CS 498ABD: Algorithms for Big Data

Locality Sensitive Hashing

Lecture 14
October 13, 2020

Near-Neighbor Search

Collection of n points $\mathcal{P}=\left\{x_{1}, \ldots, x_{n}\right\}$ in a metric space.
NNS: preprocess \mathcal{P} to answer near-neighbor queries: given query point y output $\arg \boldsymbol{\operatorname { m i n }}_{x \in \mathcal{P}} \operatorname{dist}(x, y)$
c-approximate NNS: given query y, output x such that $\operatorname{dist}(x, y) \leq c \min _{z \in \mathcal{P}} \operatorname{dist}(z, y)$. Here $\boldsymbol{c}>\mathbf{1}$.

Near-Neighbor Search

Collection of n points $\mathcal{P}=\left\{x_{1}, \ldots, x_{n}\right\}$ in a metric space.
NNS: preprocess \mathcal{P} to answer near-neighbor queries: given query point y output $\arg \boldsymbol{\operatorname { m i n }}_{x \in \mathcal{P}} \operatorname{dist}(x, y)$
c-approximate NNS: given query y, output x such that $\operatorname{dist}(x, y) \leq c \min _{z \in \mathcal{P}} \operatorname{dist}(z, y)$. Here $\boldsymbol{c}>\mathbf{1}$.

Brute force/linear search: when query \boldsymbol{y} comes check all $\boldsymbol{x} \in \mathcal{P}$

Near-Neighbor Search

Collection of n points $\mathcal{P}=\left\{x_{1}, \ldots, x_{n}\right\}$ in a metric space.
NNS: preprocess \mathcal{P} to answer near-neighbor queries: given query point y output $\arg \boldsymbol{\operatorname { m i n }}_{x \in \mathcal{P}} \operatorname{dist}(x, y)$
c-approximate NNS: given query y, output x such that $\operatorname{dist}(x, y) \leq c \min _{z \in \mathcal{P}} \operatorname{dist}(z, y)$. Here $\boldsymbol{c}>\mathbf{1}$.

Brute force/linear search: when query \boldsymbol{y} comes check all $\boldsymbol{x} \in \mathcal{P}$
Beating brute force is hard if one wants near-linear space!

NNS in Euclidean Spaces

Collection of n points $\mathcal{P}=\left\{x_{1}, \ldots, x_{n}\right\}$ in \mathbb{R}^{d}. $\operatorname{dist}(x, y)=\|x-y\|_{2}$ is Euclidean distance

- $d=1$. Sort and do binary search. $O(n)$ space, $O(\log n)$ query time.
- $d=2$. Voronoi diagram. $O(n)$ space $O(\log n)$ query time.

(Figure from Wikipedia)
- Higher dimensions: Voronoi diagram size grows as $\boldsymbol{n}^{\lfloor d / 2\rfloor}$.

NNS in Euclidean Spaces

Collection of n points $\mathcal{P}=\left\{x_{1}, \ldots, x_{n}\right\}$ in \mathbb{R}^{d}. $\operatorname{dist}(x, y)=\|x-y\|_{2}$ is Euclidean distance

Assume \boldsymbol{n} and \boldsymbol{d} are large.

- Linear search with no data structures: $\boldsymbol{\Theta}(\boldsymbol{n d})$ time, storage is $\Theta(n d)$
- Exact NNS: either query time or space or both are exponential in dimension d
- $(1+\epsilon)$-approximate NNS for dimensionality reduction: reduce d to $O\left(\frac{1}{\epsilon^{2}} \log n\right)$ using JL but exponential in d is still impractical
- Even for approximate NNS, beating nd query time while keeping storage close to $O(n d)$ is non-trivial!

