CS 498ABD: Algorithms for Big Data

Median in Random Order Streams

Lecture 17
October 22, 2020

Quantiles and Selection

Input: stream of numbers $x_{1}, x_{2}, \ldots, x_{n}$ (or elements from a total order) and integer k

Selection: (Approximate) rank k element in the input.

Quantile summary: A compact data structure that allows approximate selection queries.

Summary of previous lecture

Randomized: Pick $\Theta\left(\frac{1}{\epsilon} \log (1 / \delta)\right)$ elements. With probability ($1-1 / \delta$) will provide ϵ-approximate quantile summary

Deterministic: ϵ-approximate quantile summary using $O\left(\frac{1}{\epsilon} \log ^{2} n\right)$ elements and can be improved to $O\left(\frac{1}{\epsilon} \log n\right)$ elements

Exact selection: With $O\left(n^{1 / p} \log n\right)$ memory and p passes. Median in 2 passes with $O(\sqrt{n} \log n)$ memory.

Random order streams

Question: Can we improve bounds/algorithms if we move beyond worst case?

Random order streams

Question: Can we improve bounds/algorithms if we move beyond worst case?

Two models:

- Elements $x_{1}, x_{2}, \ldots, x_{n}$ chosen iid from some probability distribution. For instance each $x_{i} \in[0,1]$
- Elements $x_{1}, x_{2}, \ldots, x_{n}$ chosen adversarially but stream is a uniformaly random permutation of elements.

Median in random order streams

[Munro-Paterson 1980]
Theorem
Median in $O(\sqrt{n} \log n)$ memory in one pass with high probability if stream is random order.

More generally in p passes with memory $O\left(n^{1 / 2 p} \log n\right)$

Munro-Paterson algorithm

- Given a space parameter s algorithm stores a set of s consecutive elements seen so far in the stream
- Maintains counters ℓ and h
- ℓ is number of elements seen so far that are less than $\min S$
- \boldsymbol{h} is number of elements seen so far that are more than max S.
- Tries to keep ℓ and \boldsymbol{h} balanced

Munro-Paterson algorithm

```
MP-Median (s) :
    Store the first \(s\) elements of the stream in \(S\)
    \(\ell=h=0\)
    While (stream is not empty) do
        \(\boldsymbol{x}\) is new element
        If \((x>\max S)\) then \(h=h+1\)
        Else If \((x<\min S)\) then \(\ell=\ell+1\)
        Else
            Insert \(x\) into \(S\)
            If \(\boldsymbol{h}>\ell\) discard \(\min S\) from \(S\) and \(\ell=\ell+1\)
            Else discard max \(\boldsymbol{S}\) from \(S\) and \(\boldsymbol{h}=\boldsymbol{h}+1\)
    endWhile
    If \(1 \leq n / 2-\ell \leq s\) then
        Output \(n / 2-\ell\) ranked element from \(S\)
    Else output FAIL
```


Example

$$
\begin{aligned}
& \sigma=1,2,3,4,5,6,7,9,10 \text { and } s=3 \\
& \sigma=10,19,1,23,15,11,14,16,3,7 \text { and } s=3
\end{aligned}
$$

Analysis

Theorem

If $s=\Omega(\sqrt{n} \log n)$ and stream is random order then algorithm outputs median with high probability.

Recall: Random walk on the line

- Start at origin 0. At each step move left one unit with probability $1 / 2$ and move right with probability $1 / 2$.
- After \boldsymbol{n} steps how far from the origin?

Recall: Random walk on the line

- Start at origin 0. At each step move left one unit with probability $\mathbf{1 / 2}$ and move right with probability $\mathbf{1 / 2}$.
- After n steps how far from the origin?

