CS 498ABD: Algorithms for Big Data

Topics in Streaming
Lecture 18 and 19
October 27 and 29, 2020

Topics in Streaming

- F_{p} estimation for $p \in(0,2]$ via p-stable distributions and pseudorandom generators
- Priority Sampling
- Precision Sampling and Applications to ℓ_{2} sampling in streams
- ℓ_{0} Sampling

Part III

Sampling according to frequency moments

Sampling
Sampling problem: given $x \in \mathbb{R}^{n}$ in (strict) turnstile setting, at the end output random (I, R) where $I \in[n]$ and $R \in \mathbb{R}$ such that $\operatorname{Pr}[I=i] \simeq \frac{\left|x_{i}\right|^{p}}{\sum_{j}\left|x_{j}\right|^{p}}$ and $R=x_{i}$ if $I=i$.

$$
\begin{aligned}
& x=\left(\begin{array}{c}
0,0, \ldots, 0) \\
+2
\end{array} \frac{\|\left. x_{i}\right|^{2}}{\|x\|_{2}^{2}}\right. \\
& -3 \\
& -10 \\
& +100 \\
& \left.\begin{array}{l}
l_{2} \\
l_{p} \\
l_{0}
\end{array}\right\} p(0,0,2) \\
& x=(-1,0,10,01, \ldots . .) \\
& \text { ?? }
\end{aligned}
$$

Sampling

Sampling problem: given $x \in \mathbb{R}^{\boldsymbol{n}}$ in (strict) turnstile setting, at the end output random (I, R) where $I \in[n]$ and $R \in \mathbb{R}$ such that $\operatorname{Pr}[I=i] \simeq \frac{\left|x_{i}\right|^{p}}{\sum_{j}\left|x_{j}\right|^{p}}$ and $R=x_{i}$ if $I=i$.

Sampling is generally a more challenging problem than estimation

Sampling

Sampling problem: given $x \in \mathbb{R}^{\boldsymbol{n}}$ in (strict) turnstile setting, at the end output random (I, R) where $I \in[n]$ and $R \in \mathbb{R}$ such that $\operatorname{Pr}[I=i] \simeq \frac{\left|x_{i}\right|^{p}}{\sum_{j}\left|x_{j}\right|^{p}}$ and $R=x_{i}$ if $I=i$.

Sampling is generally a more challenging problem than estimation Approximation: $\operatorname{Pr}[I=i]=(1 \pm \epsilon) \frac{\left|x_{i}\right|^{p}}{\sum_{j}\left|x_{j}\right|^{p}}+1 /$ poly (n) for some small ϵ and $R=(1 \pm \epsilon) x_{i}$.

Sampling

Sampling problem: given $x \in \mathbb{R}^{\boldsymbol{n}}$ in (strict) turnstile setting, at the end output random (I, R) where $I \in[n]$ and $R \in \mathbb{R}$ such that $\operatorname{Pr}[I=i] \simeq \frac{\left|x_{i}\right|^{p}}{\sum_{j}\left|x_{j}\right|^{p}}$ and $R=x_{i}$ if $I=i$.

Sampling is generally a more challenging problem than estimation
Approximation: $\operatorname{Pr}[I=i]=(1 \pm \epsilon) \frac{\left|x_{i}\right|^{p}}{\sum_{j}\left|x_{j}\right|^{p}}+1 /$ poly (n) for some small ϵ and $R=(1 \pm \epsilon) x_{i}$.

Can do ℓ_{0}, ℓ_{2} and $\ell_{\boldsymbol{p}}$ for $\mathbf{0}<\boldsymbol{p}<\mathbf{2}$ in polylog space using ideas from sketching. Works in (strict) turnstile models.