Approximate NNS

Focus on c-approximate NNS for some small $c>1$

Simplified problem: given query point y and fixed radius $r>0$, distinguish between the following two scenarios:

- if there is a point $x \in \mathcal{P}$ such $\operatorname{dist}(x, y) \leq r$ output a point x^{\prime} such that $\operatorname{dist}\left(x^{\prime}, y\right) \leq c r$
- if $\operatorname{dist}(x, y) \geq c r$ for all $x \in \mathcal{P}$ then recognize this and fail Algorithm allowed to make a mistake in intermediate case

Approximate NNS

Focus on c-approximate NNS for some small $c>1$
Simplified problem: given query point \boldsymbol{y} and fixed radius $r>0$, distinguish between the following two scenarios:

- if there is a point $x \in \mathcal{P}$ such $\operatorname{dist}(x, y) \leq r$ output a point x^{\prime} such that $\operatorname{dist}\left(x^{\prime}, y\right) \leq c r$
- if $\operatorname{dist}(x, y) \geq c r$ for all $x \in \mathcal{P}$ then recognize this and fail Algorithm allowed to make a mistake in intermediate case

Can use binary search and above procedure to obtain c-approximate NNS.

Part I

LSH Framework

LSH Approach for Approximate NNS

[Indyk-Motwani'98]
Initially developed for NNSearch in high-dimensional Euclidean space and then generalized to other similarity/distance measures.

Use locality-sensitive hashing to solve simplified decision problem

Definition

A family of hash functions is $\left(r, c r, p_{1}, p_{2}\right)$-LSH with $p_{1}>p_{2}$ and $c>1$ if h drawn randomly from the family satisfies the following:

- $\operatorname{Pr}[h(x)=h(y)] \geq p_{1}$ when $\operatorname{dist}(x, y) \leq r$
- $\operatorname{Pr}[h(x)=h(y)] \leq p_{2}$ when $\operatorname{dist}(x, y) \geq c r$

LSH Approach for Approximate NNS

[Indyk-Motwani'98]
Initially developed for NNSearch in high-dimensional Euclidean space and then generalized to other similarity/distance measures.

Use locality-sensitive hashing to solve simplified decision problem

Definition

A family of hash functions is $\left(r, c r, p_{1}, p_{2}\right)$-LSH with $p_{1}>p_{2}$ and $c>1$ if h drawn randomly from the family satisfies the following:

- $\operatorname{Pr}[h(x)=h(y)] \geq p_{1}$ when $\operatorname{dist}(x, y) \leq r$
- $\operatorname{Pr}[h(x)=h(y)] \leq p_{2}$ when $\operatorname{dist}(x, y) \geq c r$

Key parameter: the gap between p_{1} and p_{2} measured as $\rho=\frac{\log p_{1}}{\log p_{2}}$

LSH Example: Hamming Distance

n points $x_{1}, x_{2}, \ldots, x_{n} \in\{\mathbf{0}, \mathbf{1}\}^{d}$ for some large d
$\operatorname{dist}(x, y)$ is the number of coordinates in which x, y differ

LSH Example: Hamming Distance

n points $x_{1}, x_{2}, \ldots, x_{n} \in\{0,1\}^{d}$ for some large d
$\operatorname{dist}(x, y)$ is the number of coordinates in which x, y differ
Question: What is a good $\left(r, c r, p_{1}, p_{2}\right)$-LSH? What is ρ ?

Pick a random coordinate: Hash family $=\left\{h_{i} \mid \boldsymbol{i}=1, \ldots, d\right\}$ where $\boldsymbol{h}_{\boldsymbol{i}}(\boldsymbol{x})=\boldsymbol{x}_{\boldsymbol{i}}$

- Suppose $\operatorname{dist}(x, y) \leq r$ then

$$
\operatorname{Pr}[h(x)=h(y)] \geq(d-r) / d \geq 1-r / d \simeq e^{-r / d}
$$

- Suppose $\operatorname{dist}(x, y) \geq c r$ then

$$
\operatorname{Pr}[h(x)=h(y)] \leq 1-c r / d \simeq e^{-c r / d}
$$

LSH Example: Hamming Distance

n points $x_{1}, x_{2}, \ldots, x_{n} \in\{0,1\}^{d}$ for some large d
$\operatorname{dist}(x, y)$ is the number of coordinates in which x, y differ
Question: What is a good $\left(r, c r, p_{1}, p_{2}\right)$-LSH? What is ρ ?

