CS 498ABD: Algorithms for Big Data

Locality Sensitive Hashing

Lecture 14 October 13, 2020

Near-Neighbor Search

Collection of *n* points $\mathcal{P} = \{x_1, \ldots, x_n\}$ in a metric space.

NNS: preprocess \mathcal{P} to answer near-neighbor queries: given query point y output $\arg \min_{x \in \mathcal{P}} \operatorname{dist}(x, y)$

c-approximate NNS: given query *y*, output *x* such that $dist(x, y) \leq c \min_{z \in \mathcal{P}} dist(z, y)$. Here c > 1.

Near-Neighbor Search

Collection of *n* points $\mathcal{P} = \{x_1, \ldots, x_n\}$ in a metric space.

NNS: preprocess \mathcal{P} to answer near-neighbor queries: given query point y output $\arg \min_{x \in \mathcal{P}} \operatorname{dist}(x, y)$

c-approximate NNS: given query *y*, output *x* such that $dist(x, y) \leq c \min_{z \in \mathcal{P}} dist(z, y)$. Here c > 1.

Brute force/linear search: when query y comes check all $x \in \mathcal{P}$

Near-Neighbor Search

Collection of *n* points $\mathcal{P} = \{x_1, \ldots, x_n\}$ in a metric space.

NNS: preprocess \mathcal{P} to answer near-neighbor queries: given query point y output $\arg \min_{x \in \mathcal{P}} \operatorname{dist}(x, y)$

c-approximate NNS: given query *y*, output *x* such that $dist(x, y) \leq c \min_{z \in \mathcal{P}} dist(z, y)$. Here c > 1.

Brute force/linear search: when query y comes check all $x \in \mathcal{P}$

Beating brute force is hard if one wants near-linear space!

NNS in Euclidean Spaces

Collection of *n* points $\mathcal{P} = \{x_1, \dots, x_n\}$ in \mathbb{R}^d . dist $(x, y) = ||x - y||_2$ is Euclidean distance

- d = 1. Sort and do binary search. O(n) space, O(log n) query time.
- d = 2. Voronoi diagram. O(n) space $O(\log n)$ query time.

(Figure from Wikipedia)

• Higher dimensions: Voronoi diagram size grows as $n^{\lfloor d/2 \rfloor}$.

Chandra (UIUC)

NNS in Euclidean Spaces

Collection of *n* points $\mathcal{P} = \{x_1, \dots, x_n\}$ in \mathbb{R}^d . dist $(x, y) = ||x - y||_2$ is Euclidean distance

Assume *n* and *d* are large.

- Linear search with no data structures: Θ(nd) time, storage is
 Θ(nd)
- Exact NNS: either query time or space or both are exponential in dimension *d*
- (1 + ε)-approximate NNS for dimensionality reduction: reduce d to O(¹/_{ε²} log n) using JL but exponential in d is still impractical
- Even for approximate NNS, beating *nd* query time while keeping storage close to *O*(*nd*) is non-trivial!

Focus on c-approximate NNS for some small c>1

Simplified problem: given query point y and fixed radius r > 0, distinguish between the following two scenarios:

- if there is a point x ∈ P such dist(x, y) ≤ r output a point x' such that dist(x', y) ≤ cr
- if dist $(x, y) \ge cr$ for all $x \in \mathcal{P}$ then recognize this and fail

Algorithm allowed to make a mistake in intermediate case

Focus on c-approximate NNS for some small c>1

Simplified problem: given query point y and fixed radius r > 0, distinguish between the following two scenarios:

- if there is a point x ∈ P such dist(x, y) ≤ r output a point x' such that dist(x', y) ≤ cr
- if dist $(x, y) \ge cr$ for all $x \in \mathcal{P}$ then recognize this and fail

Algorithm allowed to make a mistake in intermediate case

Can use binary search and above procedure to obtain c-approximate NNS.