Several important applications

Part IV

ℓ_{2} Sampling

$$
\begin{aligned}
& x=(1,-3,10,5,0,3) \\
&(1,9,100,25,0,9) . \\
&\|x\|_{2}^{2}= \omega^{\omega}(1+9+100 \ldots) . \\
& 2 \text { with } \frac{9}{\|x\|_{2}^{2}} \quad \text { i } \frac{\omega_{i}}{\omega} x_{c}^{2}
\end{aligned}
$$

ℓ_{2} Sampling

Based on precision sampling which has similarities to priority sampling.

High-level Algorithm:

- $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the vector being updated
- Can estimate $\|x\|_{2}$ using F_{2} estimation. Assume $\|x\|_{2}=1$ for normalization purposes/simplicity
$\left\lceil\right.$ Consider $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ where $y_{i}=x_{i} / \sqrt{u_{i}}$ where $u_{1}, u_{2}, \ldots, u_{n}$ are independent random variables from $[0,1]$.
- For some threshold t to be chosen, return (i, x_{i}^{2}) if i is the unique index such that $y_{i}^{2} \geq t$.

$$
\frac{x_{i}^{2}}{u_{i}}=\frac{w_{i}}{u_{i}} \geqslant 1
$$

Questions:

- How should we choose t ? Why does it work?
- How do we implement in streaming setting?

Choosing threshold

Let $w_{i}=x_{i}^{2}$ and hence we have $w_{1}, w_{2}, \ldots, w_{n}$ and $W=\sum_{i} w_{i}=\|x\|_{2}^{2}$. Normalize such that $W=1$
Recall priority sampling where we pick $u_{1}, \ldots, \boldsymbol{u}_{\boldsymbol{n}} \in[0,1]$ independently and store the largest \boldsymbol{k} amongst $\boldsymbol{w}_{\boldsymbol{i}} / \boldsymbol{u}_{\boldsymbol{i}}$ values. Here we think of storing only largest. Also $y_{i}^{2}=x_{i}^{2} / u_{i}=w_{i} / u_{i}$

Choosing threshold

Let $w_{i}=x_{i}^{2}$ and hence we have $w_{1}, w_{2}, \ldots, w_{n}$ and $W=\sum_{i} w_{i}=\|x\|_{2}^{2}$. Normalize such that $W=\mathbf{1}$

Recall priority sampling where we pick $u_{1}, \ldots, u_{n} \in[0,1]$ independently and store the largest k amongst w_{i} / u_{i} values. Here we think of storing only largest. Also $y_{i}^{2}=x_{i}^{2} / u_{i}=w_{i} / u_{i}$

$\rightarrow \geqslant \omega$.

Fix threshold t. What is probability that i is returned?

If t large then above 11 ± 27 效 $\frac{\sum x_{c}^{2}}{t}=\frac{\omega}{5}$
Probability some item is output is $\simeq \frac{1}{t}$. Hence repeat $\Omega(t \log (1 / \delta))$ times to ensure output with prob at least $(1-\delta)$.

$$
\begin{aligned}
& x=(-, \ldots-) \\
& y=\left(1, \frac{x_{i}}{\sqrt{k_{i}}}, \ldots\right)
\end{aligned}
$$

$$
x_{i} \in x_{i}+\Delta i
$$

$$
y_{i} \not y_{i}+\frac{\Delta_{i}}{\sqrt{u_{i}}}
$$

Choosing threshold and identifying i

t should be large compared to $\sum_{i} x_{i}^{2}=\|x\|_{2}^{2}$. Probability of output is $1 / t$ so need t attempts. Thus choose $t=O(\log n)\|x\|_{2}^{2}$.

Choosing threshold and identifying i

t should be large compared to $\sum_{i} x_{i}^{2}=\|x\|_{2}^{2}$. Probability of output is $1 / t$ so need t attempts. Thus choose $t=O(\log n)\|x\|_{2}^{2}$.

Need to store $y_{1}^{2}, y_{2}^{2}, \ldots, y_{n}^{2}$?

Choosing threshold and identifying i

t should be large compared to $\sum_{i} x_{i}^{2}=\|x\|_{2}^{2}$. Probability of output is $1 / t$ so need t attempts. Thus choose $t=O(\log n)\|x\|_{2}^{2}$.