Pick a random coordinate: Hash family $=\left\{h_{i} \mid \boldsymbol{i}=1, \ldots, d\right\}$ where $\boldsymbol{h}_{\boldsymbol{i}}(\boldsymbol{x})=\boldsymbol{x}_{\boldsymbol{i}}$

- Suppose $\operatorname{dist}(x, y) \leq r$ then

$$
\operatorname{Pr}[h(x)=h(y)] \geq(d-r) / d \geq 1-r / d \simeq e^{-r / d}
$$

- Suppose $\operatorname{dist}(x, y) \geq c r$ then

$$
\operatorname{Pr}[h(x)=h(y)] \leq 1-c r / d \simeq e^{-c r / d}
$$

Therefore $\rho=\frac{\log p_{1}}{\log p_{2}} \leq 1 / c$

LSH Example: 1-d

n points on line and distance is Euclidean
Question: What is a good LSH?

LSH Example: 1-d

n points on line and distance is Euclidean

Question: What is a good LSH?

Grid line with cr units.

- No two far points will be in same bucket and hence $\boldsymbol{p}_{2}=\mathbf{0}$
- But close by points may be in different buckets. So do a random shift of grid to ensure that $p_{1} \geq(1-1 / c)$.

LSH Example: 1-d

n points on line and distance is Euclidean

Question: What is a good LSH?

Grid line with cr units.

- No two far points will be in same bucket and hence $\boldsymbol{p}_{2}=\mathbf{0}$
- But close by points may be in different buckets. So do a random shift of grid to ensure that $p_{1} \geq(1-1 / c)$.

Main difficulty is in higher dimensions but above idea will play a role.

LSH Approach for Approximate NNS

Use locality-sensitive hashing to solve simplified decision problem

Definition

A family of hash functions is $\left(r, c r, p_{1}, p_{2}\right)$-LSH with $p_{1}>p_{2}$ and $c>1$ if h drawn randomly from the family satisfies the following:

- $\operatorname{Pr}[h(x)=h(y)] \geq p_{1}$ when $\operatorname{dist}(x, y) \leq r$
- $\operatorname{Pr}[h(x)=h(y)] \leq p_{2}$ when $\operatorname{dist}(x, y) \geq c r$

Key parameter: the gap between p_{1} and p_{2} measured as $\rho=\frac{\log p_{1}}{\log p_{2}}$ usually small.

Two-level hashing scheme:

- Amplify basic locality sensitive hash family to create better family by repetition
- Use several copies of amplified hash functions

Amplification

Fix some \boldsymbol{r}. Pick \boldsymbol{k} independent hash functions $\boldsymbol{h}_{1}, \boldsymbol{h}_{2}, \ldots, \boldsymbol{h}_{\boldsymbol{k}}$. For each x set

$$
g(x)=h_{1}(x) h_{2}(x) \ldots h_{k}(x)
$$

$g(x)$ is now the larger hash function

- If $\operatorname{dist}(x, y) \leq r: \operatorname{Pr}[g(x)=g(y)] \geq p_{1}^{k}$
- If $\operatorname{dist}(x, y) \geq c r: \operatorname{Pr}[g(x)=g(y)] \leq p_{2}^{k}$

Amplification

Fix some \boldsymbol{r}. Pick \boldsymbol{k} independent hash functions $\boldsymbol{h}_{1}, \boldsymbol{h}_{2}, \ldots, \boldsymbol{h}_{\boldsymbol{k}}$. For each x set

$$
g(x)=h_{1}(x) h_{2}(x) \ldots h_{k}(x)
$$

$g(x)$ is now the larger hash function

- If $\operatorname{dist}(x, y) \leq r: \operatorname{Pr}[g(x)=g(y)] \geq p_{1}^{k}$
- If $\operatorname{dist}(x, y) \geq c r: \operatorname{Pr}[g(x)=g(y)] \leq p_{2}^{k}$

Choose k such that $p_{2}^{k} \simeq 1 / n$ so that expected number of far away points that collide with query y is ≤ 1. Then $p_{1}^{k}=1 / n^{\rho}$.

