CS 498ABD: Algorithms for Big Data

Subspace Embeddings for Regression

Lecture 12 October 1, 2020

Subspace Embedding

Question: Suppose we have linear subspace E of \mathbb{R}^n of dimension d. Can we find a projection $\Pi: \mathbb{R}^d \to \mathbb{R}^k$ such that for *every* $x \in E$, $\|\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2$?

- Not possible if k < d.
- Possible if $k = \ell$. Pick Π to be an orthonormal basis for E. **Disadvantage:** This requires knowing E and computing orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based on random projections

Chandra (UIUC) CS498ABD 2 Fall 2020 2 / 18

Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of \mathbb{R}^n of dimension d. Let Π be a DJL matrix $\Pi \in \mathbb{R}^{k \times d}$ with $k = O(\frac{d}{\epsilon^2} \log(1/\delta))$ rows. Then with probability $(1 - \delta)$ for every $x \in E$,

$$\|\frac{1}{\sqrt{k}}\Pi x\|_2 = (1 \pm \epsilon)\|x\|_2.$$

In other words JL Lemma extends from one dimension to arbitrary number of dimensions in a graceful way.

Part I

Faster algorithms via subspace embeddings

Linear model fitting

An important problem in data analysis

- n data points
- Each data point $a_i \in \mathbb{R}^d$ and real value b_i . We think of $a_i = (a_{i,1}, a_{i,2}, \dots, a_{i,d})$. Interesting special case is when d = 1.
- What model should one use to explain the data?

Chandra (UIUC) CS498ABD 5 Fall 2020 5 / 18

Linear model fitting

An important problem in data analysis

- n data points
- Each data point $a_i \in \mathbb{R}^d$ and real value b_i . We think of $a_i = (a_{i,1}, a_{i,2}, \dots, a_{i,d})$. Interesting special case is when d = 1.
- What model should one use to explain the data?

Simplest model? Affine fitting. $b_i = \alpha_0 + \sum_{j=1}^d \alpha_j a_{i,j}$ for some real numbers $\alpha_0, \alpha_1, \ldots, \alpha_d$. Can restrict to $\alpha_0 = 0$ by lifting to d+1 dimensions and hence linear model.

Chandra (UIUC) CS498ABD 5 Fall 2020 5 / 18

Linear model fitting

An important problem in data analysis

- n data points
- Each data point $a_i \in \mathbb{R}^d$ and real value b_i . We think of $a_i = (a_{i,1}, a_{i,2}, \dots, a_{i,d})$. Interesting special case is when d = 1.
- What model should one use to explain the data?

Simplest model? Affine fitting. $b_i = \alpha_0 + \sum_{j=1}^d \alpha_j a_{i,j}$ for some real numbers $\alpha_0, \alpha_1, \ldots, \alpha_d$. Can restrict to $\alpha_0 = 0$ by lifting to d+1 dimensions and hence linear model.

But data is noisy so we won't be able to satisfy all data points even if true model is a linear model. How do we find a good linear model?

Regression

- n data points
- Each data point $a_i \in \mathbb{R}^d$ and real value b_i . We think of $a_i = (a_{i,1}, a_{i,2}, \dots, a_{i,d})$.

Linear model fitting: Find real numbers $\alpha_1, \ldots, \alpha_d$ such that $b_i \simeq \sum_{j=1}^d \alpha_j a_{i,j}$ for all points.

Let A be matrix with one row per data point a_i . We write x_1, x_2, \ldots, x_d as variables for finding $\alpha_1, \ldots, \alpha_d$.

Ideally: Find $x \in \mathbb{R}^d$ such that Ax = b

Best fit: Find $x \in \mathbb{R}^d$ to minimize Ax - b under some norm.

•
$$||Ax - b||_{\infty}$$
, $||Ax - b||_{2}$, $||Ax - b||_{1}$

Linear least squares/Regression

Linear least squares: Given $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^d$ find x to minimize $||Ax - b||_2$. Optimal estimator for certain noise models

Interesting when $n \gg d$ the over constrained case when there is no solution to Ax = b and want to find best fit.

