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LSH Approach for Approximate NNS

Use locality-sensitive hashing to solve simplified decision problem

Definition

A family of hash functions is (r , cr , p1, p2)-LSH with p1 > p2 and
c > 1 if h drawn randomly from the family satisfies the following:

Pr[h(x) = h(y)] ≥ p1 when dist(x, y) ≤ r
Pr[h(x) = h(y)] ≤ p2 when dist(x, y) ≥ cr

Key parameter: the gap between p1 and p2 measured as ρ = log p1

log p2

usually small.

Two-level hashing scheme:
Amplify basic locality sensitive hash family to create better
family by repetition
Use several copies of amplified hash functions

Layer binary search based on r on top of above scheme.
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LSH Approach for Approximate NNS

Key parameter: the gap between p1 and p2 measured as ρ = log p1

log p2

usually small.

L ' nρ hash tables

Storage: n1+ρ (ignoring log factors)

Query time: knρ (ignoring log factors) where k = log1/p2
n
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LSH for Euclidean Distances

Now x1, x2, . . . , xn ∈ Rd and dist(x, y) = ‖x − y‖2

First do dimensionality reduction (JL) to reduce d (if necessary) to
O(log n) (since we are using c-approximation anyway)

What is a good basic locality-sensitive hashing scheme? That is, we
want a hashing approach that makes nearby points more likely to
collide than farther away points.

Projections onto random lines plus bucketing
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Random unit vector

Question: How do we generate a random unit vector in Rd (same as
a uniform point on the sphere Sn−1)?

Pick d independent rvs Z1,Z2, . . . ,Zd where each
Zi ' N (0, 1) and let g = (Z1,Z2, . . . ,Zd) (also called a
random Guassian vector)

g is symmetric and hence is a random direction

to obtain random unit vector normalize g ′ = g/‖g‖2

When d is large ‖g‖2
2 =

∑
i Z

2
i is concentrated around d and

hence ‖g‖2 = (1± ε)
√

d with high probability.

Thus g/
√

d is a proxy for random unit vector and is easier to
work with in many cases
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Projection onto a random guassian vector

Lemma

Suppose x ∈ Rd and g is a random Guassian vector. Let
Y = x · g . Then Y ∼ N (0, ‖x‖2) and hence E [Y 2] = (‖x‖2)2.
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Hashing scheme

Pick a random unit Guassian vector u
Pick a random shift a ∈ (0, r ]

For vector x set hu,a = bx·u+a
r c
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Analysis

Suppose x, y are such that ‖x − y‖2 ≤ r . What is
p1 = Pr[hu,a(x) = hu,a(y)]

Suppose x, y are such that ‖x − y‖2 ≥ cr . What is
p2 = Pr[hu,a(x) = hu,a(y)]

Let q = x − y . Let s = ‖q‖2 be length of q.
From Lemma q · g is distributed as sN (0, 1).

Observations:

h(x) 6= h(y) if |q · g | ≥ r
If |q · g | < r then h(x) = h(y) with probability 1− |q · g |/r

Thus collision probability depends only on s
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Analysis

Let q = x − y . Let s = ‖q‖2 be length of q.
From Lemma q · g is distributed as sN (0, 1).

Observations:

h(x) 6= h(y) if |q · g | ≥ r
If |q · g | < r then h(x) = h(y) with probability 1− |q · g |/r

For a fixed s collision probability is

p(s) =

∫ r

0

f (t)(1− t/r)dt

where f is the density function of |sN (0, 1)|.
Rewriting

p(s) =

∫ r

0

1

s
f (

t
s

)(1− t/r)dt

where f is the density function of the |N (0, 1)|.
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Analysis

p(s) =

∫ r

0

1

s
f (

t
s

)(1− t/r)dt

where f is the density function of the |N (0, 1)|.

Recall p1 = p(r) and p2 = p(cr) and we are interested in
ρ = log p1

log p2
.

Show ρ < 1/c by plotρ(c) for l2
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NNS for Euclidean distances

For any fixed c > 1 use above scheme to obtain

Storage: O(n1+1/cpolylog(n))
Query time: O(dn1/cpolylog(n))

Can use JL to reduce d to O(log n).
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Improved LSH Scheme

[Andoni-Indyk’06]

Basic LSH scheme projects points into lines

Better scheme: pick some small constant t and project points
into Rt

Use lattice based space partitioning scheme to “bucket” instead
of intervalsNew LSH scheme 

[Andoni-Indyk’06]

• Instead of projecting onto R1,
project onto Rt , for constant t

• Intervals → lattice of balls
– Can hit empty space, so hash until 

a ball is hit
• Analysis:

– ρ=1/c2 + O( log t / t1/2 )
– Time to hash is tO(t)