Multiple hash tables

- If $\operatorname{dist}(x, y) \leq r: \operatorname{Pr}[g(x)=g(y)] \geq p_{1}^{k}$
- If $\operatorname{dist}(x, y) \geq c r: \operatorname{Pr}[g(x)=g(y)] \leq p_{2}^{k}$

Choose k such that $p_{2}^{k} \simeq 1 / n$ so that expected number of far away points that collide with query y is ≤ 1. Then $p_{1}^{k}=1 / n^{\rho}$. $k=\frac{\log n}{\log \left(1 / p_{2}\right)}$. Then $p_{1}^{k}=1 / n^{\rho}$ which is also small. To make good point collide with y choose $L \simeq n^{\rho}$ hash functions $g_{1}, g_{2}, \ldots, g_{L}$

- $L \simeq n^{\rho}$ hash tables
- Storage: $n L=n^{1+\rho}$ (ignoring log factors)
- Query time: $k L=k n^{\rho}$ (ignoring log factors)

Details

What is the range of each g_{i} ? A k tuple ($\left.h_{1}(x), h_{2}(x), \ldots, h_{k}(x)\right)$. Hence depends on range of the \boldsymbol{h} 's.

Details

What is the range of each g_{i} ? A k tuple $\left(h_{1}(x), h_{2}(x), \ldots, h_{k}(x)\right)$. Hence depends on range of the \boldsymbol{h} 's.

We leave the range implicit. Say range of g_{i} is $\left[\boldsymbol{m}^{\boldsymbol{k}}\right]$ where range of each \boldsymbol{h} is $[\boldsymbol{m}]$. We only store non-empty buckets of each g_{i} and there can be at most \boldsymbol{n} of them. For each $\boldsymbol{g}_{\boldsymbol{i}}$ can use another hash function ℓ_{i} that maps $m^{\boldsymbol{k}}$ to [n].

Details

What is the range of each g_{i} ? A k tuple $\left(h_{1}(x), h_{2}(x), \ldots, h_{k}(x)\right)$. Hence depends on range of the \boldsymbol{h} 's.

We leave the range implicit. Say range of g_{i} is $\left[m^{k}\right]$ where range of each \boldsymbol{h} is $[m]$. We only store non-empty buckets of each g_{i} and there can be at most \boldsymbol{n} of them. For each $\boldsymbol{g}_{\boldsymbol{i}}$ can use another hash function ℓ_{i} that maps $m^{\boldsymbol{k}}$ to [n].
So what is actually stored?

- L hash tables one for each g_{i} using chaining
- Each item \boldsymbol{x} in database is hashed and stored in each of the L tables.
- Total storage $O(L n)$
- Time to hash an item: $L \boldsymbol{k}$ evaluations of basic LSH functions $\boldsymbol{h}_{\boldsymbol{j}}$

Query

Given new point y how to query?

- Hash \boldsymbol{y} using g_{i} for $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{L}$
- For each i check all items in bucket of $g_{i}(y)$ and compute all their distances and output first item x such that $\operatorname{dist}(x, y) \leq c r$.
- If no item found report FAIL

Query

Given new point y how to query?

- Hash \boldsymbol{y} using g_{i} for $\mathbf{1} \leq \boldsymbol{i} \leq L$
- For each i check all items in bucket of $g_{i}(\boldsymbol{y})$ and compute all their distances and output first item x such that $\operatorname{dist}(x, y) \leq c r$.
- If no item found report FAIL

What if too many items collide with y ? How do we bound query time?

Fix: Stop search after comparing with $\boldsymbol{\Theta}(L)$ items and report failure

Analysis

Query correctly fails if no item x such that $\operatorname{dist}(x, y) \leq c r$
If query outputs a point x then $\operatorname{dist}(x, y) \leq c r$
Main issue: What is the probability that there be a good point x^{*} such that $\operatorname{dist}(x, y) \leq r$ and algorithm fails?

Analysis

Query correctly fails if no item x such that $\operatorname{dist}(x, y) \leq c r$
If query outputs a point x then $\operatorname{dist}(x, y) \leq c r$
Main issue: What is the probability that there be a good point x^{*} such that $\operatorname{dist}(x, y) \leq r$ and algorithm fails?
Two reasons

- x^{*} does not collide with y
- too many bad points (more than 10 L collide with y and cause query algorithm to stop and fail without discovering x^{*})

Analysis

Main issue: What is the probability that there be a good point x^{*} such that $\operatorname{dist}(x, y) \leq r$ and algorithm fails?
Two reasons

- x^{*} does not collide with y
- too many bad points (more than $10 L$ collide with y and cause query algorithm to stop and fail without discovering x^{*})

First issue:
$\operatorname{Pr}\left[g_{i}\left(x^{*}\right)=g_{i}(y)\right]=p_{1}^{k} \geq 1 / n^{\rho}$
If $L>10 n^{\rho}$ then $\operatorname{Pr}\left[g_{i}\left(x^{*}\right) \neq g_{i}(y) \forall i\right] \leq \mathbf{1} / \mathbf{1 0}$.