Need to store $y_{1}^{2}, y_{2}^{2}, \ldots, y_{n}^{2}$? But we only need the two largest to decide if largest is above threshold. Hence can use Count Sketch on y to store only heavy hitters.

Choosing threshold and identifying i

t should be large compared to $\sum_{i} x_{i}^{2}=\|x\|_{2}^{2}$. Probability of output is $1 / t$ so need t attempts. Thus choose $t=O(\log n)\|x\|_{2}^{2}$.

Need to store $y_{1}^{2}, y_{2}^{2}, \ldots, y_{n}^{2}$? But we only need the two larges to decide if largest is above threshold. Hence can use Count Sketch on y to store only heavy hitters.

Issues:

- Count Sketch gives heavy hitters with additive error that? depends on $\|y\|_{2}$.
- Threshold t is with respect to $\|x\|_{2}^{2}$.
- How do we store independent $\underline{\underline{u_{1}}, \ldots, u_{n}}$ to sketch $\underline{\underline{y}} \boldsymbol{X}$.

Resolving issues
Note that $y_{i}^{2} \geq x_{i}^{2}$ for all i, hence $\|y\|_{2}^{2} \geq\|x\|_{2}^{2}$.
Lemma
With probability $\geq(\mathbf{1}-\delta)$ we have $\|y\|_{2}^{2} \leq \frac{1}{\delta} c \ln n\|x\|_{2}^{2}$ for some fixed c.

Prove above as exercise. Thus $\|y\|_{2}$ is not much larger than $\|x\|_{2}$.

$$
\begin{aligned}
& y=\left(\frac{x_{1}}{\sqrt{u_{1}}}, \frac{x_{2}}{\sqrt{u_{2}}}, \ldots, \frac{x_{n}}{\sqrt{u_{n}}}\right) . \\
& y_{r}^{2}=\frac{x_{i}^{2}}{u_{i}} \geqslant x_{c}^{2} \quad u_{i} \in(0,1) . \\
& \|y\|_{2} \geqslant\|x\|_{2}
\end{aligned}
$$

Resolving issues

Note that $y_{i}^{2} \geq x_{i}^{2}$ for all i, hence $\|y\|_{2}^{2} \geq\|x\|_{2}^{2}$.

Lemma

With probability $\geq(1-\delta)$ we have $\|y\|_{2}^{2} \leq \frac{1}{\delta} c \ln n\|x\|_{2}^{2}$ for some fixed c.

Prove above as exercise. Thus $\|y\|_{2}$ is not much larger than $\|x\|_{2}$.
Recall Count Sketch for y gives estimate \tilde{y}_{i} for each i such that $\left|\tilde{y}_{i}-y_{i}\right|^{2} \leq \epsilon^{2}\|y\|_{2}^{2}$ and space is $O\left(\frac{1}{\epsilon^{2}} \operatorname{Og} n\right)$. Choose
$\overline{\epsilon=\epsilon^{\prime} / \log n \text { and hence we have }\left|\tilde{y}_{i}-y_{i}\right|^{2}} \leq \frac{\epsilon^{\prime 2}}{\log n}\|x\|_{2}^{2}$
$\left|\tilde{y}_{i}-y_{i}\right|^{2} \leq \frac{\left(\varepsilon^{\prime}\right)^{2}}{(\log n)^{2}} \cdot\|y\|_{2}^{2} \leq \frac{\left(\varepsilon^{\prime}\right)^{2}}{(\operatorname{los} n)^{2}} \tan \cdot\left(\mid x \|_{2}^{2}\right.$

Resolving issues

Note that $y_{i}^{2} \geq x_{i}^{2}$ for all i, hence $\|y\|_{2}^{2} \geq\|x\|_{2}^{2}$.

