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Part I

Introduction
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Selection

Selection: Given a sequence of numbers a1, a2, . . . , an and integer
k ∈ [n] want to find the rank k element (the k ’th element after
sorting)

Median: rank n/2 element

Offline solutions:

Sort and pick the k ’th element. O(n log n) time. Can find all
ranks in constant time after sorting.

O(n) time algorithm for Selection of given rank k . Randomized
QuickSelect or deterministic Median-of-Medians algorithm
(clever but slow).
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Selection in Streaming

Question: Suppose a1, a2, . . . , an arrive in a stream. Can we do
Selection in small space?

Exact Selection in one pass requires Ω(n) space. Need to store all
elements so trivial solution is optimal.

Relaxations:

Approximate selection. Recall sampling to find ε-approximate
median using O( 1

ε2 log(1/δ)) samples. Can do this in
streaming with reservoir sampling.

Multiple passes.

Assume random order arrival of elements.
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Selection in Multiple Passes

Multipass model: See same stream p times for some p ≥ 1. With
larger p one can do more with same memory bound.

Initially motivated by database applications where random access
main memory is small and large external memory (such as tapes) that
allow for reasonably fast sequential scans.

Selection in multiple passes:

Θ(n) space allows 1 pass.

O(1) space. How many passes? O(log n) suffices. Implement
Quick Select in O(1) space.

p passes? O(n1/ppolylog(n)) space suffices. Hence
O(
√

n log n) for 2 passes. [Munro-Paterson 1980]
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Quantiles

Large numerical/ordered data: say heights/weights/salaries of the
population of the country.

Exact selection is not as interesting as high-level summary. Pick some
granularity and bucket data into groups of roughly equal size.

Example: For α = 1, 2, . . . , 100 want α percentile salaries

More precision: For α = 0.1, 0.2, . . . , 100 want α percentile
salaries

In terms of Selection:
want rank k element for k = α

100
n for each α

allows for ε-approximate Selection (additive error εn where ε is
granularity in quantile)
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Quantile Summaries or Approximate
Selection in Streaming

See stream of numbers a1, a2, . . . , an.
Parameter ε ∈ (0, 1)

Maintain a small space summary such that given any k ∈ [n] can
output number a from stream such that

k − εn ≤ rank(a) ≤ k + εn

Offline: can do with O(1/ε) space. Store rank εi/n elements for
i = 1, 2, . . . , 1/ε

Q: Can we do it in streaming and how much space do we need?
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Quantile Summaries or Approximate
Selection in Streaming

See stream of numbers a1, a2, . . . , an Parameter ε ∈ (0, 1)

Maintain a small space summary such that given any k ∈ [n] can
output number a from stream such that

k − εn ≤ rank(a) ≤ k + εn

Q: Can we do it in streaming and how much space do we need?

O(1
ε

log2 n) space using merge and reduce approach

Involved O(1
ε

log(n/ε)) space algorithm that is near optimal

Both are deterministic algorithms. Can be used to derive
Munro-Paterson multi-pass Selection algorithm
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Part II

Approximate Quantiles in
Streaming
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Quantile Summary

See stream of numbers a1, a2, . . . , an. Parameter ε ∈ (0, 1)
Note: Items can be from any ordered set, use only comparison

What should we store?

Take cue from offline solution. Equally
spaced 1/ε elements from sorted list.

Quantile Summary:

Q = {q1, q2, . . . , q`} where each qi is an element of stream.
Wlog q1 < q2 < . . . < q` and q1 is smallest and q` is largest
in stream

For each qi ∈ Q an interval I (qi) = [rminQ(qi), rmaxQ(qi)]
where rminQ(qi) ≤ rank(qi) ≤ rmaxQ(qi)
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Quantile Summary

Quantile Summary:

Q = {q1, q2, . . . , q`}. Also q1 < q2 < . . . < q` and q1 is
smallest and q` is largest

For each qi ∈ Q an interval I (qi) = [rminQ(qi), rmaxQ(qi)]
where rminQ(qi) ≤ rank(qi) ≤ rmaxQ(qi)

Given k ∈ [n] want to use Q to answer ε-approximate rank k query.
How?