At time \boldsymbol{i} let $\boldsymbol{X}_{\boldsymbol{i}}$ be $\mathbf{- 1}$ if move to left and $\mathbf{1}$ if move to right.
Y_{n} position at time n
$Y_{n}=\sum_{i=1}^{n} X_{i}$
$\mathrm{E}\left[Y_{n}\right]=0$ and $\operatorname{Var}\left(Y_{n}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=n$
By Chebyshev: $\operatorname{Pr}\left[\left|Y_{n}\right| \geq t \sqrt{n}\right] \leq 1 / t^{2}$
By Chernoff:

$$
\operatorname{Pr}\left[\left|Y_{n}\right| \geq t \sqrt{n}\right] \leq 2 \exp \left(-t^{2} / 2\right)
$$

Analysis

Let $\boldsymbol{H}_{\boldsymbol{i}}$ and $L_{\boldsymbol{i}}$ be random variables for the values of \boldsymbol{h} and $\boldsymbol{\ell}$ after seeing i items in the random stream

Let $D_{i}=H_{i}-L_{i}$

Analysis

Let $\boldsymbol{H}_{\boldsymbol{i}}$ and $L_{\boldsymbol{i}}$ be random variables for the values of \boldsymbol{h} and $\boldsymbol{\ell}$ after seeing i items in the random stream

Let $D_{i}=H_{i}-L_{i}$
Observation: Algorithm fails only if $\left|D_{n}\right| \geq s-1$

Analysis

Let $\boldsymbol{H}_{\boldsymbol{i}}$ and $\boldsymbol{L}_{\boldsymbol{i}}$ be random variables for the values of \boldsymbol{h} and $\boldsymbol{\ell}$ after seeing i items in the random stream

Let $D_{i}=H_{i}-L_{i}$
Observation: Algorithm fails only if $\left|D_{n}\right| \geq s-1$
Will instead analyse the probability that $\left|D_{i}\right| \geq s-1$ at any \boldsymbol{i}

Analysis

Lemma

Suppose $D_{i}=H_{i}-L_{i} \geq 0$ and $D_{i}<s-1$. $\operatorname{Pr}\left[D_{i+1}=D_{i}+1\right]=H_{i} /\left(H_{i}+s+L_{i}\right) \leq 1 / 2$.

Analysis

Lemma

Suppose $D_{i}=H_{i}-L_{i} \geq 0$ and $D_{i}<s-1$. $\operatorname{Pr}\left[D_{i+1}=D_{i}+1\right]=H_{i} /\left(H_{i}+s+L_{i}\right) \leq 1 / 2$.

Lemma

Suppose $D_{i}=H_{i}-L_{i}<0$ and $\left|D_{i}\right|<s-1$.
$\operatorname{Pr}\left[D_{i+1}=D_{i}-1\right]=L_{i} /\left(H_{i}+s+L_{i}\right) \leq 1 / 2$.

Analysis

Lemma

Suppose $D_{i}=H_{i}-L_{i} \geq 0$ and $D_{i}<s-1$.
$\operatorname{Pr}\left[D_{i+1}=D_{i}+1\right]=H_{i} /\left(H_{i}+s+L_{i}\right) \leq 1 / 2$.

Lemma

Suppose $D_{i}=H_{i}-L_{i}<0$ and $\left|D_{i}\right|<s-1$.
$\operatorname{Pr}\left[D_{i+1}=D_{i}-1\right]=L_{i} /\left(H_{i}+s+L_{i}\right) \leq \mathbf{1 / 2}$.
Thus, process behaves better than random walk on the line (formal proof is technical) and with high probability $\left|D_{i}\right| \leq c \sqrt{n} \log n$ for all i. Thus if $s>c \sqrt{n} \log n$ then algorithm succeeds with high probability.

Other results on selection in random order streams

[Munro-Paterson] extend analysis for $p=1$ and show that $\boldsymbol{\Theta}\left(n^{1 / 2 p} \log n\right)$ memory sufficient for p passes (with high probability). Note that for adversarial stream one needs $\boldsymbol{\Theta}\left(n^{1 / p}\right)$ memory
[Guha-MacGregor] show that $\boldsymbol{O}(\log \log n)$-passes sufficient for exact selection in random order streams

Part I

Secretary Problem

Secretary Problem

- Stream of numbers $x_{1}, x_{2}, \ldots, x_{n}$ (value/ranking of items/people)
- Want to select the largest number
- Easy if we can store the maximum number
- Online setting: have to make a single irrevocable decision when number seen.

