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Subspace Embedding

Question: Suppose we have linear subspace E of Rn of dimension
d . Can we find a projection Π : Rd → Rk such that for every
x ∈ E , ‖Πx‖2 = (1± ε)‖x‖2?

Not possible if k < d .

Possible if k = `. Pick Π to be an orthonormal basis for E .
Disadvantage: This requires knowing E and computing
orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based
on random projections
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Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of Rn of dimension d . Let Π be a
DJL matrix Π ∈ Rk×d with k = O( d

ε2 log(1/δ)) rows. Then with
probability (1− δ) for every x ∈ E ,

‖
1
√

k
Πx‖2 = (1± ε)‖x‖2.

In other words JL Lemma extends from one dimension to arbitrary
number of dimensions in a graceful way.
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Part I

Faster algorithms via subspace
embeddings
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Linear model fitting

An important problem in data analysis

n data points

Each data point ai ∈ Rd and real value bi . We think of
ai = (ai ,1, ai ,2, . . . , ai ,d). Interesting special case is when
d = 1.

What model should one use to explain the data?

Simplest model? Affine fitting. bi = α0 +
∑d

j=1 αjai ,j for some real
numbers α0, α1, . . . , αd . Can restrict to α0 = 0 by lifting to
d + 1 dimensions and hence linear model.

But data is noisy so we won’t be able to satisfy all data points even if
true model is a linear model. How do we find a good linear model?
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Regression

n data points

Each data point ai ∈ Rd and real value bi . We think of
ai = (ai ,1, ai ,2, . . . , ai ,d).

Linear model fitting: Find real numbers α1, . . . , αd such that
bi '

∑d
j=1 αjai ,j for all points.

Let A be matrix with one row per data point ai . We write
x1, x2, . . . , xd as variables for finding α1, . . . , αd .

Ideally: Find x ∈ Rd such that Ax = b
Best fit: Find x ∈ Rd to minimize Ax − b under some norm.

‖Ax − b‖∞, ‖Ax − b‖2, ‖Ax − b‖1
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Linear least squares/Regression

Linear least squares: Given A ∈ Rn×d and b ∈ Rd find x to
minimize ‖Ax − b‖2. Optimal estimator for certain noise models

Interesting when n � d the over constrained case when there is no
solution to Ax = b and want to find best fit.
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Linear least squares: Given A ∈ Rn×d and b ∈ Rd find x to
minimize ‖Ax − b‖2.

Interesting when n � d the over constrained case when there is no
solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we
are asking what is the vector z in the column space of A that is
closest to vector b in `2 norm.

Closest vector to b is the projection of b into the column space of A
so it is “obvious” geometrically. How do we find it?
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Find an orthonormal basis z1, z2, . . . , zr for the columns of A.

Compute projection c of b to column space of A as
c =

∑r
j=1〈b, zj〉zj and output answer as ‖b − c‖2.

What is x?

We know that Ax = c . Solve linear system. Can
combine both steps via SVD and other methods.
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Linear least square: Optimization
perspective

Linear least squares: Given A ∈ Rn×d and b ∈ Rd find x to
minimize ‖Ax − b‖2.

Optimization: Find x ∈ Rd to minimize ‖Ax − b‖2
2

‖Ax − b‖2
2 = xTATAx − 2bTAx + btb

The quadratic function f (x) = xTATAx − 2bTAx + btb is a
convex function since the matrix ATA is positive semi-definite.
∇f (x) = 2ATAx − 2bTA and hence optimum solution x∗ is given
by x∗ = (ATA)−1bTA.
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Computational perspective

n large (number of data points), d smaller so A is tall and skinny.

Exact solution requires SVD or other methods. Worst case time nd 2.

Can we speed up computation with some potential approximation?
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Linear least squares via Subspace
embeddings

Let A(1),A(2), . . . ,A(d) be the columns of A and let E be the
subspace spanned by {A(1),A(2), . . . ,A(d), b}
Note columns are in Rn corresponding to n data points

E has dimension at most d + 1.

Use subspace embedding on E . Applying JL matrix Π with
k = O( d

ε2 ) rows we reduce {A(1),A(2), . . . ,A(d), b} to

{A′(1),A′(2), . . . ,A′(d), b′} which are vectors in Rk .

Solve minx′∈Rd‖A′x ′ − b′‖2
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Analysis

Lemma

With probability (1− δ),

(1−ε) min
x∈Rd
‖Ax−b‖ ≤ min

x′∈Rd
‖A′x ′−b′‖2 ≤ (1+ε) min

x∈Rd
‖Ax−b‖

With probability (1− δ) via the subpsace embedding guarantee, for
all z ∈ E ,

(1− ε)‖z‖2 ≤ ‖Πz‖2 ≤ (1 + ε)‖z‖2

Now prove two inequalities in lemma separately using above.
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Analysis

Suppose x∗ is an optimum solution to minx‖Ax − b‖2.

Let z = Ax∗ − b. We have ‖Πz‖2 ≤ (1 + ε)‖z‖2 since z ∈ E .

Since x∗ is a feasible solution to minx′‖A′x ′ − b′‖,

min
x′
‖A′x ′−b′‖2 ≤ ‖A′x∗−b′‖2 = ‖Π(Ax∗−b)‖2 ≤ (1+ε)‖Ax∗−b‖2
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Analysis

For any y ∈ Rd , ‖ΠAy − Πb‖2 ≥ (1− ε)‖Ay − b‖2 because
Ay − b is a vector in E and Π preserves all of them.

Let y∗ be optimum solution to minx′‖A′x ′ − b′‖2. Then
‖Π(Ay∗ − b)‖2 ≥ (1− ε)‖Ay∗ − b‖2 ≥ (1− ε)‖Ax∗ − b‖2
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Running time

Reduce problem for d vectors in Rn to d vectors in Rk where
k = O(d/ε2).

Computing ΠA,Πb can be done in nnz(A) via sparse/fast JL (input
sparsity time).

Need to solve least squares on A′, b′ which can be done in
O(d 3/ε2) time.

Essentially reduce n to d/ε2. Useful when n � d/ε2 (for this ε
should not be too small)
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Further improvement

Reduced dimension of vectors from Rn to Rk where k = O(d/ε2).

For small ε a dependence of 1/ε2 is not so good. Can we improve?

Can use Π with k = O(d/ε).

Suffices if Π has 1/10-approximate subspace embedding
property and property of preserving matrix multiplication

(ΠA)T (ΠA) has small condition number

Use Π that has 1/10-approximate subspace embedding property
and then use gradient descent whose convergence depends on
condition number of A.
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Other uses of JL/subspace embeddings in
numerical linear algebra

Approximate matrix multiplication

Low rank approximation and SVD

Compressed Sensing
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