CS 498ABD: Algorithms for Big Data

Topics in Streaming

Lecture 18 and 19
October 27 and 29, 2020

Topics in Streaming

- F_{p} estimation for $p \in(0,2]$ via p-stable distributions and pseudorandom generators
- Priority Sampling
- Precision Sampling and Applications to ℓ_{2} sampling in streams
- ℓ_{0} Sampling

Part I

F_{p} Estimation

F_{2} Estimation and JL

For F_{2} estimation and JL and Euclidean LSH we used important "stability" property of the Normal distribution.

Lemma

Let $Y_{1}, Y_{2}, \ldots, Y_{d}$ be independent random variables with distribution $\mathcal{N}(\mathbf{0}, \mathbf{1}) . Z=\sum_{i} x_{i} Y_{i}$ has distribution $\|x\|_{2} \mathcal{N}(0,1)$

Standard Gaussian is 2 -stable.

p-stable distributions

Definition

A real-valued distribution \mathcal{D} is p-stable if $Z=\sum_{i=1}^{n} x_{i} Y_{i}$ has distribution $\|x\|_{\rho} \mathcal{D}$ when the Y_{i} are independent and each of them is distributed as \mathcal{D}.

p-stable distributions

Definition

A real-valued distribution \mathcal{D} is p-stable if $Z=\sum_{i=1}^{n} x_{i} Y_{i}$ has distribution $\|x\|_{p} \mathcal{D}$ when the Y_{i} are independent and each of them is distributed as \mathcal{D}.

Question: Do p-stable distributions exist for $p \neq 2$?

p-stable distributions

Fact: p-stable distributions exist for all $\boldsymbol{p} \in \mathbf{(0 , 2]}$ and do not exist for $\boldsymbol{p}>2$.
$p=\mathbf{1}$ is the Cauchy distribution which is the distribution of the ratio of two independent Guassian random variables. Has a closed form density function $\frac{1}{\pi\left(1+x^{2}\right)}$. Mean and variance are not finite.

p-stable distributions

Fact: p-stable distributions exist for all $\boldsymbol{p} \in \mathbf{(0 , 2]}$ and do not exist for $\boldsymbol{p}>2$.
$p=\mathbf{1}$ is the Cauchy distribution which is the distribution of the ratio of two independent Guassian random variables. Has a closed form density function $\frac{1}{\pi\left(1+x^{2}\right)}$. Mean and variance are not finite.

For general \boldsymbol{p} no closed form formula for density but can sample from the distribution.

p-stable distributions

Fact: p-stable distributions exist for all $\boldsymbol{p} \in \mathbf{(0 , 2]}$ and do not exist for $\boldsymbol{p}>2$.
$p=\mathbf{1}$ is the Cauchy distribution which is the distribution of the ratio of two independent Guassian random variables. Has a closed form density function $\frac{1}{\pi\left(1+x^{2}\right)}$. Mean and variance are not finite.

For general \boldsymbol{p} no closed form formula for density but can sample from the distribution.

Streaming, sketching, LSH ideas for ℓ_{2} generalize to $\ell_{\boldsymbol{p}}$ for $p \in(0,2]$ via p-stable distributions and additional technical work.

Sampling from p-stable distribution

For $\boldsymbol{p} \in \mathbf{(0 , 2]}$ let $\mathcal{D}_{\boldsymbol{p}}$ denote \boldsymbol{p}-stable distribution. Sampling from \mathcal{D}_{p} via Chambers-Mallows-Stuck method

- Sample θ uniformly from $[-\pi / 2, \pi / 2]$.
- Sample r uniformly from $[0,1]$.
- Output

$$
\frac{\sin (p \theta)}{(\cos \theta)^{1 / p}}\left(\frac{\cos ((1-p) \theta)}{\ln (1 / r)}\right)^{(1-p) / p}
$$

p-stable distributions need not have finite mean/variance. Hence we need to work with median of distribution.

Definition

The median of a distribution \mathcal{D} is θ if for $Y \sim \mathcal{D}$, $\operatorname{Pr}[Y \leq \mu]=1 / 2$. If $\phi(x)$ is the probability density function of \mathcal{D} then we have $\int_{-\infty}^{\mu} \phi(x) d x=1 / 2$.

F_{p} estimation via p-stable distribution

For $\boldsymbol{p} \in(\mathbf{0}, \mathbf{2}$] due to [Indyk]
F_{p}-Estimate:

$$
\begin{aligned}
& \boldsymbol{k} \leftarrow \boldsymbol{\Theta}\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right) \\
& \text { Let } \boldsymbol{M} \text { be a } \boldsymbol{k} \times \boldsymbol{n} \text { matrix where each } \boldsymbol{M}_{i j} \sim \mathcal{D}_{\boldsymbol{p}} \\
& \mathbf{y} \leftarrow \boldsymbol{M x} \\
& \text { Output } \boldsymbol{Y} \leftarrow \frac{\text { median }\left(\left|y_{1}\right|,\left|y_{2}\right|, \ldots,\left|y_{k}\right|\right)}{\operatorname{median}\left(\left|\mathcal{D}_{\boldsymbol{p}}\right|\right)}
\end{aligned}
$$

F_{p} estimation via p-stable distribution

For $p \in(\mathbf{0}, \mathbf{2}]$ due to [Indyk]

$\boldsymbol{F}_{\boldsymbol{p}}$-Estimate:

$$
\begin{aligned}
& \boldsymbol{k} \leftarrow \Theta\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right) \\
& \text { Let } \boldsymbol{\text { be a }} \boldsymbol{k} \times \boldsymbol{n} \text { matrix where each } M_{i j} \sim \mathcal{D}_{\boldsymbol{p}} \\
& \mathbf{y} \leftarrow M \mathbf{x} \\
& \text { Output } \boldsymbol{Y} \leftarrow \frac{\text { median(|yy }\left|,\left|y_{2}\right|, \ldots,\left|y_{k}\right|\right)}{\operatorname{median}\left(\left|\mathcal{D}_{p}\right|\right)}
\end{aligned}
$$

- Each y_{j} is distributed according to $\|x\|_{p} \mathcal{D}_{\boldsymbol{p}}$
- Cannot take average of $\left|y_{j}\right|^{\boldsymbol{p}}$ values since mean of distribution is not finite
- Take median of absolute values for k independent copies and normalize by median of distribution

Concentration Lemma

Lemma

Let $\boldsymbol{\epsilon}>\mathbf{0}$ and let \mathcal{D} be a distribution with density function ϕ and a unique median $\boldsymbol{\mu}>\mathbf{0}$. Suppose ϕ is absolutely continuous on $[(1-\epsilon) \mu,(1+\epsilon) \mu]$ and let $\alpha=\min \{\phi(x) \mid x \in[(1-\epsilon) \mu,(1+\epsilon) \mu]$. Let $\boldsymbol{Y}=\operatorname{median}\left(Y_{1}, Y_{2}, \ldots, Y_{k}\right)$ where Y_{1}, \ldots, Y_{k} are independent samples from the distribution \mathcal{D}. Then

$$
\operatorname{Pr}[|Y-\mu| \geq \epsilon \mu] \leq 2 e^{-\frac{2}{3} \epsilon^{2} \mu^{2} \alpha^{2} k}
$$

See notes for proof idea.