Suppose I (qi) ⊆ [k − εn, k + εn] then it is clear that qi is good to
output since

k − εn ≤ rmin(qi) ≤ rank(qi) ≤ rmax(qi) ≤ k + εn.
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ε-Approximate Quantile Summary

Quantile Summary:

Q = {q1, q2, . . . , q`}. Also q1 < q2 < . . . < q` and q1 is
smallest and q` is largest

For each qi ∈ Q an interval I (qi) = [rminQ(qi), rmaxQ(qi)]
where rminQ(qi) ≤ rank(qi) ≤ rmaxQ(qi)

Maintain key invariant: For each i ,

rmax(qi+1)− rmin(qi) ≤ 2εn

also implies rank(qi+1)− rank(qi) ≤ 2εn

Lemma

With invariant quantile summary can be used to answer
ε-approximate rank queries.

Chandra (UIUC) CS498ABD 12 Fall 2020 12 / 32



ε-Approximate Quantile Summary

Quantile Summary:

Q = {q1, q2, . . . , q`}. Also q1 < q2 < . . . < q` and q1 is
smallest and q` is largest

For each qi ∈ Q an interval I (qi) = [rminQ(qi), rmaxQ(qi)]
where rminQ(qi) ≤ rank(qi) ≤ rmaxQ(qi)

Maintain key invariant: For each i ,

rmax(qi+1)− rmin(qi) ≤ 2εn

also implies rank(qi+1)− rank(qi) ≤ 2εn

Lemma

With invariant quantile summary can be used to answer
ε-approximate rank queries.

Chandra (UIUC) CS498ABD 12 Fall 2020 12 / 32



Proof of Lemma

Maintain key invariant: For each i ,

rmax(qi+1)− rmin(qi) ≤ 2εn

Claim: There exists qj such that I (qj) ⊆ [k − εn, k + εn]

If k ≥ (1− ε)n then q` satisfies condition.

Let j be smallest index such that rmax(qj) ≥ k + εn (exists
since rmax(q`) = n and k < (1− ε)n).

qj−1 satisfies condition. Suppose not. By choice of j ,
rmax(qj−1) < k + εn. Since condition is not satisfied by qj−1,
rmin(qj−1) < k − εn but then

rmax(qj)− rmin(qj−1) > k + εn − (k − εn) > 2εn

contradiction to invariant.
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Maintaining ε-Approx Quantile Summary in
Streaming

Question: How to maintain ε-approximate quantile summary in
small space in streaming setting?

Merge and Reduce/Prune Framework
(also useful in other settings)

Merge: given ε1-approx Q1 for multiset S1 and ε2-approx Q2 for
multiset S2 obtain approx Q for S = S1 ∪ S1

Prune: Given ε-approx Q for S of size `, prune to size h without
increasing error by too much
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Merging Summaries

Q1 = {q1, q2, . . . , q`} and intervals I1(q1), . . . , I1(q`) for multiset
S1 with n1 = |S1|

Q2 = {s1, s2, . . . , sm} and intervals I2(s1), . . . , I2(sm) for multiset
S2 with n2 = |S1|

Q = {z1, z2, . . . , z`+m} which is sorted version of
{q1, q2, . . . , q`, s1, . . . , sm} for multiset S = S1 ] S2 with
n = n1 + n2

How do we find intervals for Q while maintaining key invariant?

Consider zi and assume wlog that zi = qj for some 1 ≤ j ≤ `
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Merging

Consider zi and assume wlog that zi = qj for some 1 ≤ j ≤ `

Find st, st+1 such that st ≤ qj ≤ st+1 (ignore corner cases)

We know that rminQ1
(qj) elements in S1 are smaller than qj and

also rminQ2
(st) elements in S2 are smaller than qj . Hence it safe to

set

rminQ(zi) = rminQ1
(qj) + rminQ2

(st)

Similarly it is safe to set

rmaxQ(zi) = rmaxQ1
(qj) + rmaxQ2

(st+1)− 1

Chandra (UIUC) CS498ABD 16 Fall 2020 16 / 32



Merging

Consider zi and assume wlog that zi = qj for some 1 ≤ j ≤ `

Find st, st+1 such that st ≤ qj ≤ st+1 (ignore corner cases)

