CS 498ABD: Algorithms for Big Data

Subspace Embeddings for Regression
 Lecture 12
 October 1, 2020

Subspace Embedding

Question: Suppose we have linear subspace E of $\mathbb{R}^{\boldsymbol{n}}$ of dimension d. Can we find a projection $\Pi: \mathbb{R}^{\boldsymbol{d}} \rightarrow \mathbb{R}^{k}$ such that for every $x \in E,\|\Pi x\|_{2}=(1 \pm \epsilon)\|x\|_{2}$?

- Not possible if $\boldsymbol{k}<\boldsymbol{d}$.
- Possible if $k=\ell$. Pick $\boldsymbol{\Pi}$ to be an orthonormal basis for E. Disadvantage: This requires knowing E and computing orthonormal basis which is slow.

What we really want: Oblivious subspace embedding ala JL based on random projections

Oblivious Supspace Embedding

Theorem

Suppose E is a linear subspace of $\mathbb{R}^{\boldsymbol{n}}$ of dimension \boldsymbol{d}. Let Π be a $D J L$ matrix $\Pi \in \mathbb{R}^{\boldsymbol{k} \times \boldsymbol{d}}$ with $k=O\left(\frac{d}{\epsilon^{2}} \log (1 / \delta)\right)$ rows. Then with probability $(\mathbf{1}-\boldsymbol{\delta})$ for every $x \in E$,

$$
\left\|\frac{1}{\sqrt{k}} \Pi x\right\|_{2}=(1 \pm \epsilon)\|x\|_{2}
$$

In other words JL Lemma extends from one dimension to arbitrary number of dimensions in a graceful way.

Part I

Faster algorithms via subspace embeddings

Linear model fitting

An important problem in data analysis

- \boldsymbol{n} data points
- Each data point $\mathbf{a}_{\boldsymbol{i}} \in \mathbb{R}^{\boldsymbol{d}}$ and real value $\boldsymbol{b}_{\boldsymbol{i}}$. We think of $\mathbf{a}_{\boldsymbol{i}}=\left(a_{i, 1}, a_{i, 2}, \ldots, a_{i, d}\right)$. Interesting special case is when $d=1$.
- What model should one use to explain the data?

Linear model fitting

An important problem in data analysis

- \boldsymbol{n} data points
- Each data point $\mathbf{a}_{\boldsymbol{i}} \in \mathbb{R}^{\boldsymbol{d}}$ and real value $\boldsymbol{b}_{\boldsymbol{i}}$. We think of $a_{i}=\left(a_{i, 1}, a_{i, 2}, \ldots, a_{i, d}\right)$. Interesting special case is when $d=1$.
- What model should one use to explain the data?

Simplest model? Affine fitting. $b_{i}=\alpha_{0}+\sum_{j=1}^{d} \alpha_{j} a_{i, j}$ for some real numbers $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d}$. Can restrict to $\alpha_{0}=0$ by lifting to $d+\mathbf{1}$ dimensions and hence linear model.

Linear model fitting

An important problem in data analysis

- n data points
- Each data point $\mathbf{a}_{i} \in \mathbb{R}^{\boldsymbol{d}}$ and real value $\boldsymbol{b}_{\boldsymbol{i}}$. We think of $\mathbf{a}_{i}=\left(a_{i, 1}, a_{i, 2}, \ldots, a_{i, d}\right)$. Interesting special case is when $d=1$.
- What model should one use to explain the data?

Simplest model? Affine fitting. $b_{i}=\alpha_{0}+\sum_{j=1}^{d} \alpha_{j} a_{i, j}$ for some real numbers $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{d}$. Can restrict to $\alpha_{0}=0$ by lifting to $d+\mathbf{1}$ dimensions and hence linear model.

But data is noisy so we won't be able to satisfy all data points even if true model is a linear model. How do we find a good linear model?

Regression

- \boldsymbol{n} data points
- Each data point $\mathbf{a}_{\boldsymbol{i}} \in \mathbb{R}^{\boldsymbol{d}}$ and real value $\boldsymbol{b}_{\boldsymbol{i}}$. We think of $=\boldsymbol{b}$

$$
a_{i}=\left(a_{i, 1}, a_{i, 2}, \ldots, a_{i, d}\right) . \quad\left\langle a_{1}^{T}, x\right\rangle=b_{i}
$$

Linear model fitting: Find real numbers $\alpha_{1}, \ldots, \alpha_{\boldsymbol{d}}$ such that $b_{i} \simeq \sum_{j=1}^{d} \alpha_{j} a_{i, j}$ for all points

Let \boldsymbol{A} be matrix with one row per data point $\boldsymbol{a}_{\boldsymbol{i}}$. We write $x_{1}, x_{2}, \ldots, x_{d}$ as variables for finding $\alpha_{1}, \ldots, \alpha_{d}$.