Pseudorandom generator for F_{p} Estimation

For $\boldsymbol{F}_{\boldsymbol{p}}$ estimation we need $M_{i, j}$ to be independent randomly distributed according to $\mathcal{D}_{\boldsymbol{p}}$. Can use sampling from distribution even though it is not explicit.

How do we store M in small space?
Recall that for F_{2} estimation and sketching we used matrix M where each row of M had 4 -wise independent random variables. Needed separate proof to argue correctness.

Is there an equivalent limited independence hashing based algorithm for F_{p} estimation?

Pseudorandom generator for F_{p} Estimation

For F_{p} estimation we need $M_{i, j}$ to be independent randomly distributed according to $\mathcal{D}_{\boldsymbol{p}}$. Can use sampling from distribution even though it is not explicit.

How do we store M in small space?
Recall that for F_{2} estimation and sketching we used matrix M where each row of M had 4 -wise independent random variables. Needed separate proof to argue correctness.

Is there an equivalent limited independence hashing based algorithm for F_{p} estimation? No but can use a powerful pseudorandomness tool from TCS.

Pseudorandom generator

- \boldsymbol{P} class of decision problems decided in poly time.
- RP class of decision problems decided in randomized poly time with one-sided error
- BPP class of decision problems decided in randomized poly time with two-sided error allowed

Pseudorandom generator

- \boldsymbol{P} class of decision problems decided in poly time.
- RP class of decision problems decided in randomized poly time with one-sided error
- BPP class of decision problems decided in randomized poly time with two-sided error allowed

Big Open Problem: Is $B P P=P$? Equivalently can every randomized polynomial time algorithm be derandomized with only polynomial-factor slow down?

Pseudorandom generator

- \boldsymbol{P} class of decision problems decided in poly time.
- RP class of decision problems decided in randomized poly time with one-sided error
- BPP class of decision problems decided in randomized poly time with two-sided error allowed

Big Open Problem: Is $B P P=P$? Equivalently can every randomized polynomial time algorithm be derandomized with only polynomial-factor slow down?

Equivalently: Is there a pseudo-random generator that fools every poly-sized algorithm?

Nisan's pseudorandom generator

Nisan constructed explicit pseudo-random generator that fools space-bounded algorithms.

Theorem

Let \mathcal{A} be an algorithm that uses space at most $S(n)$ on an input of length n. Then there is a pseudo-random generator G that fools \mathcal{A} and has seed length $\ell=O(S(n) \log n)$ and which is computable in $O(\ell)$ space and poly (ℓ) time.

Corollary

For $S(n)=O\left(\log ^{c} n\right)$ the generator uses space $S(n)=O\left(\log ^{c+1} n\right)$ and can generate any of the desired random pseudo-random bits for algorithm in poly $(\log n)$ time.

Applying Nisan's generator as a hammer

At a high-level if a streaming algorithm uses small space (polylogarithmic in input size) assuming access to true random bits then one can use Nisan's generator to reduce space.

- Nisan's generator requires small random seed. Store it.
- Generate required (pseudo)random bits "on the fly". Note that Nisan's generator itself runs in small space so total space is small.

Note that algorithm still uses random bits!

Applying Nisan's generator as a hammer

At a high-level if a streaming algorithm uses small space (polylogarithmic in input size) assuming access to true random bits then one can use Nisan's generator to reduce space.

- Nisan's generator requires small random seed. Store it.
- Generate required (pseudo)random bits "on the fly". Note that Nisan's generator itself runs in small space so total space is small.

Note that algorithm still uses random bits!
With additional discretization tricks one can convert Indyk's $\boldsymbol{F}_{\boldsymbol{p}}$ estimation algorithm via Nisan's generator into a true small space algorithm.
[Kane-Nelson-Woodruff] show how to use limited independence hashing for F_{p} estimation instead of above hammer.

Part II

Priority Sampling

Sampling for data reduction

- X set of n points in the plane $a_{1}, a_{2}, \ldots, a_{n}$.
- Want to answer queries of the form: given some shape C (say circles), how many points inside C ?
- standard data structures or brute force linear search say

Sampling for data reduction

- X set of n points in the plane $a_{1}, a_{2}, \ldots, a_{n}$.
- Want to answer queries of the form: given some shape C (say circles), how many points inside C ?
- standard data structures or brute force linear search say

Question: Suppose \boldsymbol{n} is too large and we can only store \boldsymbol{k} points for some $k<n$.

Sampling approach:

- S sample of size \boldsymbol{k} (with replacement). Store only S
- Given query C, compute $|C \cap S|$. What should we report as an estimate for $|C \cap X|$?

Sampling for data reduction

- X set of n points in the plane $a_{1}, a_{2}, \ldots, a_{n}$.
- Want to answer queries of the form: given some shape C (say circles), how many points inside C ?
- standard data structures or brute force linear search say

Question: Suppose \boldsymbol{n} is too large and we can only store \boldsymbol{k} points for some $k<n$.

Sampling approach:

- S sample of size \boldsymbol{k} (with replacement). Store only S
- Given query C, compute $|C \cap S|$. What should we report as an estimate for $|C \cap X| ? \frac{n}{k}|C \cap S|$ which is an unbiased estimator

Weighted case

- \boldsymbol{X} set of \boldsymbol{n} points in the plane $a_{1}, a_{2}, \ldots, a_{\boldsymbol{n}}$. Each point $\boldsymbol{a}_{\boldsymbol{i}}$ has a non-negative weight w_{i}
- Want to answer queries of the form: given some shape C (say circles), what is weight of point inside C ?

Question: Suppose \boldsymbol{n} is too large and we can only store \boldsymbol{k} points for some $k<n$.

Sampling approach?

Weighted case

- \boldsymbol{X} set of \boldsymbol{n} points in the plane $a_{1}, a_{2}, \ldots, a_{\boldsymbol{n}}$. Each point $\boldsymbol{a}_{\boldsymbol{i}}$ has a non-negative weight w_{i}
- Want to answer queries of the form: given some shape C (say circles), what is weight of point inside C ?

Question: Suppose \boldsymbol{n} is too large and we can only store \boldsymbol{k} points for some $k<n$.

Sampling approach?

- Easy to see that uniform sampling is not ideal
- Sample in proportion to weight? Say $\boldsymbol{a}_{\boldsymbol{i}}$ sampled with $p_{i}=w_{i} / W$ where $W=\sum_{i} w_{i}$.
- What do we set the weight of the sampled points to? Can we control sample size? What is the variance?