Part I

LSH Framework

LSH Approach for Approximate NNS

[Indyk-Motwani'98]

Initially developed for NNSearch in high-dimensional Euclidean space and then generalized to other similarity/distance measures.

Use locality-sensitive hashing to solve simplified decision problem

Definition

A family of hash functions is (r, cr, p_1, p_2) -LSH with $p_1 > p_2$ and c > 1 if h drawn randomly from the family satisfies the following:

- $\Pr[h(x) = h(y)] \ge p_1$ when $dist(x, y) \le r$
- $\Pr[h(x) = h(y)] \le p_2$ when $dist(x, y) \ge cr$

LSH Approach for Approximate NNS

[Indyk-Motwani'98]

Initially developed for NNSearch in high-dimensional Euclidean space and then generalized to other similarity/distance measures.

Use locality-sensitive hashing to solve simplified decision problem

Definition

A family of hash functions is (r, cr, p_1, p_2) -LSH with $p_1 > p_2$ and c > 1 if h drawn randomly from the family satisfies the following:

- $\Pr[h(x) = h(y)] \ge p_1$ when dist $(x, y) \le r$
- $\Pr[h(x) = h(y)] \le p_2$ when $dist(x, y) \ge cr$

Key parameter: the gap between p_1 and p_2 measured as $\rho = \frac{\log p_1}{\log p_2}$

LSH Example: Hamming Distance

n points $x_1, x_2, \ldots, x_n \in \{0, 1\}^d$ for some large *d*

dist(x, y) is the number of coordinates in which x, y differ

LSH Example: Hamming Distance

n points $x_1, x_2, \ldots, x_n \in \{0, 1\}^d$ for some large *d*

dist(x, y) is the number of coordinates in which x, y differ

Question: What is a good (r, cr, p_1, p_2) -LSH? What is ρ ?

Pick a random coordinate: Hash family = $\{h_i \mid i = 1, ..., d\}$ where $h_i(x) = x_i$

• Suppose dist $(x, y) \le r$ then $\Pr[h(x) = h(y)] \ge (d - r)/d \ge 1 - r/d \simeq e^{-r/d}$

• Suppose dist $(x, y) \ge cr$ then $\Pr[h(x) = h(y)] \le 1 - cr/d \simeq e^{-cr/d}$

LSH Example: Hamming Distance

n points $x_1, x_2, \ldots, x_n \in \{0, 1\}^d$ for some large *d*

dist(x, y) is the number of coordinates in which x, y differ

Question: What is a good (r, cr, p_1, p_2) -LSH? What is ρ ?

Pick a random coordinate: Hash family = $\{h_i \mid i = 1, ..., d\}$ where $h_i(x) = x_i$

• Suppose dist $(x, y) \le r$ then $\Pr[h(x) = h(y)] \ge (d - r)/d \ge 1 - r/d \simeq e^{-r/d}$

• Suppose dist $(x, y) \ge cr$ then $\Pr[h(x) = h(y)] \le 1 - cr/d \simeq e^{-cr/d}$

Therefore $ho = rac{\log p_1}{\log p_2} \leq 1/c$

LSH Example: 1-d

n points on line and distance is Euclidean

Question: What is a good LSH?

LSH Example: 1-d

n points on line and distance is Euclidean

Question: What is a good LSH?

Grid line with *cr* units.

- No two far points will be in same bucket and hence $p_2 = 0$
- But close by points may be in different buckets. So do a random shift of grid to ensure that $p_1 \ge (1 1/c)$.

LSH Example: 1-d

n points on line and distance is Euclidean

Question: What is a good LSH?

Grid line with *cr* units.

- No two far points will be in same bucket and hence $p_2 = 0$
- But close by points may be in different buckets. So do a random shift of grid to ensure that $p_1 \ge (1 1/c)$.

Main difficulty is in higher dimensions but above idea will play a role.