Lemma

With probability $\geq(1-\delta)$ we have $\|y\|_{2}^{2} \leq \frac{1}{\delta} c \ln n\|x\|_{2}^{2}$ for some fixed c.

Prove above as exercise. Thus $\|y\|_{2}$ is not much larger than $\|x\|_{2}$.
Recall Count Sketch for y gives estimate \tilde{y}_{i} for each \boldsymbol{i} such that $\left|\tilde{y}_{i}-y_{i}\right|^{2} \leq \epsilon^{2}\|y\|_{2}^{2}$ and space is $O\left(\frac{1}{\epsilon^{2}} \log n\right)$. Choose $\epsilon=\epsilon^{\prime} / \log n$ and hence we have $\left|\tilde{y}_{i}-y_{i}\right|^{2} \leq \frac{\epsilon^{\prime}}{\log n}\|x\|_{2}^{2}$

Above implies that \tilde{y}_{i} is a close mutiplicative approximation of y_{i} if y_{i} is sufficiently large compared to $\|x\|_{2}^{2}$

Resolving issues

Recall threshold $t=c \log n\|x\|_{2}^{2}$. Implies that

- Sufficient to keep track of small number of heavy hitters in y hence Count Sketch for y needs only poly $\left(\log n / \epsilon^{2}\right)$ space.
- Can keep track of $\|x\|_{2}$ and $\|y\|_{2}$ to check if heavy hitters are sufficiently large and hence estimates are accurate even if additive error
- Output i if $\tilde{y}_{i}^{2} \geq t$ and is unique.

Resolving issues

Recall threshold $t=c \log n\|x\|_{2}^{2}$. Implies that

- Sufficient to keep track of small number of heavy hitters in y hence Count Sketch for y needs only poly $\left(\log n / \epsilon^{2}\right)$ space.
- Can keep track of $\|x\|_{2}$ and $\|y\|_{2}$ to check if heavy hitters are sufficiently large and hence estimates are accurate even if additive error
- Output i if $\tilde{y}_{i}^{2} \geq t$ and is unique.

Since we use \tilde{y}_{i} which is an estimate of y_{i}, the probability of \boldsymbol{i} being output is proportional to $\frac{(1 \pm \epsilon) x_{i}^{2}}{\|x\|_{2}^{2}}$.

Resolving issues

How do we sketch \boldsymbol{y} without storing $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{\boldsymbol{n}}$? Recall analysis crucially relied on independence.

Resolving issues

How do we sketch y without storing u_{1}, \ldots, u_{n} ? Recall analysis crucially relied on independence.

- Use \boldsymbol{k}-wise independence for sufficiently large \boldsymbol{k} and redo analysis
- Use hammer of pseudorandom generators

Algorithm again

- x is vector being updated. Keep track of $\|x\|_{2}$
- Use Count Sketch to sketch y where $y_{i}=x_{i} / \sqrt{u_{i}}$ with u_{i} drawn independently from $[\mathbf{0}, \mathbf{1}]$. Use sketch to obtain estimates \tilde{y}_{i} for heavy hitters in y
- Output i if \tilde{y}_{i}^{2} is the unique heavy hitter that is above threshold t where $t=c \log n\|x\|_{2}^{2}$. If no such i then declare FAIL.
Repeat above in parallel $O\left(\log ^{2} n\right)$ times to guarantee high probability of obtaining a good sample.

Algorithm again

- x is vector being updated. Keep track of $\|x\|_{2}$
- Use Count Sketch to sketch y where $y_{i}=x_{i} / \sqrt{u_{i}}$ with u_{i} drawn independently from $[\mathbf{0}, \mathbf{1}]$. Use sketch to obtain estimates \tilde{y}_{i} for heavy hitters in y
- Output i if \tilde{y}_{i}^{2} is the unique heavy hitter that is above threshold t where $t=c \log n\|x\|_{2}^{2}$. If no such i then declare FAIL.
Repeat above in parallel $O\left(\log ^{2} n\right)$ times to guarantee high probability of obtaining a good sample.