Importance Sampling

- Decide sampling probabilities $p_{1}, p_{2}, \ldots, p_{n}$
- Choose $\boldsymbol{a}_{\boldsymbol{i}}$ independently with probability $\boldsymbol{p}_{\boldsymbol{i}}$ and if \boldsymbol{i} is chosen set $\hat{w}_{i}=\boldsymbol{w}_{\boldsymbol{i}} / \boldsymbol{p}_{\boldsymbol{i}}$. If \boldsymbol{i} is not chosen we implicitly set $\hat{w}_{i}=\mathbf{0}$.

Importance Sampling

- Decide sampling probabilities $p_{1}, p_{2}, \ldots, p_{\boldsymbol{n}}$
- Choose $\boldsymbol{a}_{\boldsymbol{i}}$ independently with probability $\boldsymbol{p}_{\boldsymbol{i}}$ and if \boldsymbol{i} is chosen set $\hat{w}_{i}=\boldsymbol{w}_{\boldsymbol{i}} / \boldsymbol{p}_{\boldsymbol{i}}$. If \boldsymbol{i} is not chosen we implicitly set $\hat{w}_{\boldsymbol{i}}=\mathbf{0}$.
- For any $\boldsymbol{i}, \mathbf{E}\left[\hat{w}_{i}\right]=\boldsymbol{w}_{\boldsymbol{i}}$.

Importance Sampling

- Decide sampling probabilities $p_{1}, p_{2}, \ldots, p_{n}$
- Choose $\boldsymbol{a}_{\boldsymbol{i}}$ independently with probability $\boldsymbol{p}_{\boldsymbol{i}}$ and if \boldsymbol{i} is chosen set $\hat{w}_{i}=\boldsymbol{w}_{\boldsymbol{i}} / \boldsymbol{p}_{\boldsymbol{i}}$. If \boldsymbol{i} is not chosen we implicitly set $\hat{\boldsymbol{w}}_{\boldsymbol{i}}=\mathbf{0}$.
- For any $\boldsymbol{i}, \mathbf{E}\left[\hat{w}_{\boldsymbol{i}}\right]=\boldsymbol{w}_{\boldsymbol{i}}$. Hence for any \boldsymbol{C}, $\mathrm{E}[\hat{w}(C \cap S)]=\mathrm{E}[w(C \cap S)]$.

Importance Sampling

- Decide sampling probabilities $p_{1}, p_{2}, \ldots, p_{n}$
- Choose $\boldsymbol{a}_{\boldsymbol{i}}$ independently with probability $\boldsymbol{p}_{\boldsymbol{i}}$ and if \boldsymbol{i} is chosen set $\hat{w}_{i}=\boldsymbol{w}_{\boldsymbol{i}} / \boldsymbol{p}_{\boldsymbol{i}}$. If \boldsymbol{i} is not chosen we implicitly set $\hat{\boldsymbol{w}}_{\boldsymbol{i}}=\mathbf{0}$.
- For any $\boldsymbol{i}, \mathbf{E}\left[\hat{w}_{\boldsymbol{i}}\right]=\boldsymbol{w}_{\boldsymbol{i}}$. Hence for any C, $\mathrm{E}[\hat{w}(C \cap S)]=\mathrm{E}[w(C \cap S)]$.

Question: How should we choose p_{i} 's?

Importance Sampling

- Decide sampling probabilities $p_{1}, p_{2}, \ldots, p_{n}$
- Choose $\boldsymbol{a}_{\boldsymbol{i}}$ independently with probability $\boldsymbol{p}_{\boldsymbol{i}}$ and if \boldsymbol{i} is chosen set $\hat{w}_{i}=\boldsymbol{w}_{\boldsymbol{i}} / \boldsymbol{p}_{\boldsymbol{i}}$. If \boldsymbol{i} is not chosen we implicitly set $\hat{w}_{\boldsymbol{i}}=\mathbf{0}$.
- For any $\boldsymbol{i}, \mathbf{E}\left[\hat{w}_{\boldsymbol{i}}\right]=\boldsymbol{w}_{\boldsymbol{i}}$. Hence for any \boldsymbol{C}, $\mathrm{E}[\hat{w}(C \cap S)]=\mathrm{E}[w(C \cap S)]$.

Question: How should we choose p_{i} 's?

- Choose to reduce variance for queries of interest (depends on queries)
- Expected number of chosen points is $\sum_{i} \boldsymbol{p}_{\boldsymbol{i}}$ and hence choose $\boldsymbol{p}_{\boldsymbol{i}}$'s to roughly meet the memory bound. If we have memory of size \boldsymbol{k} then can scale $\boldsymbol{p}_{\boldsymbol{i}}$ values (sampling rate) to achieve this.

Importance Sampling in Streaming Setting

Setting:

- points a_{1}, \ldots, a_{n} with weights arriving in stream
- have a memory size of k
- want to maintain a \boldsymbol{k}-sample (to utilize memory as well as possible) such that we can estimate $w(C \cap X)$ accurately
- Stream length unknown! How can we adjust sampling rate?

Priority Sampling

[Duffield,Lund,Thorup]

- Queries are arbitrary subset sums so no structure there to exploit
- Focus on streaming aspect and using memory

Priority Sampling

[Duffield,Lund,Thorup]

- Queries are arbitrary subset sums so no structure there to exploit
- Focus on streaming aspect and using memory

Scheme:

(1) For each $i \in[n]$ set priority $q_{i}=w_{i} / u_{i}$ where \boldsymbol{u}_{i} is chosen uniformly (and independently from other items) at random from $[0,1]$.
(2) S is the set of items with the k highest priorities.
(0) τ is the $(k+1)$ 'st highest priority. If $k \geq n$ we set $\tau=0$.
(0) If $i \in S$, set $\hat{w}_{i}=\max \left\{w_{i}, \tau\right\}$, else set $\hat{w}_{i}=\mathbf{0}$.

Priority Sampling

[Duffield,Lund,Thorup]

- Queries are arbitrary subset sums so no structure there to exploit
- Focus on streaming aspect and using memory

Scheme:

(1) For each $i \in[n]$ set priority $q_{i}=w_{i} / u_{i}$ where \boldsymbol{u}_{i} is chosen uniformly (and independently from other items) at random from $[0,1]$.
(2) S is the set of items with the k highest priorities.
(3) $\boldsymbol{\tau}$ is the $(k+1)$ 'st highest priority. If $k \geq n$ we set $\boldsymbol{\tau}=\mathbf{0}$.
(1) If $i \in S$, set $\hat{w}_{i}=\max \left\{w_{i}, \tau\right\}$, else set $\hat{w}_{i}=\mathbf{0}$.