Chandra (UIUC)

CS498ABD

Fall 2020

Linear least squares/Regression

Linear least squares: Given $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^d$ find x to minimize $||Ax - b||_2$.

Interesting when $n \gg d$ the over constrained case when there is no solution to Ax = b and want to find best fit.

Geometrically Ax is a linear combination of columns of A. Hence we are asking what is the vector z in the column space of A that is closest to vector b in ℓ_2 norm.

Closest vector to b is the projection of b into the column space of A so it is "obvious" geometrically. How do we find it?

Linear least squares/Regression

Linear least squares: Given $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^d$ find x to minimize $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2$.

Geometrically Ax is a linear combination of columns of A. Hence we are asking what is the vector z in the column space of A that is closest to vector \boldsymbol{b} in ℓ_2 norm.

Closest vector to **b** is the projection of **b** into the column space of **A** so it is "obvious" geometrically. How do we find it?

- Find an orthonormal basis z_1, z_2, \ldots, z_r for the columns of A.
- Compute projection c of b to column space of A as $c = \sum_{i=1}^{r} \langle b, z_i \rangle z_i$ and output answer as $||b - c||_2$.
- What is x?

x is Alained by expressing

C Ax = C

Linear least squares/Regression

Linear least squares: Given $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^d$ find x to minimize $||Ax - b||_2$.

Geometrically Ax is a linear combination of columns of A. Hence we are asking what is the vector z in the column space of A that is closest to vector b in ℓ_2 norm.

Closest vector to b is the projection of b into the column space of a so it is "obvious" geometrically. How do we find it?

- Find an orthonormal basis z_1, z_2, \ldots, z_r for the columns of A.
- Compute projection c of b to column space of A as $c = \sum_{j=1}^{r} \langle b, z_j \rangle z_j$ and output answer as $||b c||_2$.
- What is x? We know that Ax = c. Solve linear system. Can combine both steps via SVD and other methods.

Chandra (UIUC) CS498ABD 9 Fall 2020 9 / 18

Linear least square: Optimization perspective

Linear least squares: Given $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^d$ find x to minimize $||Ax - b||_2$.

Optimization: Find $x \in \mathbb{R}^d$ to minimize $||Ax - b||_2^2$

$$||Ax - b||_2^2 = x^T A^T A x - 2b^T A x + b^t b$$

 $\|Ax - b\|_2^2 = x^T A^T A x - 2b^T A x + b^t b$ The quadratic function $f(\bar{x}) = x^T \underline{A^T A} x - 2b^T A x + b^t b$ is a convex function since the matrix A^TA is positive semi-definite. $\nabla f(x) = 2A^TAx - 2b^TA$ and hence optimum solution x^* is given $byx^* = (A^TA)^{-1}b^TA.$

Computational perspective

n large (number of data points), *d* smaller so *A* is tall and skinny.

Exact solution requires SVD or other methods. Worst case time nd^2 .

Can we speed up computation with some potential approximation?

Linear least squares via Subspace embeddings

Let $A^{(1)}, A^{(2)}, \ldots, A^{(d)}$ be the columns of A and let E be the subspace spanned by $\{A^{(1)}, A^{(2)}, \ldots, A^{(d)}, b\}$ Note columns are in \mathbb{R}^n corresponding to n data points

E has dimension at most d + 1.

Use subspace embedding on E. Applying JL matrix Π with $k = O(\frac{d}{\epsilon^2})$ rows we reduce $\{A^{(1)}, A^{(2)}, \ldots, A^{(d)}, b\}$ to $\{A'^{(1)}, A'^{(2)}, \ldots, A'^{(d)}, b'\}$ which are vectors in \mathbb{R}^k .

