in the complete graph. Essentially the row of v in the
adjacency matrix. Why use

(n
2

)
dimensions? To be able to use linear

operations over different nodes.

We sketch each fv using same sketch matrix M and this takes
O(npolylog(n)) space.

Chandra (UIUC) CS498ABD 16 Fall 2020 16 / 23

Sketching for graphs: connectivity

For connectivity the following specific representation is useful.

Assume wlog that V = [n]

Define vector a(i) for node i of dimension
(n

2

)
as follows:

a(i)({k, j}) = 0 if i 6= k and i 6= j (edge is not incident to i)
a(i)({k, j}) = 1 if i = k and i < j (edge is incident to i and
neighbor has higher index)

a(i)({k, j}) = −1 if i = j and k < i (edge is incident to i
and neighbor has higher index)

Lemma

Suppose S ⊂ [n] then
∑

i∈S a(i) is the representation for the node
obtained by contracting S into a single node.

Chandra (UIUC) CS498ABD 17 Fall 2020 17 / 23

Sketching for graphs: connectivity

For connectivity the following specific representation is useful.

Assume wlog that V = [n]

Define vector a(i) for node i of dimension
(n

2

)
as follows:

a(i)({k, j}) = 0 if i 6= k and i 6= j (edge is not incident to i)
a(i)({k, j}) = 1 if i = k and i < j (edge is incident to i and
neighbor has higher index)

a(i)({k, j}) = −1 if i = j and k < i (edge is incident to i
and neighbor has higher index)

Lemma

Suppose S ⊂ [n] then
∑

i∈S a(i) is the representation for the node
obtained by contracting S into a single node.

Chandra (UIUC) CS498ABD 17 Fall 2020 17 / 23

Example

Chandra (UIUC) CS498ABD 18 Fall 2020 18 / 23

Connectivity using sketching

Setting: stream of edge updates (ei ,∆i) where ei specifies the end
points and ∆i ∈ {−1, 1} (insert or delete). Strict turnstile.

Want to know if G is connected at end of stream and find a
spanning tree

Want to use O(n logc n) space for some small c

Chandra (UIUC) CS498ABD 19 Fall 2020 19 / 23

Offline algorithm

Consider following “parallel” algorithm for spanning tree computation
similar to Bourouvka’s algorithm for MST

Start with each vertex in separate connected component

In each round each connected component picks a single edge
leaving it.

All chosen edges added and connected components updated
(equivalently shrink the connected components into a single
node)

Repeat until graph has a single connected component (or
equivalently we have only one node)

Algorithm terminates in O(log n) iterations.

Chandra (UIUC) CS498ABD 20 Fall 2020 20 / 23

Offline algorithm

Consider following “parallel” algorithm for spanning tree computation
similar to Bourouvka’s algorithm for MST

Start with each vertex in separate connected component

In each round each connected component picks a single edge
leaving it.

All chosen edges added and connected components updated
(equivalently shrink the connected components into a single
node)

Repeat until graph has a single connected component (or
equivalently we have only one node)

Algorithm terminates in O(log n) iterations.

Chandra (UIUC) CS498ABD 20 Fall 2020 20 / 23

Emulation via sketching

Focus on implementing the first iteration of the offline algorithm.

Pick a sketching matrix M and keep sketches of Ma(i) for each
i ∈ [n] while edges are seen in the stream. Note: each edge
e = (i , j) updates a(i) and a(j).

After seeing all edges use `0 sampling from the sketch to pick a
non-zero coordinate from a(i) which corresponds to an edge
incident to node i .

Sketch size is O(n logc n) to enable correctness of `0 sampling with
high probability.

We need to recurse after picking edges in first iteration and contract
to create new contracted graph. But contracted graph depends on
sketch and we cannot make another pass! Linearity to the rescue!

Chandra (UIUC) CS498ABD 21 Fall 2020 21 / 23

Emulation via sketching

Focus on implementing the first iteration of the offline algorithm.

Pick a sketching matrix M and keep sketches of Ma(i) for each
i ∈ [n] while edges are seen in the stream. Note: each edge
e = (i , j) updates a(i) and a(j).