Analysis

Main issue: What is the probability that there be a good point x^{*} such that $\operatorname{dist}(x, y) \leq r$ and algorithm fails?
Two reasons

- x^{*} does not collide with y
- too many bad points (more than $10 L$ collide with y and cause query algorithm to stop and fail without discovering x^{*})

Second issue: let x be a bad point, that is $\operatorname{dist}(x, y)>c r$
$\operatorname{Pr}\left[g_{i}(x)=g_{i}(y)\right]=p_{2}^{k} \leq 1 / n$ by choice of k
Hence expected number of bad points that collide with y in any table is $\leq \mathbf{1}$. Hence expected number of bad points that collide with \boldsymbol{y} in all tables is at most L. By Markov, probability of more than $\mathbf{1 0 L}$ colliding with \boldsymbol{y} is at most $\mathbf{1 / 1 0}$

Analysis

Hence query for y succeeds with probability $1-2 / 10 \geq 4 / 5$.
Query time:

- Hashing y in L tables with $g_{1}, g_{2}, \ldots, g_{L}$ where each g_{i} is a k tuple of basic LSH functions. Hence $k L=k n^{\rho}$.
- Compute $d(y, x)$ for at most $O(L)$ points so total of $O(L)$ distance computations.

Amplify success probability to $1-(1 / 5)^{t}$ by constructing t copies
Data structure only for one radius r. Need separate data structure for geometrically increasing values of r in some range [$r_{\text {min }}, r_{\text {max }}$]

Part II

LSH for Hamming Cube

Hamming Distance

n points $x_{1}, x_{2}, \ldots, x_{n} \in\{0,1\}^{d}$ for some large d
$\operatorname{dist}(x, y)$ is the number of coordinates in which x, y differ

Recall that minhash and simhash reduce to Hamming distance estimation

Closely related to more general ℓ_{1} distance (ideas carry over)
Question: What is a good $\left(r, c r, p_{1}, p_{2}\right)$-LSH? What is ρ ?

LSH for Hamming Cube

Question: What is a good $\left(r, c r, p_{1}, p_{2}\right)$-LSH? What is ρ ?
Pick a random coordinate. Hash family $=\left\{\boldsymbol{h}_{\boldsymbol{i}} \mid \boldsymbol{i}=\mathbf{1}, \ldots, \boldsymbol{d}\right\}$ where $h_{i}(x)=x_{i}$

LSH for Hamming Cube

Question: What is a good $\left(r, c r, p_{1}, p_{2}\right)$-LSH? What is ρ ?
Pick a random coordinate. Hash family $=\left\{\boldsymbol{h}_{\boldsymbol{i}} \mid \boldsymbol{i}=\mathbf{1}, \ldots, \boldsymbol{d}\right\}$ where $\boldsymbol{h}_{\boldsymbol{i}}(x)=x_{i}$

Suppose $\operatorname{dist}(x, y) \leq r$ then

$$
\operatorname{Pr}[h(x)=h(y)] \geq(d-r) / d \geq 1-r / d \simeq e^{-r / d}
$$

LSH for Hamming Cube

Question: What is a good $\left(r, c r, p_{1}, p_{2}\right)$-LSH? What is ρ ?
Pick a random coordinate. Hash family $=\left\{\boldsymbol{h}_{\boldsymbol{i}} \mid \boldsymbol{i}=\mathbf{1}, \ldots, \boldsymbol{d}\right\}$ where $h_{i}(x)=x_{i}$

Suppose $\operatorname{dist}(x, y) \leq r$ then

$$
\operatorname{Pr}[h(x)=h(y)] \geq(d-r) / d \geq 1-r / d \simeq e^{-r / d}
$$

Suppose $\operatorname{dist}(x, y) \geq c r$ then

$$
\operatorname{Pr}[h(x)=h(y)] \leq 1-c r / d \simeq e^{-c r / d}
$$

Therefore $\rho=\frac{\log p_{1}}{\log p_{2}} \leq 1 / c$

LSH for Hamming Cube

$\rho=1 / c$
Say c $=\mathbf{2}$ meaning we are setting for a 2 -approximate near neighbor

- query time is $\tilde{O}(d \sqrt{n})$
- space is $\tilde{O}(d n+n \sqrt{n})$
while exact/brute force requires $O(n d)$ and $O(n d)$. Thus improved query time at expense of increased space.