Claim: Can maintain S, τ in streaming setting

Priority Sampling

Intuition: from uniform weight case

- Suppose $w_{i}=\mathbf{1}$ for all i. Then sampling k without repetition can be done via adaptation of reservoir sampling.
- A different approach: pick a uniformly random $r_{i} \in[0,1]$ for each i. And pick top k in terms of r_{i} values (simulates random permutation) but can be done in streaming fashion. Many other distributions would work too and picking top k according to $1 / r_{i}$ works too.
- Why $\mathbf{1} / r_{i}$? What is the expected value of τ ?

Priority Sampling: Properties

Lemma
 $\mathrm{E}\left[\hat{w}_{i}\right]=w_{i}$.

Priority Sampling: Properties

Lemma

$\mathrm{E}\left[\hat{w}_{i}\right]=w_{i}$.
Lemma
$\operatorname{Var}\left[\hat{w}_{i}\right]=\mathrm{E}\left[\hat{v}_{i}\right]$ where $\hat{v}_{i}= \begin{cases}\tau \max \left\{0, \tau-w_{i}\right\} & \text { if } i \in S \\ 0 & \text { if } i \notin S\end{cases}$
Useful: storing τ and w_{i} gives $\operatorname{Var}\left[\hat{w}_{i}\right]$.

Priority Sampling: Properties

Lemma

$\mathrm{E}\left[\hat{w}_{i}\right]=w_{i}$.

Lemma

$\operatorname{Var}\left[\hat{w}_{i}\right]=\mathrm{E}\left[\hat{v}_{i}\right]$ where $\hat{v}_{i}= \begin{cases}\tau \max \left\{0, \tau-w_{i}\right\} & \text { if } i \in S \\ 0 & \text { if } i \notin S\end{cases}$
Useful: storing τ and w_{i} gives $\operatorname{Var}\left[\hat{w}_{i}\right]$.
Lemma
If $k \geq 2$ for any $i \neq j, \mathrm{E}\left[\hat{w}_{i} \hat{w}_{j}\right]=w_{i} w_{j}$.

Lemma

Fix any set $C \subset[n] . \mathbf{E}\left[\prod_{i \in C} \hat{w}_{i}\right]=\prod_{i \in C} w_{i}$ if $|C| \leq k$ and is $\mathbf{0}$ if $|C|>k$.

Variance of subset sum

Lemma

If $k \geq 2$ for any $i \neq j, E\left[\hat{w}_{i} \hat{w}_{j}\right]=w_{i} w_{j}$.

Consequence:

- Fix C. Unbiased estimator of $w(C \cap X)$ is $\hat{w}(C \cap S)$.
- Can we know the variance of the estimate to know if we are doing ok?
- $\operatorname{Var}[\hat{w}(C \cap S)]=\sum_{i \in C \cap S} \operatorname{Var}\left[\hat{w}_{i}\right]=\sum_{i \in C \cap S} E\left[\hat{v}_{i}\right]$. Hence, storing τ and \hat{w}_{i} values suffices to estimate the variance of the estimate.

Priority Sampling: Properties

Lemma
$\mathrm{E}\left[\hat{w}_{i}\right]=w_{i}$.

Priority Sampling: Properties

Lemma

$\mathrm{E}\left[\hat{w}_{i}\right]=w_{i}$.

Fix \boldsymbol{i}. Let $\boldsymbol{A}\left(\boldsymbol{\tau}^{\prime}\right)$ be the event that the \boldsymbol{k} 'th highest priority among items $j \neq i$ is τ^{\prime}.
Note that $\boldsymbol{u}_{\boldsymbol{i}}$ is independent of $\boldsymbol{\tau}^{\prime}$. Hence $i \in S$ if $\boldsymbol{q}_{\boldsymbol{i}}=\boldsymbol{w}_{\boldsymbol{i}} / \boldsymbol{u}_{i} \geq \boldsymbol{\tau}^{\prime}$ and if $i \in S$ then $\hat{w}_{i}=\max \left\{w_{i}, \tau^{\prime}\right\}$, otherwise $\hat{w}_{i}=\mathbf{0}$. To evaluate $\operatorname{Pr}\left[i \in S \mid A\left(\tau^{\prime}\right)\right]$ we consider two cases. Case 1: $w_{i} \geq \tau^{\prime}$. Here we have $\operatorname{Pr}\left[i \in S \mid A\left(\tau^{\prime}\right)\right]=1$ and $\hat{w}_{i}=w_{i}$.
Case 2: $w_{i}<\tau^{\prime}$. Then $\operatorname{Pr}\left[i \in S \mid A\left(\tau^{\prime}\right)\right]=\frac{w_{i}}{\tau^{\prime}}$ and $\hat{w}_{i}=\tau^{\prime}$. In both cases we see that $E\left[\hat{w}_{i}\right]=w_{i}$.

Variance

> Lemma $$
\operatorname{Var}\left[\hat{w}_{i}\right]=\mathrm{E}\left[\hat{v}_{i}\right] \text { where } \hat{v}_{i}= \begin{cases}\tau \max \left\{0, \tau-w_{i}\right\} & \text { if } i \in S \\ 0 & \text { if } i \notin S\end{cases}
$$

Variance

Lemma

$\operatorname{Var}\left[\hat{w}_{i}\right]=\mathrm{E}\left[\hat{v}_{i}\right]$ where $\hat{v}_{i}= \begin{cases}\tau \max \left\{0, \tau-w_{i}\right\} & \text { if } i \in S \\ 0 & \text { if } i \notin S\end{cases}$

Fix \boldsymbol{i}. We define $\boldsymbol{A}\left(\boldsymbol{\tau}^{\prime}\right)$ to be the event that $\boldsymbol{\tau}^{\prime}$ is the \boldsymbol{k} 'th highest priority among elements $\boldsymbol{j} \neq \boldsymbol{i}$.