Space is for Count Sketch and to store generate $\boldsymbol{u}_{\boldsymbol{i}}$ values pseudorandomly.

Algorithm again

- x is vector being updated. Keep track of $\|x\|_{2}$
- Use Count Sketch to sketch y where $y_{i}=x_{i} / \sqrt{u_{i}}$ with u_{i} drawn independently from $[\mathbf{0}, \mathbf{1}]$. Use sketch to obtain estimates \tilde{y}_{i} for heavy hitters in y
- Output i if \tilde{y}_{i}^{2} is the unique heavy hitter that is above threshold t where $t=c \log n\|x\|_{2}^{2}$. If no such i then declare FAIL.
Repeat above in parallel $O\left(\log ^{2} n\right)$ times to guarantee high probability of obtaining a good sample.

Space is for Count Sketch and to store generate $\boldsymbol{u}_{\boldsymbol{i}}$ values pseudorandomly.

Algorithm uses poly $(\log \boldsymbol{n} / \boldsymbol{\epsilon}))$ space and with high probability outputs $i \in[n]$ such that
$\operatorname{Pr}[i$ is output $]=(1 \pm \epsilon) x_{i}^{2} /\|x\|_{2}^{2}+1 / n^{c}$.

Application of ℓ_{2} sampling to F_{p} estimation
For $\boldsymbol{p}>2$ AMS-Sampling gives algorithm to estimate $F_{\boldsymbol{p}}$ using $\tilde{O}\left(n^{1-1 / p}\right)$ space. Optimal space is $\tilde{O}\left(n^{1-2 / p}\right)$.
can ertionat $F_{p} \& l_{p}$ of $p=0$ and $p \in(0,2]$ in preys space

$$
p>2 \quad \Omega\left(n^{1-\frac{2}{p}}\right)
$$

Application of ℓ_{2} sampling to F_{p} estimation

For $\boldsymbol{p}>2$ AMS-Sampling gives algorithm to estimate F_{p} using $\tilde{O}\left(n^{1-1 / p}\right)$ space. Optimal space is $\tilde{O}\left(n^{1-2 / p}\right)$.

- Use ℓ_{2} sampling algorithm to generate $\left(\underline{i},\left|\tilde{x}_{i}\right|\right)$
- Estimate $\|x\|_{2}^{2}$.
- Output $\underline{T}=\left\|x_{2}\right\|_{2}^{2}\left|\tilde{x}_{i}\right|^{p-2}$ as estimate

To simplify analysis/notation assume sampling is exact.
$\mathrm{E}[T]=\underline{\underline{H x H_{2}^{2}} \sum_{i} \frac{x_{i}^{2}}{\| x n_{2}^{2}}\left|x_{i}\right|^{p-2}=\sum_{i}\left|x_{i}\right|^{p}}$

Application of ℓ_{2} sampling to F_{p} estimation

For $p>2$ AMS-Sampling gives algorithm to estimate F_{p} using $\tilde{O}\left(n^{1-1 / p}\right)$ space. Optimal space is $\tilde{O}\left(n^{1-2 / p}\right)$.

- Use ℓ_{2} sampling algorithm to generate $\left(i,\left|\tilde{x}_{i}\right|\right)$
- Estimate $\|x\|_{2}^{2}$
- Output $T=\left\|x_{2}\right\|^{2}\left|\tilde{x}_{i}\right|^{p-2}$ as estimate

To simplify analysis/notation assume sampling is exact.
$\mathrm{E}[T]=\|x\|_{2}^{2} \sum_{i} \frac{x_{i}^{2}}{\|x\| \|_{2}}\left|x_{i}\right|^{p-2}=\sum_{i}\left|x_{i}\right|^{p}$
$\operatorname{Var}[T] \leq\|x\|_{2}^{4} \sum_{i} \frac{x_{i}^{2}}{\|x\|_{2}^{2}} x_{i}^{2(p-2)} \leq\|x\|_{2}^{2} \sum_{i} x_{i}^{2 p-2} \leq$ $\left.n^{1-2 / p} \sum_{i}\left|x_{i}\right|^{p}\right)^{2}$.
Now do average plus median. titch