LSH Approach for Approximate NNS

Use locality-sensitive hashing to solve simplified decision problem

Definition

A family of hash functions is (r, cr, p_1, p_2) -LSH with $p_1 > p_2$ and c > 1 if h drawn randomly from the family satisfies the following:

- $\Pr[h(x) = h(y)] \ge p_1$ when dist $(x, y) \le r$
- $\Pr[h(x) = h(y)] \le p_2$ when $dist(x, y) \ge cr$

Key parameter: the gap between p_1 and p_2 measured as $\rho = \frac{\log p_1}{\log p_2}$ usually small.

Two-level hashing scheme:

- Amplify basic locality sensitive hash family to create better family by repetition
- Use several copies of amplified hash functions

	Chand	ra (l	JUC
--	-------	-------	-----

Amplification

Fix some r. Pick k independent hash functions h_1, h_2, \ldots, h_k . For each x set

$$g(x) = h_1(x)h_2(x)\ldots h_k(x)$$

g(x) is now the larger hash function

- If dist $(x, y) \leq r$: $\Pr[g(x) = g(y)] \geq p_1^k$
- If dist $(x, y) \ge cr$: $\Pr[g(x) = g(y)] \le p_2^k$

Amplification

Fix some r. Pick k independent hash functions h_1, h_2, \ldots, h_k . For each x set

$$g(x) = h_1(x)h_2(x)\ldots h_k(x)$$

g(x) is now the larger hash function

- If dist $(x, y) \leq r$: $\Pr[g(x) = g(y)] \geq p_1^k$
- If dist $(x, y) \ge cr$: $\Pr[g(x) = g(y)] \le p_2^k$

Choose k such that $p_2^k \simeq 1/n$ so that expected number of far away points that collide with query y is ≤ 1 . Then $p_1^k = 1/n^{\rho}$.

Multiple hash tables

• If dist $(x, y) \leq r$: $\Pr[g(x) = g(y)] \geq p_1^k$

• If dist $(x, y) \ge cr$: $\Pr[g(x) = g(y)] \le p_2^k$

Choose k such that $p_2^k \simeq 1/n$ so that expected number of far away points that collide with query y is ≤ 1 . Then $p_1^k = 1/n^{\rho}$. $k = \frac{\log n}{\log(1/p_2)}$. Then $p_1^k = 1/n^{\rho}$ which is also small. To make good point collide with y choose $L \simeq n^{\rho}$ hash functions g_1, g_2, \dots, g_L

- $L \simeq n^{
 ho}$ hash tables
- Storage: $nL = n^{1+\rho}$ (ignoring log factors)
- Query time: $kL = kn^{\rho}$ (ignoring log factors)

Details

What is the range of each g_i ? A k tuple $(h_1(x), h_2(x), \ldots, h_k(x))$. Hence depends on range of the h's.

Details

What is the range of each g_i ? A k tuple $(h_1(x), h_2(x), \ldots, h_k(x))$. Hence depends on range of the h's.

We leave the range implicit. Say range of g_i is $[m^k]$ where range of each h is [m]. We only store non-empty buckets of each g_i and there can be at most n of them. For each g_i can use another hash function ℓ_i that maps m^k to [n].

Details

What is the range of each g_i ? A k tuple $(h_1(x), h_2(x), \ldots, h_k(x))$. Hence depends on range of the h's.

We leave the range implicit. Say range of g_i is $[m^k]$ where range of each h is [m]. We only store non-empty buckets of each g_i and there can be at most n of them. For each g_i can use another hash function ℓ_i that maps m^k to [n]. So what is actually stored?

- L hash tables one for each g_i using chaining
- Each item x in database is hashed and stored in each of the L tables.
- Total storage O(Ln)
- Time to hash an item: *Lk* evaluations of basic LSH functions *h_j*

Query

Given new point y how to query?

- Hash y using g_i for $1 \le i \le L$
- For each *i* check all items in bucket of g_i(y) and compute all their distances and output first item x such that dist(x, y) ≤ cr.
- If no item found report FAIL

Query

Given new point y how to query?