Show that

$$
E\left[\hat{v}_{i} \mid A\left(\tau^{\prime}\right)\right]=E\left[\hat{w}_{i}^{2} \mid A\left(\tau^{\prime}\right)\right]-w_{i}^{2} .
$$

Since $\boldsymbol{u}_{\boldsymbol{i}}$ is independent of $\boldsymbol{\tau}^{\prime}$ we can remove conditioning

Variance

$$
E\left[\hat{v}_{i} \mid A\left(\tau^{\prime}\right)\right]=E\left[\hat{w}_{i}^{2} \mid A\left(\tau^{\prime}\right)\right]-w_{i}^{2} .
$$

$$
\begin{aligned}
\mathrm{E}\left[\hat{v}_{i} \mid A\left(\tau^{\prime}\right)\right] & =\operatorname{Pr}\left[i \in S \mid A\left(\tau^{\prime}\right)\right] \times E\left[\hat{v}_{i} \mid i \in S \wedge A\left(\tau^{\prime}\right)\right] \\
& =\min \left\{1, w_{i} / \tau^{\prime}\right\} \times \tau^{\prime} \max \left\{0, \tau^{\prime}-w_{i}\right\} \\
& =\max \left\{0, w_{i} \tau^{\prime}-w_{i}^{2}\right\}
\end{aligned}
$$

Variance

$$
E\left[\hat{v}_{i} \mid A\left(\tau^{\prime}\right)\right]=E\left[\hat{w}_{i}^{2} \mid A\left(\tau^{\prime}\right)\right]-w_{i}^{2} .
$$

$$
\begin{aligned}
\mathrm{E}\left[\hat{v}_{i} \mid A\left(\tau^{\prime}\right)\right] & =\operatorname{Pr}\left[i \in S \mid A\left(\tau^{\prime}\right)\right] \times \mathrm{E}\left[\hat{v}_{i} \mid i \in S \wedge A\left(\tau^{\prime}\right)\right] \\
& =\min \left\{1, w_{i} / \tau^{\prime}\right\} \times \tau^{\prime} \max \left\{0, \tau^{\prime}-w_{i}\right\} \\
& =\max \left\{0, w_{i} \tau^{\prime}-w_{i}^{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left[\hat{w}_{i}^{2} \mid A\left(\tau^{\prime}\right)\right] & =\operatorname{Pr}\left[i \in S \mid A\left(\tau^{\prime}\right)\right] \times E\left[\hat{w}_{i}^{2} \mid i \in S \wedge A\left(\tau^{\prime}\right)\right] \\
& =\min \left\{1, w_{i} / \tau^{\prime}\right\} \times\left(\max \left\{w_{i}, \tau^{\prime}\right\}\right)^{2} \\
& =\max \left\{w_{i}^{2}, w_{i} \tau^{\prime}\right\} .
\end{aligned}
$$

Variance of subset sum

Lemma

If $k \geq 2$ for any $i \neq j, E\left[\hat{w}_{i} \hat{w}_{j}\right]=w_{i} w_{j}$.
More generally

> Lemma
> Fix any set $C \subset[n] . \mathbf{E}\left[\prod_{i \in C} \hat{w}_{i}\right]=\prod_{i \in C} w_{i}$ if $|C| \leq k$ and is $\mathbf{0}$ if $|C|>k$.

Variance of subset sum

Lemma

If $\boldsymbol{k} \geq 2$ for any $i \neq j, E\left[\hat{w}_{i} \hat{w}_{j}\right]=w_{i} w_{j}$.
More generally

Lemma
 Fix any set $C \subset[n] . \mathbf{E}\left[\prod_{i \in C} \hat{\boldsymbol{w}}_{i}\right]=\prod_{i \in C} \boldsymbol{w}_{\boldsymbol{i}}$ if $|C| \leq k$ and is $\mathbf{0}$ if $|C|>k$.

Requires a proof by induction. See notes

Variance of subset sum

Lemma

If $\boldsymbol{k} \geq 2$ for any $i \neq j, E\left[\hat{w}_{i} \hat{w}_{j}\right]=w_{i} w_{j}$.
More generally

> Lemma
> Fix any set $C \subset[n] . \mathbf{E}\left[\prod_{i \in C} \hat{w}_{i}\right]=\prod_{i \in C} w_{i}$ if $|C| \leq k$ and is $\mathbf{0}$ if $|C|>k$.

Requires a proof by induction. See notes
Why is this interesting/non-obvious? In vanilla importance sampling the variables \hat{w}_{i} are independent. However, here the variables are correlated because we choose exactly \boldsymbol{k}. Nevertheless, they exhibit properties similar to independence.

Part III

Sampling according to frequency moments

Sampling

Sampling problem: given $x \in \mathbb{R}^{\boldsymbol{n}}$ in (strict) turnstile setting, at the end output random (I, R) where $I \in[n]$ and $R \in \mathbb{R}$ such that $\operatorname{Pr}[I=i] \simeq \frac{\left|x_{i}\right|^{p}}{\sum_{j}\left|x_{j}\right|^{p}}$ and $R=x_{i}$ if $I=i$.

Sampling

Sampling problem: given $x \in \mathbb{R}^{\boldsymbol{n}}$ in (strict) turnstile setting, at the end output random (I, R) where $I \in[n]$ and $R \in \mathbb{R}$ such that $\operatorname{Pr}[I=i] \simeq \frac{\left|x_{i}\right|^{p}}{\sum_{j}\left|x_{j}\right|^{p}}$ and $R=x_{i}$ if $I=i$.

Sampling is generally a more challenging problem than estimation

Sampling

Sampling problem: given $x \in \mathbb{R}^{\boldsymbol{n}}$ in (strict) turnstile setting, at the end output random (I, R) where $I \in[n]$ and $R \in \mathbb{R}$ such that $\operatorname{Pr}[I=i] \simeq \frac{\left|x_{i}\right|^{p}}{\sum_{j}\left|x_{j}\right|^{p}}$ and $R=x_{i}$ if $I=i$.

Sampling is generally a more challenging problem than estimation Approximation: $\operatorname{Pr}[I=i]=(1 \pm \epsilon) \frac{\left|x_{i}\right|^{p}}{\sum_{j}\left|x_{j}\right|^{p}}+1 /$ poly (n) for some small ϵ and $R=(1 \pm \epsilon) x_{i}$.

Sampling

Sampling problem: given $x \in \mathbb{R}^{\boldsymbol{n}}$ in (strict) turnstile setting, at the end output random (I, R) where $I \in[n]$ and $R \in \mathbb{R}$ such that $\operatorname{Pr}[I=i] \simeq \frac{\left|x_{i}\right|^{p}}{\sum_{j}\left|x_{j}\right|^{p}}$ and $R=x_{i}$ if $I=i$.

Sampling is generally a more challenging problem than estimation
Approximation: $\operatorname{Pr}[I=i]=(1 \pm \epsilon) \frac{\left|x_{i}\right|^{p}}{\sum_{j}\left|x_{j}\right|^{p}}+1 /$ poly (n) for some small ϵ and $R=(1 \pm \epsilon) x_{i}$.

Can do ℓ_{0}, ℓ_{2} and $\ell_{\boldsymbol{p}}$ for $\mathbf{0}<\boldsymbol{p}<\mathbf{2}$ in polylog space using ideas from sketching. Works in (strict) turnstile models.

Several important applications

Part IV

ℓ_{2} Sampling

ℓ_{2} Sampling

Based on precision sampling which has similarities to priority sampling.

High-level Algorithm:

- $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the vector being updated
- Can estimate $\|x\|_{2}$ using F_{2} estimation. Assume $\|x\|_{2}=1$ for normalization purposes/simplicity
- Consider $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ where $y_{i}=x_{i} / \sqrt{u_{i}}$ where $u_{1}, u_{2}, \ldots, u_{n}$ are independent random variables from $[0,1]$.
- For some threshold t to be chosen, return (i, x_{i}^{2}) if i is the unique index such that $y_{i}^{2} \geq t$.