– Total query time: dn1/c2+o(1)

• [Motwani-Naor-Panigrahy’06]: 
LSH in l2 must have ρ ≥ 0.45/c2

X
w

w

p

p

New LSH scheme 
[Andoni-Indyk’06]

• Instead of projecting onto R1,
project onto Rt , for constant t

• Intervals → lattice of balls
– Can hit empty space, so hash until 

a ball is hit
• Analysis:

– ρ=1/c2 + O( log t / t1/2 )
– Time to hash is tO(t)

– Total query time: dn1/c2+o(1)

• [Motwani-Naor-Panigrahy’06]: 
LSH in l2 must have ρ ≥ 0.45/c2

X
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w

p

p

Figures from Piotr Indyk’s slides
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Improved LSH Scheme

[Andoni-Indyk’06]

Basic LSH scheme projects points into lines

Better scheme: pick some small constant t and project points
into Rt

Use lattice based space partitioning scheme to “bucket” instead
of intervals

Leads to ρ ' 1/c2 + O(log t/
√

t) and hence tends to 1/c2

for large t and fixed c
Lower bound for LSH in `2 says ρ ≥ 1/c2
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Data dependent LSH Scheme

LSH is data oblivious. That is, the hash families are chosen before
seeing the data. Can one do better by choosing hash functions based
on the given set of points?

Yes.
[Andoni-Indyk-Ngyuyen-Razenshteyn’14, Andoni-Razensteyn’15]

ρ = 1/(2c2 − 1) for `2 improving upon 1/c2 for data
oblivious LSH (which is tight in worst case)

ρ = 1/(c2 − 1) for `1/Hamming cube improving upon 1/c for
data oblivious LSH
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LSH Summary

A modular hashing based scheme for similarity estimation

Main competitors are space partitioning data structures such as
variants of k-d trees

Provides speedups but uses more memory

Does not appear to be a clear winner
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Digression: p-stable distributions

For F2 estimation and JL and LSH we used important “stability”
property of the Normal distribution.

Lemma

Let Y1,Y2, . . . ,Yd be independent random variables with
distribution N (0, 1). Z =

∑
i xiYi has distribution ‖x‖2N (0, 1)

Standard Gaussian is 2-stable.

Definition

A distribution D is p-stable if Z =
∑

i xiYi has distribution ‖x‖pD
when the Yi are independent and each of them is distributed as D.

Question: Do p-stable distributions exist for p 6= 2?
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p-stable distributions

Fact: p-stable distributions exist for all p ∈ (0, 2] and do not exist
for p > 2.

p = 1 is the Cauchy distribution which is the distribution of the ratio
of two independent Guassian random variables. Has a closed form
density function 1

π(1+x2)
. Mean and variance are not finite.

For general p no closed form formula for density but can sample from
the distribution.

Streaming, sketching, LSH ideas for `2 generalize to `p for
p ∈ (0, 2] via p-stable distributions and additional technical work.
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Digression: Doubling dimension

Thesis/assumption: Real world data is high-dimensional in explicit
representation but low-dimensional in ”content”.

Several interpretations of what it means for data to be
low-dimensional

Data lies in a low-dimensional manifold

Data can be projected into low dimensions while preserving
certain properties (JL for instance)

Data has a latent low-dimensional description (SVD, PCA,
tensor decomposition, etc)

Data has low doubling dimension

· · ·
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Intrinsic dimension

Let (V , dist) be a finite metric space.

dist(x, y) = dist(y , x) for all x, y ∈ V (symmetry)

dist(x, x) = 0 for all x ∈ V (reflexivity)

dist(x, y) + dist(y , z) ≥ dist(x, z) for all x, y , z ∈ V
(triangle inequality)

Question: Can we quantify whether (V , dist) behaves like a
low-dimensional Euclidean space? Does this have any benefits?

Chandra (UIUC) CS498ABD 19 Fall 2020 19 / 21



Doubling dimension

Property of Rd : A ball of radius r can be covered by cd balls of
radius r/2 for some constant c ≤ 4.

Given (V , d) let B(p, r) be the ball or radius r around p and view
it as a set of points:

B(p, r) = {q | dist(p, q) ≤ r}

Definition

A finite metric space (V , dist) has doubling dimension d if for all
p ∈ V and all r > 0, B(p, r) can be covered by 2d balls of radius
at most r/2.
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Doubling dimensions

Definition

A finite metric space (V , dist) has doubling dimension d if for all
p ∈ V and all r > 0, B(p, r) can be covered by 2d balls of radius
at most r/2.

Many algorithms/data structures for Rd can be extended to metric
spaces with doubling dimension d with comparable running times.

Including approximate NNS.
See [Clarkson, Krauthgamer-Lee, HarPeled-Mendel]
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