We know that rminQ1
(qj) elements in S1 are smaller than qj and

also rminQ2
(st) elements in S2 are smaller than qj . Hence it safe to

set

rminQ(zi) = rminQ1
(qj) + rminQ2

(st)

Similarly it is safe to set

rmaxQ(zi) = rmaxQ1
(qj) + rmaxQ2

(st+1)− 1

Chandra (UIUC) CS498ABD 16 Fall 2020 16 / 32



Merging

Lemma

If Q1 is an ε1-approx quantile summary for S1 and Q2 is an
ε2-approx quantile summary for S2 then Q is an
ε = max{ε1, ε2}-approx quantile summary for S = S1 ] S2.

Hence error does not increase but |Q| = |Q1|+ |Q2|.

For proof need to verify key invariant. Q = {z1, z2, . . . , z`+m}.
Need to show that

rmaxQ(zi+1)− rminQ(zi) ≤ 2ε(n1 + n2).
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Merging Analysis

Need to show that

rmaxQ(zi+1)− rminQ(zi) ≤ 2ε(n1 + n2).

Case 1: zi , zi+1 in same summary, say Q1 wlog. Then zi = qj and
zi+1 = qj+1 for some j .

This implies that there are st, st+1 in Q2 such that
st ≤ qj < qj+1 ≤ st+1.

Hence rmaxQ(zi+1)− rminQ(zi)

= rmaxQ1(qj+1) + rmaxQ2(st+1)− 1− (rminQ1(qj ) + rminQ2(st))

≤ (rmaxQ1(qj+1)− rminQ1(qj )) + (rmaxQ2(st+1)− rminQ2(st))

≤ 2εn1 + 2εn2 ≤ 2ε(n1 + n2)
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Merging Analysis

Case 2: zi , zi+1 in different summaries, say Q1,Q2 wlog. Then
zi = qj and zi+1 = st+1 for some j , t.

This implies that st ≤ qj ≤ st+1 ≤ qj+1 (ignoring corner cases)
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Pruning/Reducing Summary

Merging keeps accuracy but increases summary size.

Reduce/Prune: reduce size at expense of accuracy.

Lemma

Given ε-approx quantile Q and integer h ≥ 3 can find Q′ such that
|Q′| ≤ h + 1 and Q′ is ε′-approximate for ε′ ≤ ε + 1

2h .

Q = {q1, q2, . . . , q`} and wlog assume ` > h + 1.

Query Q for ranks 1, n/h, 2n/h, . . . , n.

Create Q′ from output of queries. Use same intervals as those in Q.
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Pruning/Reducing Analysis

Q = {q1, q2, . . . , q`} and wlog assume ` > h + 1.

Query Q for ranks 1, n/h
,

2n
h , . . . , n.

Q′ = {q′1, q′2, . . . , q′h+1}

Suppose q′i = qa and q′i+1 = qb for some a < b.
I (qa) ⊆ [in/h − εn, in/h + εn] and
I (qb) ⊆ [(i + 1)n/h − εn, (i + 1)n/h + εn]

Therefore,

rmaxQ′(q′i+1)− rminQ′(q′i ) ≤ (i + 1)n/h + εn − (in/h − εn)

≤ 2εn + n/h
≤ 2(ε + 1/(2h))n.
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Merge and Reduce Streaming Quantiles

Stream: a1, a2, . . . , an and given ε ∈ (0, 1)

Want to maintain ε-approximate quantile summary.

O(1
ε

log2 n) space algorithm based on reduce and merge.

Come up with a solution as if the whole stream is available
offline

Show how it can implemented in small space in streaming
setting.
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Merge and Reduce for Streaming Quantiles

Stream: a1, a2, . . . , an and given ε ∈ (0, 1)

Imagine a rooted binary tree with a1, a2, . . . , an as leaves in
that order (not sorted)

At each internal node v let Sv be leaves under v .

Compute a summary Qv for Sv bottom up. Qr is output where
r is root. Summary at leaf is optimal simply stores element.