Questions:

- How should we choose t ? Why does it work?
- How do we implement in streaming setting?

Choosing threshold

Let $w_{i}=x_{i}^{2}$ and hence we have $w_{1}, w_{2}, \ldots, w_{n}$ and $W=\sum_{i} w_{i}=\|x\|_{2}^{2}$. Normalize such that $W=1$

Recall priority sampling where we pick $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{\boldsymbol{n}} \in[0,1]$ independently and store the largest \boldsymbol{k} amongst $\boldsymbol{w}_{\boldsymbol{i}} / \boldsymbol{u}_{\boldsymbol{i}}$ values. Here we think of storing only largest. Also $y_{i}^{2}=x_{i}^{2} / u_{i}=w_{i} / u_{i}$

Choosing threshold

Let $w_{i}=x_{i}^{2}$ and hence we have $w_{1}, w_{2}, \ldots, w_{n}$ and $W=\sum_{i} w_{i}=\|x\|_{2}^{2}$. Normalize such that $W=1$

Recall priority sampling where we pick $u_{1}, \ldots, u_{n} \in[0,1]$ independently and store the largest k amongst w_{i} / u_{i} values. Here we think of storing only largest. Also $y_{i}^{2}=x_{i}^{2} / u_{i}=w_{i} / u_{i}$

Fix threshold t. What is probability that i is returned?

$$
\operatorname{Pr}\left[y_{i}^{2} \geq t\right] \prod_{j \neq i} \operatorname{Pr}\left[y_{j}^{2}<t\right]=\frac{x_{i}^{2}}{t} \prod_{j \neq i}\left(1-\frac{x_{j}^{2}}{t}\right)
$$

If t large then above is $\simeq \frac{x_{i}^{2}}{t}$
Probability some item is output is $\simeq \frac{1}{t}$. Hence repeat $\Omega(t \log (1 / \delta))$ times to ensure output with prob at least $(1-\delta)$.

Choosing threshold and identifying i

t should be large compared to $\sum_{i} x_{i}^{2}=\|x\|_{2}^{2}$. Probability of output is $1 / t$ so need t attempts. Thus choose $t=O(\log n)\|x\|_{2}^{2}$.

Choosing threshold and identifying i

t should be large compared to $\sum_{i} x_{i}^{2}=\|x\|_{2}^{2}$. Probability of output is $1 / t$ so need t attempts. Thus choose $t=O(\log n)\|x\|_{2}^{2}$.

Need to store $y_{1}^{2}, y_{2}^{2}, \ldots, y_{n}^{2}$?

Choosing threshold and identifying i

t should be large compared to $\sum_{i} x_{i}^{2}=\|x\|_{2}^{2}$. Probability of output is $1 / t$ so need t attempts. Thus choose $t=O(\log n)\|x\|_{2}^{2}$.

Need to store $y_{1}^{2}, y_{2}^{2}, \ldots, y_{n}^{2}$? But we only need the two largest to decide if largest is above threshold. Hence can use Count Sketch on y to store only heavy hitters.

Choosing threshold and identifying i

t should be large compared to $\sum_{i} x_{i}^{2}=\|x\|_{2}^{2}$. Probability of output is $1 / t$ so need t attempts. Thus choose $t=O(\log n)\|x\|_{2}^{2}$.

Need to store $y_{1}^{2}, y_{2}^{2}, \ldots, y_{n}^{2}$? But we only need the two largest to decide if largest is above threshold. Hence can use Count Sketch on y to store only heavy hitters.

Issues:

- Count Sketch gives heavy hitters with additive error that depends on $\|y\|_{2}$.
- Threshold t is with respect to $\|x\|_{2}^{2}$.
- How do we store independent $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{\boldsymbol{n}}$ to sketch \boldsymbol{y} ?

Resolving issues

Note that $y_{i}^{2} \geq x_{i}^{2}$ for all i, hence $\|y\|_{2}^{2} \geq\|x\|_{2}^{2}$.

Lemma

With probability $\geq(1-\delta)$ we have $\|y\|_{2}^{2} \leq \frac{1}{\delta} c \ln n\|x\|_{2}^{2}$ for some fixed c.

Prove above as exercise. Thus $\|y\|_{2}$ is not much larger than $\|x\|_{2}$.

Resolving issues

Note that $y_{i}^{2} \geq x_{i}^{2}$ for all i, hence $\|y\|_{2}^{2} \geq\|x\|_{2}^{2}$.

Lemma

With probability $\geq(\mathbf{1}-\delta)$ we have $\|y\|_{2}^{2} \leq \frac{1}{\delta} c \ln n\|x\|_{2}^{2}$ for some fixed c.

Prove above as exercise. Thus $\|y\|_{2}$ is not much larger than $\|x\|_{2}$.
Recall Count Sketch for \boldsymbol{y} gives estimate \tilde{y}_{i} for each \boldsymbol{i} such that $\left|\tilde{y}_{i}-y_{i}\right|^{2} \leq \epsilon^{2}\|y\|_{2}^{2}$ and space is $O\left(\frac{1}{\epsilon^{2}} \log n\right)$. Choose $\epsilon=\epsilon^{\prime} / \log n$ and hence we have $\left|\tilde{y}_{i}-y_{i}\right|^{2} \leq \frac{\epsilon^{\prime}}{\log n}\|x\|_{2}^{2}$

Resolving issues

Note that $y_{i}^{2} \geq x_{i}^{2}$ for all i, hence $\|y\|_{2}^{2} \geq\|x\|_{2}^{2}$.

Lemma

With probability $\geq(1-\delta)$ we have $\|y\|_{2}^{2} \leq \frac{1}{\delta} c \ln n\|x\|_{2}^{2}$ for some fixed c.

Prove above as exercise. Thus $\|y\|_{2}$ is not much larger than $\|x\|_{2}$.
Recall Count Sketch for y gives estimate \tilde{y}_{i} for each \boldsymbol{i} such that $\left|\tilde{y}_{i}-y_{i}\right|^{2} \leq \epsilon^{2}\|y\|_{2}^{2}$ and space is $O\left(\frac{1}{\epsilon^{2}} \log n\right)$. Choose $\epsilon=\epsilon^{\prime} / \log n$ and hence we have $\left|\tilde{y}_{i}-y_{i}\right|^{2} \leq \frac{\epsilon^{\prime}}{\log n}\|x\|_{2}^{2}$

Above implies that \tilde{y}_{i} is a close mutiplicative approximation of y_{i} if y_{i} is sufficiently large compared to $\|x\|_{2}^{2}$

Resolving issues

Recall threshold $t=c \log n\|x\|_{2}^{2}$. Implies that

- Sufficient to keep track of small number of heavy hitters in y hence Count Sketch for y needs only poly $\left(\log n / \epsilon^{2}\right)$ space.
- Can keep track of $\|x\|_{2}$ and $\|y\|_{2}$ to check if heavy hitters are sufficiently large and hence estimates are accurate even if additive error
- Output i if $\tilde{y}_{i}^{2} \geq t$ and is unique.

