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Quantiles and Selection

Input: stream of numbers x1, x2, . . . , xn (or elements from a total

order) and integer k

Selection: (Approximate) rank k element in the input.

Quantile summary: A compact data structure that allows

approximate selection queries.
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Summary of previous lecture

Randomized: Pick ⇥(
1

✏
log(1/�)) elements. With probability

(1 � 1/�) will provide ✏-approximate quantile summary

Deterministic: ✏-approximate quantile summary using O(
1

✏
log

2 n)
elements and can be improved to O(

1

✏
log n) elements

Exact selection: With O(n1/p
log n) memory and p passes.

Median in 2 passes with O(
p

n log n) memory.
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Random order streams

Question: Can we improve bounds/algorithms if we move beyond

worst case?

Two models:

Elements x1, x2, . . . , xn chosen iid from some probability

distribution. For instance each xi 2 [0, 1]

Elements x1, x2, . . . , xn chosen adversarially but stream is a

uniformaly random permutation of elements.
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Median in random order streams

[Munro-Paterson 1980]

Theorem

Median in O(
p

n log n) memory in one pass with high probability if
stream is random order.

More generally in p passes with memory O(n1/2p
log n)
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Munro-Paterson algorithm

Given a space parameter s algorithm stores a set of s
consecutive elements seen so far in the stream

Maintains counters ` and h
` is number of elements seen so far that are less than min S
h is number of elements seen so far that are more than max S .
Tries to keep ` and h balanced
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Munro-Paterson algorithm

MP-Median (s):

Store the first s elements of the stream in S
` = h = 0

While (stream is not empty) do

x is new element

If (x > max S) then h = h + 1

Else If (x < min S) then ` = ` + 1

Else

Insert x into S
If h > ` discard min S from S and ` = ` + 1

Else discard max S from S and h = h + 1

endWhile

If 1  n/2 � `  s then

Output n/2 � ` ranked element from S
Else output FAIL
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Example

� = 1, 2, 3, 4, 5, 6, 7, 9, 10 and s = 3

� = 10, 19, 1, 23, 15, 11, 14, 16, 3, 7 and s = 3.
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Analysis

Theorem

If s = ⌦(
p

n log n) and stream is random order then algorithm
outputs median with high probability.
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Recall: Random walk on the line

Start at origin 0. At each step move left one unit with

probability 1/2 and move right with probability 1/2.
After n steps how far from the origin?

At time i let Xi be �1 if move to left and 1 if move to right.

Yn position at time n
Yn =

Pn
i=1

Xi

E[Yn] = 0 and Var(Yn) =
Pn

i=1
Var(Xi) = n

By Chebyshev: Pr
⇥
|Yn| � t

p
n
⇤
 1/t2

By Cherno↵:

Pr
⇥
|Yn| � t

p
n
⇤
 2exp(�t2/2).
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Analysis

Let Hi and Li be random variables for the values of h and ` after

seeing i items in the random stream

Let Di = Hi � Li

Observation: Algorithm fails only if |Dn| � s � 1

Will instead analyse the probability that |Di | � s � 1 at any i
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Analysis

Lemma

Suppose Di = Hi � Li � 0 and Di < s � 1.
Pr[Di+1 = Di + 1] = Hi/(Hi + s + Li)  1/2.

Lemma

Suppose Di = Hi � Li < 0 and |Di | < s � 1.
Pr[Di+1 = Di � 1] = Li/(Hi + s + Li)  1/2.

Thus, process behaves better than random walk on the line (formal

proof is technical) and with high probability |Di |  c
p

n log n for

all i . Thus if s > c
p

n log n then algorithm succeeds with high

probability.
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Other results on selection in random order

streams

[Munro-Paterson] extend analysis for p = 1 and show that

⇥(n1/2p
log n) memory su�cient for p passes (with high

probability). Note that for adversarial stream one needs ⇥(n1/p
)

memory

[Guha-MacGregor] show that O(log log n)-passes su�cient for exact

selection in random order streams
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Part I

Secretary Problem
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Secretary Problem

Stream of numbers x1, x2, . . . , xn (value/ranking of

items/people)

Want to select the largest number

Easy if we can store the maximum number

Online setting: have to make a single irrevocable decision

when number seen.

Extensively studied with applications to auction design etc.

In the worst case no guarantees possible. What about random arrival

order?
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Algorithm

Assume n is known.

LearnAndPick (✓):
Let y be max number seen in the first ✓n numbers

Pick z the first number larger than y in the remaining stream

Question: Assume numbers are in random order. What is a lower

bound on the probability that algorithm will pick the largest element?

Observation: Let a be largest and b the second largest. Algorithm

will pick a if b is in the first ✓n numbers and a is the residual stream.

If ✓ = 1/2 then each will occur with probability roughly 1/2 and

hence 1/4 probability.

Optimal strategy: ✓ = 1/e and probability of picking largest

number is 1/e. A more careful calculation.
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