Secretary Problem

- Stream of numbers $x_{1}, x_{2}, \ldots, x_{n}$ (value/ranking of items/people)
- Want to select the largest number
- Easy if we can store the maximum number
- Online setting: have to make a single irrevocable decision when number seen.

Extensively studied with applications to auction design etc.

Secretary Problem

- Stream of numbers $x_{1}, x_{2}, \ldots, x_{n}$ (value/ranking of items/people)
- Want to select the largest number
- Easy if we can store the maximum number
- Online setting: have to make a single irrevocable decision when number seen.

Extensively studied with applications to auction design etc.
In the worst case no guarantees possible. What about random arrival order?

Algorithm

Assume \boldsymbol{n} is known.
LearnAndPick (θ):
Let \boldsymbol{y} be max number seen in the first $\boldsymbol{\theta} \boldsymbol{n}$ numbers
Pick z the first number larger than \boldsymbol{y} in the remaining stream

Algorithm

Assume \boldsymbol{n} is known.
LearnAndPick (θ):
Let \boldsymbol{y} be max number seen in the first $\theta \boldsymbol{n}$ numbers
Pick \boldsymbol{z} the first number larger than \boldsymbol{y} in the remaining stream
Question: Assume numbers are in random order. What is a lower bound on the probability that algorithm will pick the largest element?

Algorithm

Assume \boldsymbol{n} is known.
LearnAndPick (θ):
Let \boldsymbol{y} be max number seen in the first $\boldsymbol{\theta} \boldsymbol{n}$ numbers
Pick \boldsymbol{z} the first number larger than \boldsymbol{y} in the remaining stream
Question: Assume numbers are in random order. What is a lower bound on the probability that algorithm will pick the largest element?

Observation: Let \boldsymbol{a} be largest and \boldsymbol{b} the second largest. Algorithm will pick \boldsymbol{a} if \boldsymbol{b} is in the first $\boldsymbol{\theta} \boldsymbol{n}$ numbers and \boldsymbol{a} is the residual stream.

Algorithm

Assume \boldsymbol{n} is known.
LearnAndPick (θ):
Let \boldsymbol{y} be max number seen in the first $\boldsymbol{\theta} \boldsymbol{n}$ numbers
Pick \boldsymbol{z} the first number larger than \boldsymbol{y} in the remaining stream
Question: Assume numbers are in random order. What is a lower bound on the probability that algorithm will pick the largest element?

Observation: Let \boldsymbol{a} be largest and \boldsymbol{b} the second largest. Algorithm will pick \boldsymbol{a} if \boldsymbol{b} is in the first $\boldsymbol{\theta} \boldsymbol{n}$ numbers and \boldsymbol{a} is the residual stream.

If $\theta=1 / 2$ then each will occur with probability roughly $\mathbf{1 / 2}$ and hence $1 / 4$ probability.

Algorithm

Assume \boldsymbol{n} is known.
LearnAndPick (θ):
Let \boldsymbol{y} be max number seen in the first $\theta \boldsymbol{n}$ numbers
Pick z the first number larger than \boldsymbol{y} in the remaining stream
Question: Assume numbers are in random order. What is a lower bound on the probability that algorithm will pick the largest element?

Observation: Let \boldsymbol{a} be largest and \boldsymbol{b} the second largest. Algorithm will pick \boldsymbol{a} if \boldsymbol{b} is in the first $\boldsymbol{\theta} \boldsymbol{n}$ numbers and \boldsymbol{a} is the residual stream.

If $\theta=1 / 2$ then each will occur with probability roughly $1 / 2$ and hence $\mathbf{1 / 4}$ probability.

Optimal strategy: $\theta=1 / e$ and probability of picking largest number is $1 / e$. A more careful calculation.