Resolving issues

Recall threshold $t=c \log n\|x\|_{2}^{2}$. Implies that

- Sufficient to keep track of small number of heavy hitters in y hence Count Sketch for y needs only poly $\left(\log n / \epsilon^{2}\right)$ space.
- Can keep track of $\|x\|_{2}$ and $\|y\|_{2}$ to check if heavy hitters are sufficiently large and hence estimates are accurate even if additive error
- Output i if $\tilde{y}_{i}^{2} \geq t$ and is unique.

Since we use $\tilde{y}_{\boldsymbol{i}}$ which is an estimate of $\boldsymbol{y}_{\boldsymbol{i}}$, the probability of \boldsymbol{i} being output is proportional to $\frac{(1 \pm \epsilon) x_{i}^{2}}{\|x\|_{2}^{2}}$.

Resolving issues

How do we sketch \boldsymbol{y} without storing $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{\boldsymbol{n}}$? Recall analysis crucially relied on independence.

Resolving issues

How do we sketch y without storing u_{1}, \ldots, u_{n} ? Recall analysis crucially relied on independence.

- Use \boldsymbol{k}-wise independence for sufficiently large \boldsymbol{k} and redo analysis
- Use hammer of pseudorandom generators

Algorithm again

- x is vector being updated. Keep track of $\|x\|_{2}$
- Use Count Sketch to sketch y where $y_{i}=x_{i} / \sqrt{u_{i}}$ with u_{i} drawn independently from $[\mathbf{0}, \mathbf{1}]$. Use sketch to obtain estimates \tilde{y}_{i} for heavy hitters in y
- Output i if \tilde{y}_{i}^{2} is the unique heavy hitter that is above threshold t where $t=c \log n\|x\|_{2}^{2}$. If no such i then declare FAIL.
Repeat above in parallel $O\left(\log ^{2} n\right)$ times to guarantee high probability of obtaining a good sample.

Algorithm again

- x is vector being updated. Keep track of $\|x\|_{2}$
- Use Count Sketch to sketch y where $y_{i}=x_{i} / \sqrt{u_{i}}$ with u_{i} drawn independently from $[\mathbf{0}, \mathbf{1}]$. Use sketch to obtain estimates \tilde{y}_{i} for heavy hitters in y
- Output i if \tilde{y}_{i}^{2} is the unique heavy hitter that is above threshold t where $t=c \log n\|x\|_{2}^{2}$. If no such i then declare FAIL.
Repeat above in parallel $O\left(\log ^{2} n\right)$ times to guarantee high probability of obtaining a good sample.

Space is for Count Sketch and to store generate $\boldsymbol{u}_{\boldsymbol{i}}$ values pseudorandomly.

Algorithm again

- x is vector being updated. Keep track of $\|x\|_{2}$
- Use Count Sketch to sketch y where $y_{i}=x_{i} / \sqrt{u_{i}}$ with u_{i} drawn independently from $[\mathbf{0}, \mathbf{1}]$. Use sketch to obtain estimates \tilde{y}_{i} for heavy hitters in y
- Output i if \tilde{y}_{i}^{2} is the unique heavy hitter that is above threshold t where $t=c \log n\|x\|_{2}^{2}$. If no such i then declare FAIL.
Repeat above in parallel $O\left(\log ^{2} n\right)$ times to guarantee high probability of obtaining a good sample.

Space is for Count Sketch and to store generate $\boldsymbol{u}_{\boldsymbol{i}}$ values pseudorandomly.

Algorithm uses poly $(\log \boldsymbol{n} / \boldsymbol{\epsilon}))$ space and with high probability outputs $i \in[n]$ such that
$\operatorname{Pr}[i$ is output $]=(1 \pm \epsilon) x_{i}^{2} /\|x\|_{2}^{2}+1 / n^{c}$.

Application of ℓ_{2} sampling to F_{p} estimation

For $\boldsymbol{p}>2$ AMS-Sampling gives algorithm to estimate F_{p} using $\tilde{O}\left(n^{1-1 / p}\right)$ space. Optimal space is $\tilde{O}\left(n^{1-2 / p}\right)$.

Application of ℓ_{2} sampling to F_{p} estimation

For $\boldsymbol{p}>2$ AMS-Sampling gives algorithm to estimate F_{p} using $\tilde{O}\left(n^{1-1 / p}\right)$ space. Optimal space is $\tilde{O}\left(n^{1-2 / p}\right)$.

- Use ℓ_{2} sampling algorithm to generate ($i,\left|\tilde{x}_{i}\right|$)
- Estimate $\|x\|_{2}^{2}$
- Output $T=\left\|x_{2}\right\|^{2}\left|\tilde{x}_{i}\right|^{p-2}$ as estimate

To simplify analysis/notation assume sampling is exact.
$\mathrm{E}[T]=\|x\|_{2}^{2} \sum_{i} \frac{x_{i}^{2}}{\|x\|_{2}^{\|_{2}}}\left|x_{i}\right|^{p-2}=\sum_{i}\left|x_{i}\right|^{p}$

Application of ℓ_{2} sampling to F_{p} estimation

For $\boldsymbol{p}>2$ AMS-Sampling gives algorithm to estimate F_{p} using $\tilde{O}\left(n^{1-1 / p}\right)$ space. Optimal space is $\tilde{O}\left(n^{1-2 / p}\right)$.

- Use ℓ_{2} sampling algorithm to generate ($i,\left|\tilde{x}_{i}\right|$)
- Estimate $\|x\|_{2}^{2}$
- Output $T=\left\|x_{2}\right\|^{2}\left|\tilde{x}_{i}\right|^{p-2}$ as estimate

To simplify analysis/notation assume sampling is exact.
$\mathrm{E}[T]=\|x\|_{2}^{2} \sum_{i} \frac{x_{i}^{2}}{\|x\|_{2}^{2}}\left|x_{i}\right|^{p-2}=\sum_{i}\left|x_{i}\right|^{p}$
$\operatorname{Var}[T] \leq\|x\|_{2}^{4} \sum_{i} \frac{x_{i}^{2}}{\|x\|_{2}^{2}} x_{i}^{2(p-2)} \leq\|x\|_{2}^{2} \sum_{i} x_{i}^{2 p-2} \leq$ $\boldsymbol{n}^{1-2 / p}\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{2}$.
Now do average plus median.