Solve
$$\min_{x' \in \mathbb{R}^d} \|A'x' - b'\|_2$$

12 / 18

To
$$C \in \mathbb{R}^{k \times n}$$
 $E = O(\frac{d}{s^2} \ln \frac{1}{s})$
 $E = O(\frac{d}{s^2} \ln \frac{1}{s})$

Lemma

With probability $(1 - \delta)$,

$$(1-\epsilon) \min_{x \in \mathbb{R}^d} ||Ax-b|| \leq \min_{x' \in \mathbb{R}^d} ||A'x'-b'||_2 \leq (1+\epsilon) \min_{x \in \mathbb{R}^d} ||Ax-b||$$

Chandra (UIUC) CS498ABD 13 Fall 2020 13 / 18

Lemma

With probability $(1 - \delta)$,

$$(1-\epsilon) \min_{\mathbf{x} \in \mathbb{R}^d} \|A\mathbf{x} - \mathbf{b}\| \leq \min_{\mathbf{x}' \in \mathbb{R}^d} \|A'\mathbf{x}' - \mathbf{b}'\|_2 \leq (1+\epsilon) \min_{\mathbf{x} \in \mathbb{R}^d} \|A\mathbf{x} - \mathbf{b}\|$$

With probability $(1 - \delta)$ via the subpsace embedding guarantee, for all $z \in E$,

$$(1 - \epsilon) \|z\|_2 \le \|\Pi z\|_2 \le (1 + \epsilon) \|z\|_2$$

Now prove two inequalities in lemma separately using above.

Chandra (UIUC) CS

Suppose \underline{x}^* is an optimum solution to $\min_x ||Ax - b||_2$.

Let
$$z = Ax^* - b$$
. We have $\|\Pi z\|_2 \le (1 + \epsilon)\|z\|_2$ since $z \in E$.

Chandra (UIUC) CS498ABD 14 Fall 2020 14 / 18

Suppose x^* is an optimum solution to $\min_x ||Ax - b||_2$.

Let
$$z = Ax^* - b$$
. We have $\|\Pi z\|_2 \le (1 + \epsilon)\|z\|_2$ since $z \in E$.

Since x^* is a feasible solution to $\min_{x'} ||A'x' - b'||$,

$$\min_{x'} ||A'x'-b'||_2 \leq ||A'x^*-b'||_2 = ||\Pi(Ax^*-b)||_2 \leq (1+\epsilon)||Ax^*-b||_2$$

For any $y \in \mathbb{R}^d$, $\|\Pi Ay - \Pi b\|_2 \ge (1 - \epsilon) \|Ay - b\|_2$ because Ay - b is a vector in E and Π preserves all of them.

11 T (Ay-6) (1= 11 TT A y-TT 6 11 2 11 7 2 11 2 1 1 2 11

Chandra (UIUC) CS498ABD 15 Fall 2020 15 / 18

For any $y \in \mathbb{R}^d$, $\|\Pi Ay - \Pi b\|_2 \ge (1 - \epsilon) \|Ay - b\|_2$ because Ay - b is a vector in E and Π preserves all of them.

Let (y^*) be optimum solution to $(min_{x'} || A'x' - b' ||_2)$. Then $||\Pi(Ay^* - b)||_2 \ge (1 - \epsilon) || Ay^* - b ||_2 \ge (1 - \epsilon) || Ax^* - b ||_2$

Running time

Reduce problem for d vectors in \mathbb{R}^n to d vectors in \mathbb{R}^k where $k = O(d/\epsilon^2)$.

Computing ΠA , Πb can be done in nnz(A) via sparse/fast JL (input sparsity time).

Need to solve least squares on A', b' which can be done in $O(d^3/\epsilon^2)$ time.

Essentially reduce n to d/ϵ^2 . Useful when $n\gg d/\epsilon^2$ (for this ϵ should not be too small)

Further improvement

Reduced dimension of vectors from \mathbb{R}^n to \mathbb{R}^k where $k = O(d/\epsilon^2)$.

For small ϵ a dependence of $1/\epsilon^2$ is not so good. Can we improve?

Can use Π with $k = O(d/\epsilon)$.

- Suffices if Π has 1/10-approximate subspace embedding property and property of preserving matrix multiplication
- $(\Pi A)^T(\Pi A)$ has small condition number
- Use Π that has 1/10-approximate subspace embedding property and then use gradient descent whose convergence depends on condition number of A.

Chandra (UIUC) CS498ABD 17 Fall 2020 17 / 18

Other uses of JL/subspace embeddings in numerical linear algebra

- Approximate matrix multiplication
- Low rank approximation and SVD
- Compressed Sensing