- Hash y using g_i for $1 \le i \le L$
- For each *i* check all items in bucket of g_i(y) and compute all their distances and output first item x such that dist(x, y) ≤ cr.
- If no item found report FAIL

What if too many items collide with y? How do we bound query time?

Fix: Stop search after comparing with $\Theta(L)$ items and report failure

Query correctly fails if no item x such that $dist(x, y) \leq cr$

If query outputs a point x then $dist(x, y) \leq cr$

Main issue: What is the probability that there be a good point x^* such that dist $(x, y) \le r$ and algorithm fails?

Query correctly fails if no item x such that $dist(x, y) \leq cr$

If query outputs a point x then $dist(x, y) \leq cr$

Main issue: What is the probability that there be a good point x^* such that dist $(x, y) \le r$ and algorithm fails? Two reasons

- x* does not collide with y
- too many bad points (more than 10L collide with y and cause query algorithm to stop and fail without discovering x*)

Main issue: What is the probability that there be a good point x^* such that dist $(x, y) \le r$ and algorithm fails? Two reasons

- x* does not collide with y
- too many bad points (more than 10L collide with y and cause query algorithm to stop and fail without discovering x*)

First issue:

$$\Pr[g_i(x^*) = g_i(y)] = p_1^k \ge 1/n^{\rho}$$

If $L > 10n^{\rho}$ then $\Pr[g_i(x^*) \neq g_i(y) \forall i] \leq 1/10$.

Main issue: What is the probability that there be a good point x^* such that dist $(x, y) \le r$ and algorithm fails? Two reasons

- x* does not collide with y
- too many bad points (more than 10L collide with y and cause query algorithm to stop and fail without discovering x*)

Second issue: let x be a bad point, that is dist(x, y) > cr

 $\Pr[g_i(x) = g_i(y)] = p_2^k \le 1/n$ by choice of k

Hence expected number of bad points that collide with y in any table is ≤ 1 . Hence expected number of bad points that collide with y in all tables is at most L. By Markov, probability of more than 10L colliding with y is at most 1/10

Hence query for y succeeds with probability $1 - 2/10 \ge 4/5$.

Query time:

- Hashing y in L tables with g_1, g_2, \ldots, g_L where each g_i is a k tuple of basic LSH functions. Hence $kL = kn^{\rho}$.
- Compute d(y, x) for at most O(L) points so total of O(L) distance computations.

Amplify success probability to $1 - (1/5)^t$ by constructing t copies

Data structure only for one radius r. Need separate data structure for geometrically increasing values of r in some range $[r_{\min}, r_{\max}]$

Part II

LSH for Hamming Cube

Chandra (UIUC)

Hamming Distance

n points $x_1, x_2, \ldots, x_n \in \{0, 1\}^d$ for some large *d*

dist(x, y) is the number of coordinates in which x, y differ

Recall that minhash and simhash reduce to Hamming distance estimation

Closely related to more general ℓ_1 distance (ideas carry over)

Question: What is a good (r, cr, p_1, p_2) -LSH? What is ρ ?

Question: What is a good (r, cr, p_1, p_2) -LSH? What is ρ ?

Pick a random coordinate. Hash family = $\{h_i \mid i = 1, ..., d\}$ where $h_i(x) = x_i$

Question: What is a good (r, cr, p_1, p_2) -LSH? What is ρ ?

Pick a random coordinate. Hash family = $\{h_i \mid i = 1, ..., d\}$ where $h_i(x) = x_i$

Suppose dist $(x, y) \le r$ then $\Pr[h(x) = h(y)] \ge (d - r)/d \ge 1 - r/d \simeq e^{-r/d}$

Question: What is a good (r, cr, p_1, p_2) -LSH? What is ρ ?