Part V

ℓ_{0} Sampling

ℓ_{0} Sampling

Turnstile stream: x updated with positive and negative entries

At end of stream want to sample uniformly a coordinate \boldsymbol{i} among all non-zero coordinates in x

Special case: sampling a uniform distinct element in cash register model

ℓ_{0} Sampling

Turnstile stream: x updated with positive and negative entries

At end of stream want to sample uniformly a coordinate \boldsymbol{i} among all non-zero coordinates in x

Special case: sampling a uniform distinct element in cash register model

Goal: illustrate a simple algorithm via two powerful hammers

Sparse Recovery

Recall sparse recovery using Count Sketch.

Theorem

There is a linear sketch with size $O\left(\frac{k}{\epsilon^{2}}\right.$ polylog(n)) that returns z such that $\|z\|_{0} \leq k$ and with high probability $\|x-z\|_{2} \leq(1+\epsilon) \operatorname{er} r_{2}^{k}(x)$.

$$
\operatorname{err}_{2}^{k}(x)=\min _{z:\|z\|_{0} \leq k}\|x-z\|_{2}
$$

Hence space is proportional to desired output. Assumption k is typically quite small compared to n, the dimension of \boldsymbol{x}.

Note that if x is k-sparse vector is exactly reconstructed

Random Sampling plus Sparse Recovery

\boldsymbol{x} is updated in turnstile streaming fashion. Let \boldsymbol{J} be the non-zero indices of x

Suppose we knew $|J|$ is small, say $\leq s$. Then can use sparse recovering with $\tilde{O}(s)$ space to completely recover x and can then sample uniformly.

Random Sampling plus Sparse Recovery

\boldsymbol{x} is updated in turnstile streaming fashion. Let \boldsymbol{J} be the non-zero indices of x

Suppose we knew $|J|$ is small, say $\leq s$. Then can use sparse recovering with $\tilde{O}(s)$ space to completely recover x and can then sample uniformly.

What if $|J|$ is large?

- Guess $|J|$ to within factor of 2.
- More formally, for $\boldsymbol{j}=\mathbf{0}$ to $\log \boldsymbol{n}$ let $\boldsymbol{I}_{\boldsymbol{j}}$ be $\boldsymbol{n} / \mathbf{2}^{\boldsymbol{j}}$ coordinates of $[n]$ sampled uniformly at random. Note $I_{0}=[n]$.
- Let $\boldsymbol{y}^{\boldsymbol{j}}$ be vector obtained by restricting \boldsymbol{x} to coordinates in $\boldsymbol{I}_{\boldsymbol{j}}$. $y^{0}=x$.

Random Sampling plus Sparse Recovery

Choose $s=\Omega(\log (1 / \delta))$.
For $j=0,1, \ldots, \log n$

- Use s-sparse recovery on y^{j}.
- If y^{j} is not s-sparse discard. Else pick a random non-zero coordinate in \boldsymbol{y}^{j} and output it. And stop.

Random Sampling plus Sparse Recovery

Choose $s=\Omega(\log (1 / \delta))$.
For $j=0,1, \ldots, \log n$

- Use s-sparse recovery on y^{j}.
- If y^{j} is not s-sparse discard. Else pick a random non-zero coordinate in \boldsymbol{y}^{j} and output it. And stop.

Uses $O(\log n) s$-sparse recovery data structures and hence space is poly-logarithmic assuming δ is $\Omega\left(n^{-c}\right)$ for some fixed constant c.

Random Sampling plus Sparse Recovery

Choose $s=\Omega(\log (1 / \delta))$.
For $j=0,1, \ldots, \log n$

- Use s-sparse recovery on y^{j}.
- If y^{j} is not s-sparse discard. Else pick a random non-zero coordinate in \boldsymbol{y}^{j} and output it. And stop.

Uses $O(\log n) s$-sparse recovery data structures and hence space is poly-logarithmic assuming δ is $\Omega\left(n^{-c}\right)$ for some fixed constant c.

How can we implement random coordinates of x ? Cannot store them. So how can we run sparse recovery on \boldsymbol{y}^{j} ?

Random Sampling plus Sparse Recovery

Choose $s=\Omega(\log (1 / \delta))$.
For $j=0,1, \ldots, \log n$

- Use s-sparse recovery on y^{j}.
- If y^{j} is not s-sparse discard. Else pick a random non-zero coordinate in \boldsymbol{y}^{j} and output it. And stop.

Uses $O(\log n) s$-sparse recovery data structures and hence space is poly-logarithmic assuming δ is $\Omega\left(n^{-c}\right)$ for some fixed constant c.

How can we implement random coordinates of x ? Cannot store them. So how can we run sparse recovery on \boldsymbol{y}^{j} ? Use Nisan's generator!

Analysis

Question: Will algorithm output a random non-zero coordinate?

Analysis

Question: Will algorithm output a random non-zero coordinate?
Lemma
Suppose $|J| \leq s$ then algorithm outputs a uniform non-zero coordinate of \boldsymbol{x} with high probability.
$y^{0}=x$ is s-sparse. Sparse recovery algorithm succeeds with high probability.

Analysis

Question: Will algorithm output a random non-zero coordinate?

Lemma

Suppose $|J| \leq s$ then algorithm outputs a uniform non-zero coordinate of \boldsymbol{x} with high probability.
$y^{0}=x$ is s-sparse. Sparse recovery algorithm succeeds with high probability.

Lemma

Assume $|J|>s$. There is an index k such that with probability $(1-\delta), y^{k}$ is s-sparse and has at least one non-zero coordinate.

Analysis

Question: Will algorithm output a random non-zero coordinate?

Lemma

Suppose $|J| \leq s$ then algorithm outputs a uniform non-zero coordinate of \boldsymbol{x} with high probability.
$y^{0}=x$ is s-sparse. Sparse recovery algorithm succeeds with high probability.

Lemma

Assume $|\boldsymbol{J}|>s$. There is an index \boldsymbol{k} such that with probability $(1-\delta), y^{k}$ is s-sparse and has at least one non-zero coordinate.

Expected number of coordinates of J in y^{j} is $|J| / 2^{j}$. Find j such that expected number is between $s / 4$ and s and use Chernoff bound.

Analysis continued

Lemma

Assume $|\boldsymbol{J}|>s$. There is an index k such that with probability $(1-\delta), y^{k}$ is s-sparse and has at least one non-zero coordinate.
s-sparse recovery of $y^{\boldsymbol{k}}$ will reconstruct it exactly. $\boldsymbol{y}^{\boldsymbol{k}}$ has random sample of coordinates of x hence has random sample of non-zero coordinates as well. Output random non-zero coordinate of \boldsymbol{y}^{k}.

Algorithm fails only if every $\boldsymbol{y}^{\boldsymbol{j}}$ fails sparse recovery and $|\boldsymbol{J}|>\mathbf{0}$ but we see that y^{k+1} succeeds with probability at least $(1-\delta)$.