Ideally: Find $x \in \mathbb{R}^{\boldsymbol{d}}$ such that $A x=b$ Best fit: Find $x \in \mathbb{R}^{\boldsymbol{d}}$ to minimize $\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}$ under some norm.

- $\|A x-b\|_{\infty},\|A x-b\|_{2},\|A x-b\|_{1}$

Linear least squares/Regression

Linear least squares: Given $A \in \mathbb{R}^{\boldsymbol{n} \times \boldsymbol{d}}$ and $b \in \mathbb{R}^{\boldsymbol{d}}$ find x to minimize $\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}$. Optimal estimator for certain noise models

Interesting when $\boldsymbol{n} \gg \boldsymbol{d}$ the over constrained case when there is no solution to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ and want to find best fit.

Linear least squares/Regression

Linear least squares: Given $A \in \mathbb{R}^{\boldsymbol{n \times d}}$ and $b \in \mathbb{R}^{\boldsymbol{d}}$ find x to minimize $\|A x-b\|_{2}$.

Interesting when $\boldsymbol{n}>\boldsymbol{d}$ the over constrained case when there is no solution to $\boldsymbol{A x}=\boldsymbol{b}$ and want to find best fit.

Geometrically $\boldsymbol{A x}$ is a linear combination of columns of \boldsymbol{A}. Hence we are asking what is the vector \boldsymbol{z} in the column space of \boldsymbol{A} that is closest to vector \boldsymbol{b} in ℓ_{2} norm.

Closest vector to \boldsymbol{b} is the projection of \boldsymbol{b} into the column space of \boldsymbol{A} so it is "obvious" geometrically. How do we find it?

$$
\begin{aligned}
& {\left[\begin{array}{l}
A^{\prime} a^{2} \downarrow \downarrow \downarrow^{d} \\
\\
\end{array}\right]} \\
& \|A x-b\|_{2} \\
& {\left[\begin{array}{l}
b \\
\\
\end{array}\right]} \\
& A^{1}, A_{1}^{2}, \ldots, A^{d}, b \\
& \in R^{n} \\
& \text { =0?? } \\
& \text { Fix } x \quad A x \\
& =x_{1} A^{1}+x_{2} A^{2} \\
& +\cdots x_{d} A^{d}
\end{aligned}
$$

$\Leftrightarrow b$ is in the column span of A.
supper b is wit in the Column space. what is the an?

$$
\begin{aligned}
& \|A x-b\|_{2}^{2} \\
& \Delta f_{i}-\bar{x} \\
& s+t|A \bar{x}=c| \\
& \begin{array}{l}
\|b\|^{2}=\|c\|_{2}^{2} \\
\\
\quad+\left\|b^{\prime}\right\|^{2}
\end{array}
\end{aligned}
$$

Linear least squares/Regression

Linear least squares: Given $A \in \mathbb{R}^{\boldsymbol{n \times d}}$ and $b \in \mathbb{R}^{\boldsymbol{d}}$ find x to minimize $\|A x-b\|_{2}$.

Geometrically $\boldsymbol{A x}$ is a linear combination of columns of \boldsymbol{A}. Hence we are asking what is the vector \boldsymbol{z} in the column space of \boldsymbol{A} that is closest to vector b in ℓ_{2} norm.

Closest vector to \boldsymbol{b} is the projection of \boldsymbol{b} into the column space of \boldsymbol{A} so it is "obvious" geometrically. How do we find it?

- Find an orthonormal basis $z_{1}, z_{2}, \ldots, z_{r}$ for the columns of \boldsymbol{A}.
- Compute projection \boldsymbol{c} of \boldsymbol{b} to column space of \boldsymbol{A} as $c=\sum_{j=1}^{r}\left\langle b, z_{j}\right\rangle z_{j}$ and output answer as $\|b-c\|_{2}$.
- What is x ?

expremis

Linear least squares/Regression

Linear least squares: Given $A \in \mathbb{R}^{\boldsymbol{n \times d}}$ and $b \in \mathbb{R}^{\boldsymbol{d}}$ find x to minimize $\|A x-b\|_{2}$.