To compute Qv with children a, b Merge Qa and Qb and Prune
to size h + 1

Guarantees that Qr has size h + 1

How should we choose h to ensure ε-approx Qr?
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Merge and Reduce for Streaming Quantiles

If each leaf summary has error ε′ then Merging does not increase
error but Pruning adds 1/(2h) at each level. Hence εr at root with
depth d satisfies

εr ≤ ε′ + d/(2h) ≤ ε′ + log n/(2h)

To ensure εr ≤ ε we set h = Ω(1
ε

log n). Hence each summary size

is O(1
ε

log n) numbers

How can we implement offline algorithm in streaming setting and
how much space does it require?
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Merge and Reduce for Streaming Quantiles

To ensure εr ≤ ε we set h = Ω(1
ε

log n). Hence each summary size

is O(1
ε

log n) numbers

How can we implement offline algorithm in streaming setting and
how much space does it require?

Only Qr needed so sufficient to keep only those summaries in the
“imaginary” binary tree that suffice to create Qr . Suffices to keep
O(d) summaries where d is depth. Hence total space is
O(1

ε
log2 n).

Need to know n in advance to set h. Otherwise use squaring.
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Handling unknown n

Length of stream not known. Use some standard tricks/ideas.

Start by assuming an estimate n0 for n where n0 is some
constant. Create data structure assuming ≤ n0 items.

when n exceeds current estimate double estimate and start a
new data structure with new estimate

or when n exceeds current estimate square estimate

Observation: When estimate changes we create new data structure
and freeze past data structures. Error of each data structure is
bounded by ε. To answer queries we can Merge the data structures
without increasing error.
Observation: Since space is poly-logarithmic in n when n is known,
squaring strategy guarantees only constant factor loss even when n is
not known.
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Improvements

Instead of binary tree all the way use at first level 1/ε nodes. Depth
goes to log(εn) and hence space improves to O(1

ε
log2(εn)).

[Greenwald-Khanna] gave a more involved scheme that achieves
O(1

ε
log(εn)) space. Near-optimal.
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Part III

Multipass Selection
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Multipass Selection

Selection in multiple passes:

1-pass requires and can be done in O(n) space

O(1) space. O(log n) suffices. Implement Quick Select in
O(1) space.

p passes? O(n1/ppolylog(n)) space suffices. Hence
O(
√

n log n) for 2 passes. [Munro-Paterson 1980]

Goal: Derive p-pass algorithm via approximate quantile summary
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p = 2 case

Goal: Selection of rank k element in 2-passes using Õ(
√

n) space

Pass 1:

Store ε = 1/
√

n-approximate summary. Space is
Õ(1/ε) = Õ(

√
n).

Summary allows to find two numbers a < b such that
rank(a) ≥ k − O(ε)n and rank(b) ≤ k + O(ε)n

Pass 2:

Store all numbers between a and b; O(
√

n) numbers.

Compute exact rank of a and b. How?

Find rank k element from stored elements and knowing rank of
a, b. How?
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General p

Goal: Selection of rank k element in p-passes using Õ(n1/p) space

Pass 1:

Store ε = 1/n1/p-approximate summary. Space is
Õ(1/ε) = Õ(n1/p).

Summary allows to find two numbers a < b such that
rank(a) ≥ k − O(n1−1/p) and rank(b) ≤ k + O(n1−1/p)

In subsequent passes one can restrict attention to numbers
between a and b. Only n1−1/p of them. Hence in one pass
reduce to n1−1/p numbers.

After (p − 1) passes we have n1/p numbers left and we can store all
of them in p’th pass and solve exactly.
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Õ(1/ε) = Õ(n1/p).
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Random Order Streams

Ω(n) lower bound for Selection in adversarial setting. Can we do
better if we assume non-worst case input?

Random Order Stream Model:

Adversary picks some input.

Algorithm sees a random permutation of the input. Adversary
power is weakened.

Several interesting results in this model.

For Exact Selection in random order streams.

O(
√

n) space in 1-pass suffices with high probability.
[Munro-Paterson]

O(log log n) passes suffice with O(poly(log n)) space whp.
[Guha-MacGregor]
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