Part V

ℓ_{0} Sampling

ℓ_{0} Sampling

Turnstile stream: x updated with positive and negative entries

At end of stream want to sample uniformly a coordinate \boldsymbol{i} among all non-zero coordinates in x

Special case: sampling a uniform distinct element in cash register model

$$
\begin{aligned}
x= & (0,0,0,0) \\
& (0,-1,1,0) \\
& (0,0,2,0) \\
& (1,0,-1,-1) \\
& (-1,0,0,3)
\end{aligned}
$$

ℓ_{0} Sampling

Turnstile stream: x updated with positive and negative entries

At end of stream want to sample uniformly a coordinate \boldsymbol{i} among all non-zero coordinates in x

Special case: sampling a uniform distinct element in cash register model

Goal: illustrate a simple algorithm via two powerful hammers

Sparse Recovery

Recall sparse recovery using Count Sketch.

Theorem

There is a linear sketch with size $O\left(\frac{k}{\epsilon^{2}}\right.$ polylog(n)) that returns z such that $\|z\|_{0} \leq k$ and with high probability $\|x-z\|_{2} \leq(1+\epsilon) \operatorname{er} r_{2}^{k}(x)$.

$$
\operatorname{err}_{2}^{k}(x)=\min _{z:\|z\|_{0} \leq k}\|x-z\|_{2}
$$

Hence space is proportional to desired output. Assumption k is typically quite small compared to \boldsymbol{n}, the dimension of \boldsymbol{x}.

Note that if x is k-sparse vector is exactly reconstructed

Random Sampling plus Sparse Recovery

x is updated in turnstile streaming fashion. Let J be the non-zero indices of $x \quad(\& \quad J=\{1,4\}$.

Suppose we knew $|J|$ is small, say $\leq s$. Then can use sparse recovering with $\tilde{O}(s)$ space to completely recover x and can then sample uniformly. is polym(u)

Random Sampling plus Sparse Recovery

x is updated in turnstile streaming fashion. Let J be the non-zero indices of x

Suppose we knew $|J|$ is small, say $\leq s$. Then can use sparse recovering with $\tilde{O}(s)$ space to completely recover x and can then sample uniformly.

What if $|J|$ is large?

$$
|I j|=\frac{n}{2^{j}}
$$

- Guess $|J|$ to within factor of 2.
- More formally, for $\boldsymbol{j}=\mathbf{0}$ to $\log \boldsymbol{n}$ let $\boldsymbol{I}_{\boldsymbol{j}}$ be $\boldsymbol{n} / 2^{\boldsymbol{j}}$ coordinates of [n] sampled uniformly at random. Note $I_{0}=[n]$.
 $y^{0}=x$.

$$
\begin{array}{ll}
x=\left(x_{1}, x_{2}, \ldots, x_{8}\right) & I_{0}=[n] \\
y^{0}=\left(x_{1}, x_{2}, \ldots, x_{8}\right) & \left.\sum_{n}\right] \\
=\left(x_{1}, x_{2}, x_{4}, x_{6}\right) & \text { nandom, condr } \\
y^{2}=\left(x_{3}, x_{4}\right) & \\
y^{3}=\left(x_{5}\right) &
\end{array}
$$

Random Sampling plus Sparse Recovery

Choose $s=\Omega(\log (1 / \delta)) .100$
For $j=0,1, \ldots, \log n$

- Use s-sparse recovery on y^{j}.
- If y^{j} is not s-sparse discard. Else pick a random non-zero coordinate in y^{j} and output it. And stop.