Geometrically $\boldsymbol{A x}$ is a linear combination of columns of \boldsymbol{A}. Hence we are asking what is the vector \boldsymbol{z} in the column space of \boldsymbol{A} that is closest to vector b in ℓ_{2} norm.

Closest vector to \boldsymbol{b} is the projection of \boldsymbol{b} into the column space of \boldsymbol{A} so it is "obvious" geometrically. How do we find it?

- Find an orthonormal basis $z_{1}, z_{2}, \ldots, z_{r}$ for the columns of \boldsymbol{A}.
- Compute projection \boldsymbol{c} of \boldsymbol{b} to column space of \boldsymbol{A} as $c=\sum_{j=1}^{r}\left\langle b, z_{j}\right\rangle z_{j}$ and output answer as $\|b-c\|_{2}$.
- What is x ? We know that $\boldsymbol{A x}=\boldsymbol{c}$. Solve linear system. Can combine both steps via SVD and other methods.

Linear least square: Optimization perspective

Linear least squares: Given $\boldsymbol{A} \in \mathbb{R}^{\boldsymbol{n \times d}}$ and $b \in \mathbb{R}^{\boldsymbol{d}}$ find x to minimize $\|A x-b\|_{2}$.

Optimization: Find $x \in \mathbb{R}^{d}$ to minimize $\|A x-b\|_{2}^{2}$

$$
\|A x-b\|_{2}^{2}=x^{\top} A_{Q}^{\top} A x-2 b^{\top} A x+b^{t} b
$$

The quadratic function $f(\bar{x})=x^{\top} A^{\top} A x-2 b^{T} A x+b^{t} b$ is a convex function since the matrix $\boldsymbol{A}^{\top} A$ is positive semi-definite. $\nabla f(x)=2 A^{T} A x-2 b^{T} A$ and hence optimum solution x^{*} is given by $\left(x^{*}=\left(A^{T} A\right)^{-1} b^{T} A\right.$.

Computational perspective

\boldsymbol{n} large (number of data points), \boldsymbol{d} smaller so \boldsymbol{A} is tall and skinny.
Exact solution requires SVD or other methods. Worst case time $n d^{2}$.
Can we speed up computation with some potential approximation?

Linear least squares via Subspace embeddings

Let $A^{(1)}, A^{(2)}, \ldots, A^{(d)}$ be the columns of \boldsymbol{A} and let E be the subspace spanned by $\left\{A^{(1)}, A^{(2)}, \ldots, A^{(d)}, b\right\}$
Note columns are in $\mathbb{R}^{\boldsymbol{n}}$ corresponding to n data points

Use subspace embedding on E. Applying JL matrix Π with $k=O\left(\frac{d}{\epsilon^{2}}\right)$ rows we reduce $\left\{A^{(1)}, A^{(2)}, \ldots, A^{(d)}, b\right\}$ to $\left\{A^{\prime(1)}, A^{\prime(2)}, \ldots, A^{\prime(d)}, b^{\prime}\right\}$ which are vectors in $\mathbb{R}^{\boldsymbol{k}}$.

Solve $\min _{x^{\prime} \in \mathbb{R}^{d}}\left\|A^{\prime} x^{\prime}-b^{\prime}\right\|_{2}$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
A^{(1)} & \cdots & A^{(d)} \\
& & \\
\\
& \\
\end{array}\right.} \\
& \pi \in \mathbb{R}^{k \times n} \quad k=O\left(\frac{d}{\varepsilon^{2}} \ln \frac{1}{\delta}\right) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& k=\frac{d}{s^{2}}
\end{aligned}
$$

Analysis

Lemma

With probability $(\mathbf{1}-\boldsymbol{\delta})$,
$(1-\epsilon) \min _{x \in \mathbb{R}^{d}}\|A x-b\| \leq \min _{x^{\prime} \in \mathbb{R}^{d}}\left\|A^{\prime} x^{\prime}-b^{\prime}\right\|_{2} \leq(1+\epsilon) \min _{x \in \mathbb{R}^{d}}\|A x-b\|$

Analysis

Lemma

With probability $(\mathbf{1}-\delta)$,
$(1-\epsilon) \min _{x \in \mathbb{R}^{d}}\|A x-b\| \leq \min _{x^{\prime} \in \mathbb{R}^{d}}\left\|A^{\prime} x^{\prime}-b^{\prime}\right\|_{2} \leq(1+\epsilon) \min _{x \in \mathbb{R}^{d}}\|A x-b\|$

With probability $(\mathbf{1}-\boldsymbol{\delta})$ via the subpsace embedding guarantee, for all $z \in E$,

$$
(1-\epsilon)\|z\|_{2} \leq\|\Pi z\|_{2} \leq(1+\epsilon)\|z\|_{2}
$$

Now prove two inequalities in lemma separately using above.