Pick a random coordinate. Hash family = $\{h_i \mid i = 1, ..., d\}$ where $h_i(x) = x_i$

Suppose dist $(x, y) \le r$ then $\Pr[h(x) = h(y)] \ge (d - r)/d \ge 1 - r/d \simeq e^{-r/d}$

Suppose dist $(x, y) \ge cr$ then $\Pr[h(x) = h(y)] \le 1 - cr/d \simeq e^{-cr/d}$

Therefore $ho = rac{\log
ho_1}{\log
ho_2} \leq 1/c$

 $\rho = 1/c$

Say c = 2 meaning we are setting for a 2-approximate near neighbor

- query time is $\tilde{O}(d\sqrt{n})$
- space is $\tilde{O}(dn + n\sqrt{n})$

while exact/brute force requires O(nd) and O(nd). Thus improved query time at expense of increased space.

 $\rho = 1/c$

Say c = 2 meaning we are setting for a 2-approximate near neighbor

- query time is $\tilde{O}(d\sqrt{n})$
- space is $\tilde{O}(dn + n\sqrt{n})$

while exact/brute force requires O(nd) and O(nd). Thus improved query time at expense of increased space.

Questions:

- Is *c*-approximation good in "high"-dimensions?
- Isn't space a big bottleneck?

Practice: use heuristic choices to settle for reasonable performance. LSH allows for a high-level non-trivial tradeoff between approximation and query time which is not apriori obvious

Chandra (UIUC)	CS498ABD	22	Fall 2020	22 / 25

Part III

LSH for Euclidean Distances

Now $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$ and dist $(x, y) = ||x - y||_2$

First do dimensionality reduction (JL) to reduce d (if necessary) to $O(\log n)$ (since we are using *c*-approximation anyway)

Now $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$ and dist $(x, y) = ||x - y||_2$

First do dimensionality reduction (JL) to reduce d (if necessary) to $O(\log n)$ (since we are using *c*-approximation anyway)

What is a good basic locality-sensitive hashing scheme? That is, we want a hashing approach that makes nearby points more likely to collide than farther away points.

Now $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$ and dist $(x, y) = ||x - y||_2$

First do dimensionality reduction (JL) to reduce d (if necessary) to $O(\log n)$ (since we are using *c*-approximation anyway)

What is a good basic locality-sensitive hashing scheme? That is, we want a hashing approach that makes nearby points more likely to collide than farther away points.

Projections onto random lines plus bucketing

Recall we are interested in (r, cr, p_1, p_2) lsh family for a radius r

Consider hash family with two parameters \bar{a} , w where a is a random unit vector (line) in \mathbb{R}^d and w is a uniform number from [0, r]

$$h_{a,w}(x) = \lfloor \frac{x \cdot a + w}{r} \rfloor$$

In other words we consider r length buckets on the line defined by vector a where the origin of the bucketing is via a random shift w

Recall we are interested in (r, cr, p_1, p_2) lsh family for a radius r

Consider hash family with two parameters \bar{a} , w where a is a random unit vector (line) in \mathbb{R}^d and w is a uniform number from [0, r]

$$h_{a,w}(x) = \lfloor \frac{x \cdot a + w}{r} \rfloor$$

In other words we consider r length buckets on the line defined by vector a where the origin of the bucketing is via a random shift w

ho < 1/c for this scheme though it is quite close to 1/c.

Recall we are interested in (r, cr, p_1, p_2) lsh family for a radius r

Consider hash family with two parameters \bar{a} , w where a is a random unit vector (line) in \mathbb{R}^d and w is a uniform number from [0, r]

$$h_{a,w}(x) = \lfloor \frac{x \cdot a + w}{r} \rfloor$$

In other words we consider r length buckets on the line defined by vector a where the origin of the bucketing is via a random shift w

ho < 1/c for this scheme though it is quite close to 1/c.

Cha

Can achieve $\rho = (1 + o(1))\frac{1}{c^2}$ using more advanced schemes and this is close to optimal modulo constant factors.

ndra (UIUC)	CS498ABD	25	Fall 2020	25 / 25