LSH for Hamming Cube

$\rho=1 / c$
Say c $=\mathbf{2}$ meaning we are setting for a 2 -approximate near neighbor

- query time is $\tilde{O}(d \sqrt{n})$
- space is $\tilde{O}(d n+n \sqrt{n})$
while exact/brute force requires $O(n d)$ and $O(n d)$. Thus improved query time at expense of increased space.

Questions:

- Is c-approximation good in "high"-dimensions?
- Isn't space a big bottleneck?

Practice: use heuristic choices to settle for reasonable performance. LSH allows for a high-level non-trivial tradeoff between approximation and query time which is not apriori obvious

Part III

LSH for Euclidean Distances

LSH for Euclidean Distances

Now $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}$ and $\operatorname{dist}(x, y)=\|x-y\|_{2}$
First do dimensionality reduction (JL) to reduce \boldsymbol{d} (if necessary) to $O(\log n)$ (since we are using c-approximation anyway)

LSH for Euclidean Distances

Now $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}$ and $\operatorname{dist}(x, y)=\|x-y\|_{2}$
First do dimensionality reduction (JL) to reduce \boldsymbol{d} (if necessary) to $O(\log n)$ (since we are using c-approximation anyway)

What is a good basic locality-sensitive hashing scheme? That is, we want a hashing approach that makes nearby points more likely to collide than farther away points.

LSH for Euclidean Distances

Now $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}$ and $\operatorname{dist}(x, y)=\|x-y\|_{2}$
First do dimensionality reduction (JL) to reduce \boldsymbol{d} (if necessary) to $O(\log n)$ (since we are using c-approximation anyway)

What is a good basic locality-sensitive hashing scheme? That is, we want a hashing approach that makes nearby points more likely to collide than farther away points.

Projections onto random lines plus bucketing

LSH for Euclidean Distances

Recall we are interested in $\left(r, c r, p_{1}, p_{2}\right)$ Ish family for a radius r
Consider hash family with two parameters \bar{a}, w where \boldsymbol{a} is a random unit vector (line) in $\mathbb{R}^{\boldsymbol{d}}$ and \boldsymbol{w} is a uniform number from $[0, r]$

$$
h_{a, w}(x)=\left\lfloor\frac{x \cdot a+w}{r}\right\rfloor
$$

In other words we consider r length buckets on the line defined by vector a where the origin of the bucketing is via a random shift w

LSH for Euclidean Distances

Recall we are interested in $\left(r, c r, p_{1}, p_{2}\right)$ Ish family for a radius r
Consider hash family with two parameters \bar{a}, w where \boldsymbol{a} is a random unit vector (line) in $\mathbb{R}^{\boldsymbol{d}}$ and \boldsymbol{w} is a uniform number from $[0, r]$

$$
h_{a, w}(x)=\left\lfloor\frac{x \cdot a+w}{r}\right\rfloor
$$

In other words we consider r length buckets on the line defined by vector a where the origin of the bucketing is via a random shift w
$\rho<\mathbf{1} / c$ for this scheme though it is quite close to $\mathbf{1} / c$.

LSH for Euclidean Distances

Recall we are interested in $\left(r, c r, p_{1}, p_{2}\right)$ Ish family for a radius r
Consider hash family with two parameters \bar{a}, w where \boldsymbol{a} is a random unit vector (line) in $\mathbb{R}^{\boldsymbol{d}}$ and \boldsymbol{w} is a uniform number from $[0, r]$

$$
h_{a, w}(x)=\left\lfloor\frac{x \cdot a+w}{r}\right\rfloor
$$

In other words we consider r length buckets on the line defined by vector a where the origin of the bucketing is via a random shift w
$\rho<\mathbf{1} / c$ for this scheme though it is quite close to $\mathbf{1} / c$.
Can achieve $\rho=(1+o(1)) \frac{1}{c^{2}}$ using more advanced schemes and this is close to optimal modulo constant factors.