After seeing all edges use `0 sampling from the sketch to pick a
non-zero coordinate from a(i) which corresponds to an edge
incident to node i .

Sketch size is O(n logc n) to enable correctness of `0 sampling with
high probability.

We need to recurse after picking edges in first iteration and contract
to create new contracted graph.

But contracted graph depends on
sketch and we cannot make another pass! Linearity to the rescue!

Chandra (UIUC) CS498ABD 21 Fall 2020 21 / 23

Emulation via sketching

Focus on implementing the first iteration of the offline algorithm.

Pick a sketching matrix M and keep sketches of Ma(i) for each
i ∈ [n] while edges are seen in the stream. Note: each edge
e = (i , j) updates a(i) and a(j).

After seeing all edges use `0 sampling from the sketch to pick a
non-zero coordinate from a(i) which corresponds to an edge
incident to node i .

Sketch size is O(n logc n) to enable correctness of `0 sampling with
high probability.

We need to recurse after picking edges in first iteration and contract
to create new contracted graph. But contracted graph depends on
sketch and we cannot make another pass!

Linearity to the rescue!

Chandra (UIUC) CS498ABD 21 Fall 2020 21 / 23

Emulation via sketching

Focus on implementing the first iteration of the offline algorithm.

Pick a sketching matrix M and keep sketches of Ma(i) for each
i ∈ [n] while edges are seen in the stream. Note: each edge
e = (i , j) updates a(i) and a(j).

After seeing all edges use `0 sampling from the sketch to pick a
non-zero coordinate from a(i) which corresponds to an edge
incident to node i .

Sketch size is O(n logc n) to enable correctness of `0 sampling with
high probability.

We need to recurse after picking edges in first iteration and contract
to create new contracted graph. But contracted graph depends on
sketch and we cannot make another pass! Linearity to the rescue!

Chandra (UIUC) CS498ABD 21 Fall 2020 21 / 23

Emulation via sketching

Implementing two iterations of the offline algorithm

Pick independent sketching matrices M1 and M2 and keep
sketches for M1a(i) and M2a(i) for each i as before

Let H be contracted graph obtained by using M1 for first
iteration

Suppose S is a connected component that gets contracted to a
node v . By lemma we have sketch for nodes in graph H!
M2a(v) =

∑
i∈S M2a(i).

Question: Why do we need M2? Can we not use M1 itself?

Chandra (UIUC) CS498ABD 22 Fall 2020 22 / 23

Emulation via sketching

Implementing two iterations of the offline algorithm

Pick independent sketching matrices M1 and M2 and keep
sketches for M1a(i) and M2a(i) for each i as before

Let H be contracted graph obtained by using M1 for first
iteration

Suppose S is a connected component that gets contracted to a
node v . By lemma we have sketch for nodes in graph H!
M2a(v) =

∑
i∈S M2a(i).

Question: Why do we need M2? Can we not use M1 itself?

Chandra (UIUC) CS498ABD 22 Fall 2020 22 / 23

Emulation via sketching

Implementing the offline algorithm

Pick independent sketching matrices M1,M2, . . . ,Mt where
t = O(log n) and keep sketches for Mja(i) for each node i and
for each 1 ≤ j ≤ t. Total space is O(n logc n) since
t = O(log n)

Use Mj , via linearity, for the contracted graph in iteration j to
create graph for next iteration.

Correctness requires that each iteration has high probability. Use
union bound over iterations (since sketches are independent) and in
each iteration use union bound over all vertices (using high
probability of `0 sampling).

Chandra (UIUC) CS498ABD 23 Fall 2020 23 / 23

Emulation via sketching

Implementing the offline algorithm

Pick independent sketching matrices M1,M2, . . . ,Mt where
t = O(log n) and keep sketches for Mja(i) for each node i and
for each 1 ≤ j ≤ t. Total space is O(n logc n) since
t = O(log n)

Use Mj , via linearity, for the contracted graph in iteration j to
create graph for next iteration.

Correctness requires that each iteration has high probability. Use
union bound over iterations (since sketches are independent) and in
each iteration use union bound over all vertices (using high
probability of `0 sampling).

Chandra (UIUC) CS498ABD 23 Fall 2020 23 / 23

	Graph sketching for connectivity