Analysis

Suppose ${\underset{x}{*}}^{*}$ is an optimum solution to $\min _{x}\|A x-b\|_{2}$.
Let $z=A x^{*}-\boldsymbol{b}$. We have $\|\Pi z\|_{2} \leq(1+\boldsymbol{\epsilon})\|z\|_{2}$ since $z \in E$.

Analysis

Suppose x^{*} is an optimum solution to $\min _{x}\|A x-b\|_{2}$.
Let $z=A x^{*}-\boldsymbol{b}$. We have $\|\Pi z\|_{2} \leq(1+\boldsymbol{\epsilon})\|z\|_{2}$ since $z \in E$.
Since x^{*} is a feasible solution to $\min _{x^{\prime}}\left\|\boldsymbol{A}^{\prime} \boldsymbol{x}^{\prime}-\boldsymbol{b}^{\prime}\right\|$,

Analysis

For any $y \in \mathbb{R}^{d},\|\Pi A y-\Pi b\|_{2} \geq(1-\epsilon)\|A y-b\|_{2}$ because $A y-b$ is a vector in E and Π preserves all of them.

$$
\begin{aligned}
& \|\pi(d y-b)\|_{=}\|\pi A y-\pi b\|_{2} \\
& \|\pi z\| \geqslant(1-\varepsilon)\|z\|
\end{aligned}
$$

Analysis

For any $y \in \mathbb{R}^{d},\|\Pi A y-\Pi b\|_{2} \geq(1-\epsilon)\|A y-b\|_{2}$ because $\boldsymbol{A} \boldsymbol{y}-\boldsymbol{b}$ is a vector in \boldsymbol{E} and $\boldsymbol{\Pi}$ preserves all of them.

Let y^{*} be optimum solution to $\min _{x^{\prime}}\left\|A^{\prime} x^{\prime}-b^{\prime}\right\|_{2}$. Then $\left\|\Pi\left(A y^{*}-b\right)\right\|_{2} \geq(1-\epsilon)\left\|A y^{*}-b\right\|_{2} \geq(1-\epsilon)\left\|A x^{*}-b\right\|_{2}$
$\uparrow=\gamma$

Running time

Reduce problem for \boldsymbol{d} vectors in $\mathbb{R}^{\boldsymbol{n}}$ to \boldsymbol{d} vectors in $\mathbb{R}^{\boldsymbol{k}}$ where $k=O\left(d / \epsilon^{2}\right)$.

Computing $\boldsymbol{\Pi} \boldsymbol{A}, \boldsymbol{\Pi} \boldsymbol{b}$ can be done in $n n z(\boldsymbol{A})$ via sparse/fast JL (input sparsity time).

Need to solve least squares on $\boldsymbol{A}^{\prime}, \boldsymbol{b}^{\prime}$ which can be done in $O\left(d^{3} / \epsilon^{2}\right)$ time.

Essentially reduce \boldsymbol{n} to $\boldsymbol{d} / \epsilon^{2}$. Useful when $\boldsymbol{n} \gg \boldsymbol{d} / \epsilon^{2}$ (for this ϵ should not be too small)

Further improvement

Reduced dimension of vectors from \mathbb{R}^{n} to \mathbb{R}^{k} where $k=O\left(d / \epsilon^{2}\right)$.
For small ϵ a dependence of $1 / \epsilon^{2}$ is not so good. Can we improve?
Can use Π with $k=O(d / \epsilon)$.

- Suffices if $\boldsymbol{\Pi}$ has $\mathbf{1 / 1 0}$-approximate subspace embedding property and property of preserving matrix multiplication
- $(\Pi A)^{T}(\Pi A)$ has small condition number
- Use $\boldsymbol{\Pi}$ that has $\mathbf{1 / 1 0}$-approximate subspace embedding property and then use gradient descent whose convergence depends on condition number of \boldsymbol{A}.

Other uses of JL/subspace embeddings in numerical linear algebra

- Approximate matrix multiplication
- Low rank approximation and SVD
- Compressed Sensing