Random Sampling plus Sparse Recovery

Choose $s=\Omega(\log (1 / \delta))$.
For $j=0,1, \ldots, \log n$

- Use s-sparse recovery on y^{j}.
- If y^{j} is not s-sparse discard. Else pick a random non-zero coordinate in \boldsymbol{y}^{j} and output it. And stop.

Uses $O(\log n) s$-sparse recovery data structures and hence space is poly-logarithmic assuming δ is $\Omega\left(n^{-c}\right)$ for some fixed constant c.

Random Sampling plus Sparse Recovery

Choose $s=\Omega(\log (1 / \delta))$.
For $j=0,1, \ldots, \log n$

- Use s-sparse recovery on y^{j}.
- If y^{j} is not s-sparse discard. Else pick a random non-zero coordinate in \boldsymbol{y}^{j} and output it. And stop.

Uses $O(\log n) s$-sparse recovery data structures and hence space is poly-logarithmic assuming δ is $\Omega\left(n^{-c}\right)$ for some fixed constant c.

How can we implement random coordinates of x ? Cannot store them. So how can we run sparse recovery on \boldsymbol{y}^{j} ?

Random Sampling plus Sparse Recovery

Choose $s=\Omega(\log (1 / \delta))$.
For $j=0,1, \ldots, \log n$

- Use s-sparse recovery on y^{j}.
- If y^{j} is not s-sparse discard. Else pick a random non-zero coordinate in \boldsymbol{y}^{j} and output it. And stop.

Uses $O(\log n) s$-sparse recovery data structures and hence space is poly-logarithmic assuming δ is $\Omega\left(n^{-c}\right)$ for some fixed constant c.

How can we implement random coordinates of x ? Cannot store them. So how can we run sparse recovery on \boldsymbol{y}^{j} ? Use Nisan's generator!

Analysis

Question: Will algorithm output a random non-zero coordinate?

Analysis

Question: Will algorithm output a random non-zero coordinate?

Lemma

Suppose $|J| \leq s$ then algorithm outputs a uniform non-zero coordinate of x with high probability.
$y^{0}=x$ is s-sparse. Sparse recovery algorithm succeeds with high probability.

Analysis

Question: Will algorithm output a random non-zero coordinate?

Lemma

Suppose $|J| \leq s$ then algorithm outputs a uniform non-zero coordinate of \boldsymbol{x} with high probability.
$y^{0}=x$ is s-sparse. Sparse recovery algorithm succeeds with high probability.

Lemma

Assume $|\boldsymbol{J}|>s$. There is an index \boldsymbol{k} such that with probability $(1-\delta), y^{k}$ is s-sparse and has at least one non-zero coordinate.

Analysis

Question: Will algorithm output a random non-zero coordinate?

Lemma

Suppose $|J| \leq s$ then algorithm outputs a uniform non-zero coordinate of \boldsymbol{x} with high probability.
$y^{0}=x$ is s-sparse. Sparse recovery algorithm succeeds with high probability.

Lemma

Assume $|J|>s$. There is an index k such that with probability $(1-\delta), y^{k}$ is s-sparse and has at least one non-zero coordinate.

Expected number of coordinates of J in y^{j} is $|J| / 2^{j}$. Find j such that expected number is between $s / 4$ and s and use Chernoff bound.

Analysis continued

Lemma

Assume $|\boldsymbol{J}|>s$. There is an index k such that with probability $(1-\delta), y^{k}$ is s-sparse and has at least one non-zero coordinate.
s-sparse recovery of $y^{\boldsymbol{k}}$ will reconstruct it exactly. $\boldsymbol{y}^{\boldsymbol{k}}$ has random sample of coordinates of x hence has random sample of non-zero coordinates as well. Output random non-zero coordinate of y^{k}.

Algorithm fails only if every $\boldsymbol{y}^{\boldsymbol{j}}$ fails sparse recovery and $|\boldsymbol{J}|>\mathbf{0}$ but we see that $y^{\boldsymbol{k + 1}}$ succeeds with probability at least $(\mathbf{1}-\delta)$.

